Fabrication and characterization of TiO$_2$ nanoparticles conjugated luminescence upconversion nanoparticles

Seda Demirel Topel 1*, Önder Topel 2, Günseli Turgut Cin 2

1Department of Material Science and Nanotechnology Engineering, Faculty of Engineering, Antalya Bilim University, 07190, Antalya, Turkey
2Department of Chemistry, Faculty of Science, Akdeniz University, 07058 Antalya, Turkey

*corresponding author e-mail address: seda.demireltapel@antalya.edu.tr

ABSTRACT

TiO$_2$ nanoparticles conjugated luminescence upconversion (TiO$_2$-UC) nanocomposites have been fabricated by covalently linking of carboxyl-functionalized TiO$_2$ and amino-functionalized NaYF$_4$:Yb$^{3+}$,Er$^{3+}$,Ce$^{3+}$ upconversion nanoparticles (UCNP) in the presence of N,N'-dicyclohexylcarbodiimide (DCC) /4-dimethylaminopyridine (DMAP) coupling reagents. The carboxyl-functionalized TiO$_2$ nanoparticles and amino-functionalized UCNPs have been synthesized by hydrothermal method with 5±2 and 55±10 nm in diameter, respectively. In the synthesis of UCNPs, the percentage of stabilizing agent (polyethyleneimine, PEI), the mole ratios of NaCl/NH$_3$F and the co-doping ratio of Ce$^{3+}$ ion have been found to be significant effect on their size and morphology. Size, morphology, conjugation as well as photo-physical properties of all synthesized nanomaterials have been characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy. UCNPs and TiO$_2$-UC nanocomposites exhibit strong green luminescence at room temperature under 980 nm excitation leaded the emissions at 440, 520, 540 and 658 nm, representing 4H$_{9/2}^→$ 1I$_{15/2}$, 4H$_{11/2}^→$ 1I$_{15/2}$, 3S$_{2}^→$ 1I$_{15/2}$ and 2F$^→$ 1I$_{15/2}$ transitions, respectively. The water dispersible luminescence nanocomposites having NIR light utilizing ability are promising for efficient light harvesting and/or bio-imaging applications.

Keywords: upconversion; rare earths; TiO$_2$ nanoparticles; luminescence; water soluble.

1. INTRODUCTION

Upconversion is a non-linear optical process generating higher energy emission from low-energy radiation and especially upconversion near infrared light (NIR) to the visible light has been of special interest since Auzel, Osyvakin and Fedilov in the 1960s was firstly reported this concept [1, 2, 3]. Lanthanide-doped NaREF$_4$ (RE: rare earth) upconversion nanoparticles (UCNPs) are one of the most important upconversion materials, and have been subject to many applications such as biological labeling [4, 5, 6], photodynamic therapy [7, 8], drug delivery [9, 10], dye sensitized solar cells [11, 12], 3D optical displays [13, 14], security labeling [15, 16] and optical storage [17] in the last decades. Generally, the UCNPs consist of a host lattice and doped lanthanide ions in which may act as an absorber and emitter ion in the host lattice material. Some crystalline lattices of trivalent rare earth ions (Sc$^{3+}$, Y$^{3+}$, La$^{3+}$, Gd$^{3+}$), alkaline earth ions (Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$) or certain transition metals (Ti$^{4+}$, Zr$^{4+}$) may be used as the host materials [18]. The most commonly used hosts are halides (NaYF$_4$, YF$_3$, LaF$_3$), oxides (Y$_2$O$_3$, ZrO$_2$) and oxy sulfides (Y$_2$O$_2$S, La$_2$O$_2$S) [19]. On the other hand, the dopant ions located in the selected host lattice play a critical role for absorbing (e.g. Yb$^{3+}$) and emitting photons (Er$^{3+}$, Tm$^{3+}$, Ho$^{3+}$) which are responsible for the colour of emitted light [20]. Many lanthanide ions (La$^{3+}$) have metastable intermediate electronic states to be able to generate an upconversion emission. The shielding of the 4f electrons of Ln$^{3+}$ by completely filled 5s2 and 5p6 sub-shells results in a weak electron-phonon coupling that exhibits sharp and narrow f-f transition bands and forbidden f-f transitions arising long-lived excited states (up to 100 ms) [18, 21].

