Application of quantum chemical calculations in modeling of the supramolecular nanomedicine constructed from host-guest complexes of cucurbit[7]uril with gemcitabine anticancer drug

Rezvan Mohammadabadi 1, Ali Morsali 1,2,*, Mohammad M. Heravi 1, S. Ali Beyramabadi 1,2

1 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
*corresponding author e-mail address: almorsali@yahoo.com

ABSTRACT

Using a quantum mechanical approach, we have investigated the drug delivery efficiency of cucurbit[7]uril for gemcitabine anticancer drug in gas and solution phases. The eight noncovalent interactions of drug gemcitabine with cucurbit[7]uril have been considered and optimized at M06-2X/6-31G(d,p) level. The calculation of binding energies showed the energetic stability of the host-guest complexes and confirmed the physical nature of interactions. It was specified that the gas phase binding energies are more negative than those of solution phase. The host-guest complex in which the drug is encapsulated in cucurbit[7]uril, is the most stable configuration and has the major contribution in gemcitabine drug delivery. Also, the free energies of solvation and quantum molecular descriptors were calculated. The free energies of solvation show that gemcitabine solubility increases in the vicinity of cucurbit[7]uril. The values of gemcitabine quantum molecular descriptors such as global hardness and HOMO-LUMO energy gap are higher than those of cucurbit[7]uril, showing the reactivity of the gemcitabine increases. The AIM analysis demonstrated that the hydrogen bonding between OH and NH2 functional groups of gemcitabine and the carbonyl functional group of cucurbit[7]uril plays an important role in the gemcitabine drug delivery.

Keywords: Cucurbit[7]uril; Quantum molecular descriptors; Gemcitabine; Host-guest complexes; AIM analysis; Density functional theory.

1. INTRODUCTION

Since the decline of traditional medicine and the introduction of modern pharmacology, there has always been the challenging issue of the effectiveness of the modern drugs in connection with their stability and uniqueness of action. The researchers found that a possible solution to this challenging problem could produce structures that could carry a therapeutic agent and release it within a specified time and at a given site. Consequently, efforts have been made recently with the objective of producing controlled and targeted drug delivery carriers [1-3].

To materialize the above mentioned objective, a technique involving the encapsulation of the drug by a macrocyclic host was used, which safeguarded the drugs from degradation by utilizing steric hindrance. The objectives of the encapsulation of therapeutic agents are the rise of drug solubility, modification of the drug delivery and its maintaining in the body, alteration of the mechanism of drug penetration, control the drug release, reducing the level of an agent’s degradation and improvement in the stability of shelf life [4-7].

These techniques, known as host-guest method, have been extensively used in medicinal and biological applications. Examples of such applications are pharmaceutical synthesis [8,9], drug delivery [10,11], detections of biological analysts [12-14], agricultural fields [15] and diagnostic tools [16]. A number of measures and conditions must be fulfilled before the application of host molecules as carriers in pharmaceutical compounds. The most vital conditions to be satisfied for these molecules are their biological inertness, nontoxicity, and chemical stability, which enable them to create complexes having a high degree of binding to medicinal compounds and making them controllable [17].

Dendrimers [18] are defined to be highly branched macromolecules and normally regarded as polymers, for the reason that their structure could be defined by many repeated subunits [19]. Most of the molecular identification work carried out with dendrimers have been performed by using cucurbit[n]urils and cyclodextrins as host particles [20]. Lately, cucurbit[n]urils (CB[n]) has demonstrated utility as drug delivery carriers [10,21,22].

Behrend synthesized cucurbiturils in 1905 through condensing glycoluril and formaldehyde in an acidic environment. Freeman described the chemical structure of cucurbiturils in 1981 [16]. Till 2000, CB[6] was the only CB[n] to catch any consideration as a molecule beneficial in host–guest complexes. This altered upon the finding of diverse sized cucurbit[n]urils: CB[5] to CB[10] [21,22]. Their discovery has resulted in a rapid rise in the application of CB[n] in various areas involving drug delivery and molecular machines [23].