In order to synthesize UCNPs, a variety of chemical synthesis methods including co-precipitation [22], thermal decomposition [23], hydro(solvo)thermal synthesis [24] and sol-gel [25], have been applied. In each of these techniques, optimization of synthesis parameters in the method is crucial to obtain nanocrystals having desired size, morphology, and optical properties. The surfaces of UCNPs have also been modified with nanoparticles, small molecules and polymers in order to have different properties in the literature. For example, TiO$_2$ nanoparticles have been coated on UCNPs especially for the following purposes: i) to build up a dye sensitized solar cell (DSSC) improved light harvesting ability to NIR region with UCNPs [26] and ii) to fabricate a NIR-responsive photo-catalyst. Conventional DSSCs can work well in the visible region even though they cannot harvest NIR part of sunlight effectively. For more efficiently utilization of solar spectrum in maximum range of energy, new type dyes and quantum dots in DSSCs having ability harvesting the NIR region of polychromatic solar spectrum are currently under development [27]. Regarding this, it is obvious that UCNPs are a potential candidate to extend the energy absorbing range. Demopoulus and co-workers synthesized TiO$_2$ combined UCNPs (LaF$_3$:Yb/Er) in 2010 [28] for the first time and found that Er$^{3+}$,Yb$^{3+}$ co-doped LaF$_3$ part of the nanomaterial captures NIR light and converts it into visible light absorbable by
2. EXPERIMENTAL SECTION

2.1. Materials.

Rare-earth chlorides (REC1·xH2O, 99.99%), sodium chloride (NaCl), sodium hydrosulfate (NaOH), ammonium fluoride (NH4F), poliethyleneimine (PEI, branched polymer, MW:10.000), titanium(iv)isopropoxide (Ti(OPr)4), citric acid monohydrate, N,N’-dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP) and all solvents were analytical grade, purchased from Sigma-Aldrich and used without further purification.

2.2. Synthesis of PEI coated NaYF4:Yb3+, Er3+, Ce3+ upconversion nanoparticles.

Upconversion nanoparticles with the following composition, NaYF4:Yb3+ (72%), Yb3+ (20%), Er3+ (5%), Ce3+ (3%) were prepared via hydrothermal method. In a 100 mL teflon beaker, YCl3·6H2O (140.59 mg, 0.72 mmol), YbCl3·6H2O (55.58 mg, 0.2 mmol), ErCl3·6H2O (13.68 mg, 0.05 mmol), CeCl3·6H2O (7.39 mg, 0.03 mmol) and NaCl (58.44 mg, 1 mmol) were dissolved in 4 mL ultrapure water (dd H2O), 50 mL ethanol were added to the solution and stirred for 5 min. To this solution, 10 mg of PEI (MW: 10.000g/mol) solution (1 g PEI in 20 mL dd.H2O) and NaH2F (185.2 mg, 5 mmol) were added and then the teflon beaker was placed to autoclave and heated up 200°C for 3 h. The separated UCNPs by centrifuging at 8500 rpm for 15 min were washed with ethanol:water (10:10 mL) mixture for 3 times and then dried in a vacuum oven at 40°C [35].

Ti(OPr)4 (2.32 g, 8.2 mmol) was dissolved in 47 mL of n-propanol a 100 mL teflon beaker at ambient temperature. After 10 min stirring, n-propanol/hydrochloric acid mixture was added dropwise into alkoxide solution using a burette with very slow rate. The solution was left for additional 10 min stirring. Then water/n-propanol mixture was added into the solution in the same rate and stirred at ambient temperature for 30 min. Teflon beaker containing final mixture was placed in a hydrothermal reactor and heated at 150°C for 2 h. The mole ratio of H2O/Ti(OPr)4 and HCl/Ti(OPr)4 were 2 and 0.2, respectively. At the end of the time, the mixture cooled down to room temperature. TiO2 nanoparticles were then separated through centrifugation at 8500 rpm and dried in a vacuum oven at 30°C for 4 h [36]. In order to citric acid coating on the surface of nanoparticles, TiO2 nanoparticles (149 mg, 1.87 mmol) were dispersed in dd. H2O (100 mL) and then citric acid monohydrate (1.96 g, 9.35 mmol) was added to the dispersion. The pH of the mixture was adjusted at 10 by adding NaOH (0.1M) and then heated at 55°C for 2 hours. After cooling down the reaction mixture to room temperature, the citrate coated TiO2 nanoparticles were separated by centrifuge at 8500 rpm for 15 min and dried in a vacuum oven at 40°C [37].

The synthesis route of the conjugation of TiO2 and NaYF4:Yb3+, Er3+, Ce3+ upconversion nanoparticles through DCC/DMAP coupling chemistry used in this study is illustrated in Scheme 1. In a 50 mL round bottom flask, citrate functionalized TiO2 (10 mg) were dispersed in MeOH/THF (1:1) solution under nitrogen atmosphere. PEI functionalized upconversion nanoparticles (50 mg), DCC (2.9 mg, 0.014 mmol) and DMAP (0.17 mg, 1.4×103 mmol) reagents were added to the TiO2 solution. The reaction mixture was stirred at room temperature under nitrogen atmosphere overnight. TiO2-UC nanocomposites were separated via centrifuge at 8500 rpm for 15 min, and then washed with 10 mL of ethanol:water (1:1) mixture for 3 times and dried in vacuum oven at 40°C.
2.5. Characterization.

The morphology and size of the prepared nanoparticles were characterized by a transmission electron microscope (TEM) (FEI tecnai G2 F30) using an accelerating voltage of 200keV. A small drop of nanoparticle dispersions was put on a 50 Å thick carbon-coated copper grid (300 mesh) then the excess solution was immediately removed. Powder XRD measurements were performed at room temperature (Rigaku, micromax 007HFDW) by using Cu-Kα (1.5418 Å) radiation. X-ray photoelectron spectrometer (XPS) analysis was carried out on Thermo Scientific, K-alpha. Fourier transform infrared spectroscopy (FTIR) spectra were recorded on a Bruker Tensor 27 spectrometer. The PL spectra were obtained with a confocal Raman spectrometer (Wited, Alpha 300S) by using external NIR continuous wave (CW) laser light (50 mW, 980 nm). All measurements were performed at room temperature.

3. RESULTS SECTION

We used the hydrothermal method to synthesize UCNPs which is a water-based system providing a relatively green method compared to other synthesis techniques such as thermal decomposition and co-precipitation required toxic precursors and harsh reaction conditions [13,14]. The parameters such as solvent amount, PEI ratio, NaCl/NH₄F ratio and Ce⁴⁺ ion co-doping ratios etc. have been optimized in order to obtain uniform UCNPs with small size and hexagonal phase, since luminescence performance of UCNPs having hexagonal phase is 10 times more than cubic phase [38]. The results from optimization studies are given in Table 1. To be able to adjust the size and the crystal phase, we use Ce⁴⁺ doping in the experiments 4, 5 and 6 and found that introducing Ce⁴⁺ ion in the upconversion nanocrystal structure together with increasing PEI % and volume of the solvent has led to decrease the size of UCNPs in hexagonal phase (Table 1). Wang and co-workers explained this Ce⁴⁺ ion doping effect on the host lattice (NaYF₄) referring the system free energy and anisotropic crystal growth: "doping a larger ion like Ce⁴⁺ can decrease the energy barrier and lead to hexagonal phase UCNPs” [39]. We chose the UCNPs from the experiment 6 for further studies since the result produced in more uniform and smaller size UCNPs, even though it yielded a mixture of hexagonal and cubic phase (Table 1).

Table 1. Reaction conditions for the synthesis of PEI coated UCNPs.

<table>
<thead>
<tr>
<th>No.</th>
<th>NaCl</th>
<th>NH₄F</th>
<th>PEI</th>
<th>Method</th>
<th>Solvent</th>
<th>pH</th>
<th>PEI %</th>
<th>Volume of solvent</th>
<th>Crystalline phase</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.2</td>
<td>1/2</td>
<td>2.25</td>
<td>teflon beaker (open air)</td>
<td>7</td>
<td>200</td>
<td>24</td>
<td>Cubic</td>
<td>60 nm</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.2</td>
<td>1/2</td>
<td>2.25</td>
<td>teflon beaker (open air)</td>
<td>7</td>
<td>200</td>
<td>24</td>
<td>Cubic</td>
<td>35 nm</td>
</tr>
<tr>
<td>3</td>
<td>0.08</td>
<td>0.2</td>
<td>1/2</td>
<td>2.25</td>
<td>hydrothermal</td>
<td>7</td>
<td>200</td>
<td>24</td>
<td>Cubic</td>
<td>35 nm</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.5</td>
<td>1/5</td>
<td>5</td>
<td>hydrothermal</td>
<td>7</td>
<td>200</td>
<td>3</td>
<td>hexagonal</td>
<td>5 nm</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.5</td>
<td>1/5</td>
<td>5</td>
<td>hydrothermal</td>
<td>7</td>
<td>200</td>
<td>3</td>
<td>hexagonal</td>
<td>294 nm</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.5</td>
<td>1/5</td>
<td>5</td>
<td>hydrothermal</td>
<td>7</td>
<td>200</td>
<td>3</td>
<td>hexagonal</td>
<td>65 nm</td>
</tr>
</tbody>
</table>