Cucurbit[n]urils are comparatively water-soluble particles that have a rather inflexible, definite cavity whose inside surface is characterized as hydrophobic, being capable of creating complexes with various guests in aqueous solution [24,25]. CB[n] (n = 5, 6, 7, 8, 10) homologues have 5-10 glycoluril residues which make hydrophilic surface (carbonyl functional groups). Binding of cucurbiturils with molecules could take place by hydrophobic interactions inside the cavity, ion–dipole interactions and the formation of hydrogen bonds between the oxygen at the
Application of quantum chemical calculations in modeling of the supramolecular nanomedicine constructed from host-guest complexes of cucurbit[7]uril with gemcitabine anticancer drug

hydrophilic surface of the host and the hydrogen atoms of the guest [26-28].

Different molecules including anticancer compounds [29], DNA bases [30], amino acids [30], ranitidine [31], curcumin [32] and proflavine [33] have been encapsulated in CB[n]. The discovery of water soluble cucurbit[n]urils will increase the production of new and effective drug delivery carriers [23,34].

With the objective of increasing medicinal compounds stability and preventing the quick degradation of them, the therapeutic agents (particularly anticancer agents known for low stability in the body) are encapsulated into cucurbiturils [35,36]. Comparison between CB[5] to CB[8] shows that CB[7] is more soluble than CB[6] and CB[8] in aqueous solutions, as well as has a more capacious cavity than CB[5], and can consequently bind a wider range of molecules in water. Recently, the CB[7] was utilized to form complexes with some fluorescent dyes [37-40] to develop their photochemical stabilities and fluorescence yields in aqueous solutions [41]. In addition, cucurbit[n]urils have advantages such as bond configuration and

energies of CB[7]/Gem1 depending on the orientation of Gem. The calculated binding free energy of solvation is evaluated using the following equation:

$$
\Delta G_{Solv} = (\Delta G_{Solv} + \Delta G_{\text{non-electrostatic}}) - E_{\text{gas}}
$$

where $$E_{\text{solv}}$$ and $$E_{\text{gas}}$$ show the total energies of the system in the solution phase and gas phase, respectively, and $$\Delta G_{\text{non-electrostatic}}$$ is the nonelectrostatic energy.

The AIM computations were performed using the AIMALL package [65]. QTAIM has been based on the topological analysis of the electron density, $$\rho(r)$$ [66,67]. The topology of $$\rho(r)$$ is under the impact of nuclear maxima, bond critical points (BCPs), indicating the lowest point of electron density between two nuclei and lines of maximum density (bond paths) linking the nuclear maxima of bonded nuclei. There are several properties of the electron density at a BCP for distinguishing the nature of the bond. These parameters include the electron density ($$\rho_B$$), the Laplacian of the electron density ($$\nabla^2 \rho$$), the local electron kinetic ($$V_e$$), potential ($$V_p$$) and total ($$H_B$$) energy densities. The amount of both quantities $$\rho_B$$ and $$\nabla^2 \rho$$ is related to the strength of the bond between the two nuclei. In addition, the sign of $$\nabla^2 \rho$$ together with the sign of the total energy density ($$H_B$$) at the BCP presents more information on the nature of the interactions. At the extreme ends of the scale, if $$\nabla^2 \rho > 0$$ and $$H_B > 0$$ at the BCP, it shows that a closed shell interaction, while $$\nabla^2 \rho < 0$$ and $$H_B < 0$$ indicates a covalence bond. The two other critical points, i.e., ring critical points (RCP) and cage critical points (CCP) show saddle points and local minima of the electron density, respectively.

3. RESULTS AND DISCUSSION

The optimized geometries of cucurbit[7]uril (CB[7]) and gemcitabine (Gem) anti-cancer drug in solution phase are presented in Figure 1. The interaction between CB[7] and Gem including configurations CB[7]/Gem1-CB[7]/Gem8 (host-guest complexes) was considered in gas and solution phases. These eight host-guest complexes have been shown in Figures 2 and 3.

The binding energies ($$\Delta E$$) of Gem with CB[7] in gas and aqueous solution were calculated using the following equation (2) and represented in Table 1:

$$\Delta E = E_{CB[7]/Gem1-8} - (E_{CB[7]} + E_{Gem})$$

All eight host-guest complexes represent different $$\Delta E$$s depending on the orientation of Gem. The calculated binding energies of CB[7]/Gem1-8 are negative in both phases. $$\Delta E$$s related to gas phase are more negative than those related to solution phase (Table 1). CB[7]/Gem1 is the most stable configuration in both phases. This is mainly because of the orientation of Gem with respect to CB[7]. In this configuration, Gem has been encapsulated in CB[7].

![Figure 1](https://via.placeholder.com/150)

Figure 1. Optimized structures of CB[7] and Gem.
Table 1. Solvation and binding energies of Gem, CB[7] and CB[7]/Gem1-8 in gas and solution phases (kJ/mol).

<table>
<thead>
<tr>
<th>Species</th>
<th>Solvation energy</th>
<th>Binding energy</th>
<th>Binding energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution phase</td>
<td>Gas phase</td>
<td></td>
</tr>
<tr>
<td>Gem</td>
<td>-110.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB[7]</td>
<td>-557.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB[7]/Gem1</td>
<td>-603.34</td>
<td>-123.75</td>
<td>-188.89</td>
</tr>
<tr>
<td>CB[7]/Gem2</td>
<td>-644.46</td>
<td>-88.075</td>
<td>-106.56</td>
</tr>
<tr>
<td>CB[7]/Gem3</td>
<td>-655.44</td>
<td>-107.32</td>
<td>-116.86</td>
</tr>
<tr>
<td>CB[7]/Gem4</td>
<td>-602.75</td>
<td>-66.86</td>
<td>-129.67</td>
</tr>
<tr>
<td>CB[7]/Gem5</td>
<td>-646.05</td>
<td>-56.86</td>
<td>-89.61</td>
</tr>
<tr>
<td>CB[7]/Gem6</td>
<td>-629.51</td>
<td>-63.07</td>
<td>-104.34</td>
</tr>
<tr>
<td>CB[7]/Gem7</td>
<td>-634.42</td>
<td>-97.05</td>
<td>-110.34</td>
</tr>
<tr>
<td>CB[7]/Gem8</td>
<td>-651.28</td>
<td>-105.70</td>
<td>-118.32</td>
</tr>
</tbody>
</table>

Figure 2. Optimized structures of CB[7]/Gem1-4 (a) bird’s eye-view (b) side view.

The free energies of solvation (ΔG_{Solv}) have been evaluated using SMD model in aqueous solution. Water was selected for the evaluation of ΔG_{Solv}, because water can mimic the biological condition and is the most important solvent in the body. The negative values of ΔG_{Solv} indicate the degree of dissolution. The solvation energies of Gem, CB[7] and CB[7]/Gem1-8 are shown in Table 1. The calculated ΔG_{Solv} show that Gem solubility increases in the presence of CB[7] and CB[7]/Gem3 has a higher solubility relative to other configurations. The important peculiarity of Gem drug is in having OH and NH₂ functional groups, causing strong hydrogen bond between the drug and CB[7] and this is the reason that makes this drug a proper candidate for delivery by CB[7]. Also, functionalization of CB[7] with Gem drug causes an increase in solubility of CB[7] which is an important factor for its applicability in the drug delivery. The enhanced solubility of all host-guest complexes demonstrates it to be appropriate for drug delivery and the noncovalent functionalization may have advantages in terms of dissolution and drug release over the covalent functionalization, where breakage of the covalent bond is accompanied with high barrier energy.

Figure 3. Optimized structures of CB[7]/Gem1-4 (a) bird’s eye-view (b) side view.

We used quantum molecular descriptors including chemical potential, hardness, softness and electrophilicity index to characterize chemical reactivity and stability. The global hardness (η) describes the resistance against the change in molecular electronic structure (Equation (3)). η has a direct relation with the stability and inverse ratio with respect to the reactivity.

\[η = \frac{1}{2} \]

where \(A = -E_{LUMO} \) and \(I = -E_{HOMO} \) are the electron affinity and the ionization potential of the molecule, respectively. The electrophilicity index (\(ω \)) is formulated as follows [68]:

\[ω = \frac{(I + A)^2}{4η} \]

The chemical potential (\(μ \)) is defined by:
\[\mu = -(I + A) / 2 \]
\[S = \frac{1}{\eta} \]
\[(5) \]
\[(6) \]