The size and morphology of the synthesized PEI coated UCNPs were also investigated by TEM measurements. Figure 1 (A-D) represents the typical TEM images of UCNPs that are particularly well distributed in size, but it seems that the nanoparticles tend to be agglomerated due to the preparation of the sample in water solution (Fig. 1A and 1C). The histogram shows that the average particle size of PEI coated UCNPs is 55±10 nm in diameter determined from the TEM images with Adobe Photoshop 7 by counting 145 nanoparticles (Fig. 1B). The selected area electron diffraction (SAED) pattern shows NaYF₄ lattice to have well crystallinity (Fig 1E).

Citrate coated TiO₂ nanoparticles for surface conjugation of UCNPs were synthesized by hydrothermal method. TEM images of citrate coated TiO₂ nanoparticles are shown in Fig 2. The particles were fabricated so as to be spherical and highly monodisperse with an average diameter of 5±2 nm (Fig. 2A-C). Their size and size distribution were determined by sizing the particles in the TEM images with Adobe Photoshop 7. Total of 233 nanoparticles were counted and averaged. Selected area electron diffraction (SAED) pattern is also clearly indicated that synthesized TiO₂ nanoparticles are highly crystalline phase (Fig. 2D).

![Fig. 1. TEM images (A-D) and size distribution (F) of PEI coated NaYF₄:Yb⁴⁺, Er⁵⁺, Ce⁴⁺ UCNPs (the scale bars for A-D is 500, 100, 50 and 20 nm, respectively). The image E shows selected-area electron diffraction (SAED) pattern of NaYF₄ lattice.](image1)

![Fig. 2. TEM images and size distribution of citrate coated TiO₂ nanoparticles, (A, B and C). The image D shows selected-area electron diffraction (SAED) pattern of citrate coated TiO₂ nanoparticles.](image2)
The synthesized citrate coated TiO$_2$ nanoparticles were covalently conjugated on the surface of PEI coated NaYF$_4$:Yb$^{3+}$,Er$^{3+}$,Ce$^{3+}$ upconversion nanoparticles through DCC/DMAP coupling reaction to fabricate TiO$_2$–UC nanocomposites. Representative TEM images of the resultant TiO$_2$–UC nanocomposites are given in Fig. 3. It can be clearly seen from Fig 3(A–D) there are not any free TiO$_2$ nanoparticles on the grid and all of the TiO$_2$ nanoparticles were attached on the surface of UCNPs. There is no change in their individual sizes of previously prepared citrate coated TiO$_2$ and PEI coated UCNPs after bonding. An energy-dispersive X-ray (EDX) spectrum of TiO$_2$–UC nanocomposites shows to be strong peaks belonging Y, F atoms and relatively weaker peaks belonging Yb, Na, Er, Ce and Ti atoms which proves the existence of NaYF$_4$ and TiO$_2$ in the TiO$_2$–UC nanocomposite.

Crystal structures of the synthesized nanoparticles were characterized by means of X-ray powder diffraction measurements. Fig. 4a-c shows the diffraction patterns of citrate coated TiO$_2$ nanoparticles, TiO$_2$–UC nanocomposites and PEI coated UCNPs (NaYF$_4$:Yb$^{3+}$, Er$^{3+}$, Ce$^{3+}$). According to Joint Committee on Powder Diffraction Standards (JCPDS), the synthesized PEI–UCNPs represent a mixture of α-cubic (JCPDS27-0697) and β-hexagonal (JCPDS27-0698) crystal phases [23] whereas citrate coated TiO$_2$ nanoparticles are purely in anatase phase (JCPDS 21-1272) [40].

Covalent conjugation between PEI coated UCNPs and citric acid functionalized TiO$_2$ nanoparticles was proved by FTIR and XPS measurements. Fig. 5 shows the FTIR spectra of (a) PEI functionalized UCNP, (b) TiO$_2$–UC nanocomposites and (c) citrate functionalized TiO$_2$ NPs, respectively. N–H bending and C–N stretching vibrations observed at 1611 and 1069 cm$^{-1}$, respectively in Fig 5a, represent free amine groups in PEI coated UCNPs confirming the existence of PEI on the UCNPs surface together with the stretching bands of alkyl chain in PEI arising at 2944 and 2847 cm$^{-1}$. The citrate coated TiO$_2$ particles have the characteristic vibrations at 611 cm$^{-1}$ due to stretching bands of Ti–O–Ti (Fig. 5c). The two prominent bands belonging to deprotonated citrate ions (carboxylate group), 1569 and 1375 cm$^{-1}$, are assigned to the asymmetric and symmetric stretching motions of carboxylate group, respectively (Fig. 5c). The stretching vibration of C–O group is also appeared at 1097 cm$^{-1}$. The broad bands observed at 3402 and 3222 cm$^{-1}$ are attributed to O–H stretching vibrations of water adsorbed to the surface of CA coated TiO$_2$ nanoparticles (Fig 5c). After covalently binding of citrate functionalized TiO$_2$ nanoparticles to PEI modified UCNPs, new stretching peaks arise at 1625 (C=O, amide I), 1558 (N–H, amide II) and 1375 cm$^{-1}$ (C–N, amide III) due to the amide formation in the resultant UC nanocomposites (Fig. 5b). The characteristic N–H stretching vibration belonging to amide group is also appeared at 3333 cm$^{-1}$ (Fig. 5b).
To further characterize chemical composition and relevant surface chemistry of PEI coated UCNPs and TiO$_2$–UC nanocomposites, XPS measurements were performed in the range of 0–1350 eV (Fig. 6). The peaks corresponding to the binding energy of host elements Y (Y 3p$_{3/2}$, 316 eV; Y 3p$_{1/2}$, 301 eV; 3d$_{5/2}$, 165 eV), Na (1s, 1075 eV), F (1s, 688 eV) and dopants Yb (4d, 190 eV), Er (4d, 150 eV) and Ce (3d, 929 eV) are seen obviously in XPS spectra in Fig. 6a. Carbon 1s signal at 288 eV is due to the carbon used for the calibration. The peak at 402 eV corresponding to N1s confirms the existence of PEI on PEI functionalized UCNPs. New arising peaks at 458 eV (Ti 2p$_{1/2}$) and 463 eV (Ti 2p$_{3/2}$) indicates the binding TiO$_2$ nanoparticles to the UCNPs surface (Fig 6b,d) which supports the results from FTIR measurements in Fig.5.

4. CONCLUSIONS

TiO$_2$ and upconversion (UC) nanoparticles were individually synthesized by hydrothermal method with an average size of 5±2 nm and 55±5 nm with a narrow size distribution. Both TiO$_2$ and UC nanoparticles were obtained in high crystallinity with anatase and hexagonal-cubic phase, respectively. To introduce the PEI and Ce$^{3+}$ ion into upconversion nanocrystals resulted in uniform and small nanoparticles having a mixture of cubic-hexagonal phase. TiO$_2$ nanoparticles were conjugated to NaYF$_4$:Yb$^{3+}$,Er$^{3+}$,Ce$^{3+}$ UCNPs via covalent coupling reaction. The prepared TiO$_2$–UC nanocomposites are highly monodisperse and show a good photo-stability in water. They show slightly improved emission intensity in comparison to bare UCNPs under the excitation of 980 nm after the conjugation with TiO$_2$ nanoparticles. Developed multifunctional nanocomposites are promising for both light harvesting applications and biomedical applications.

5. REFERENCES

6. ACKNOWLEDGEMENTS

The authors acknowledge the Akdeniz University Coordination Unit of Scientific Research Projects (Project No. 2012.01.0115.001) for their financial support. Authors also thank Prof. Engin U. Akkaya (Department of Chemistry, Bilkent University, Ankara, Turkey) for his help and support and Mr. Mustafa Guler (UNAM, Bilkent University, Ankara, Turkey) for TEM imaging.

© 2018 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).