Table 2 lists the quantum molecular descriptors of Gem, CB[7] and CB[7]/Gem1-8, including the energy of the lowest unoccupied molecular orbital \((\varepsilon_{LUMO}) \), the energy of the highest occupied molecular orbital \((\varepsilon_{HOMO}) \), hardness \((\eta) \), softness \((S) \), the chemical potential \((\mu) \) and electrophilicity index \((\omega) \). In this table and Figure 4, \(\varepsilon \) and \(\omega \), which for \(\varepsilon > 1 \) are related to the weak hydrogen bonds, while for \(\varepsilon < 1 \) are classified as weak hydrogen bonds. Other interactions \((\varepsilon^2 \rho > 0, H_b > 0 \text{ and } -G_b/\varepsilon < 1) \) are related to the weak hydrogen bonds category. The values in Table 3 show that hydrogen bonding in the O52-…H150 interaction is more stable than the bond in O42-…H145. According to Table 4, the most stable interaction in CB[7]/Gem3 is O78…H145 interaction at CP 182, being of medium hydrogen bond and other interactions, being categorized as weak hydrogen bonds.

Table 2. Quantum molecular descriptors (eV) of Gem, CB[7] and CB[7]/Gem1-8.

<table>
<thead>
<tr>
<th>Species</th>
<th>(\varepsilon_{HOMO})</th>
<th>(\varepsilon_{LUMO})</th>
<th>(\mu)</th>
<th>(\omega)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gem</td>
<td>-7.87</td>
<td>0.05</td>
<td>7.92</td>
<td>-3.96</td>
<td>-3.91</td>
</tr>
<tr>
<td>CB[7]/Gem1</td>
<td>-7.49</td>
<td>0.25</td>
<td>7.74</td>
<td>-3.62</td>
<td>-3.62</td>
</tr>
<tr>
<td>CB[7]/Gem2</td>
<td>-7.77</td>
<td>0.03</td>
<td>7.81</td>
<td>-3.87</td>
<td>-3.87</td>
</tr>
<tr>
<td>CB[7]/Gem3</td>
<td>-7.49</td>
<td>0.45</td>
<td>7.94</td>
<td>-3.52</td>
<td>-3.52</td>
</tr>
<tr>
<td>CB[7]/Gem4</td>
<td>-8.03</td>
<td>-0.20</td>
<td>7.82</td>
<td>-4.12</td>
<td>-4.12</td>
</tr>
<tr>
<td>CB[7]/Gem5</td>
<td>-7.99</td>
<td>-0.21</td>
<td>7.78</td>
<td>-4.10</td>
<td>-4.10</td>
</tr>
<tr>
<td>CB[7]/Gem6</td>
<td>-7.76</td>
<td>0.13</td>
<td>7.90</td>
<td>-3.82</td>
<td>-3.82</td>
</tr>
<tr>
<td>CB[7]/Gem7</td>
<td>-7.51</td>
<td>0.39</td>
<td>7.90</td>
<td>-3.56</td>
<td>-3.56</td>
</tr>
<tr>
<td>CB[7]/Gem8</td>
<td>-7.39</td>
<td>0.56</td>
<td>7.95</td>
<td>-3.42</td>
<td>-3.42</td>
</tr>
</tbody>
</table>

Table 3. Topological parameters in a.u. and the hydrogen bond energy \((\varepsilon_{HH}) \) in kJ/mol for CB[7]/Gem1 at m062x-6-31G(d,p).

<table>
<thead>
<tr>
<th>BCP</th>
<th>Atom</th>
<th>(\varepsilon(G))</th>
<th>(\varepsilon(H))</th>
<th>(\varepsilon(V))</th>
<th>(\varepsilon(\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>N3</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.010</td>
</tr>
<tr>
<td>56</td>
<td>O6</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
<tr>
<td>137</td>
<td>N7</td>
<td>-0.305</td>
<td>-0.305</td>
<td>-0.305</td>
<td>-0.305</td>
</tr>
<tr>
<td>138</td>
<td>N8</td>
<td>-0.305</td>
<td>-0.305</td>
<td>-0.305</td>
<td>-0.305</td>
</tr>
<tr>
<td>139</td>
<td>O9</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
<tr>
<td>140</td>
<td>O10</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
<tr>
<td>141</td>
<td>O11</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
<tr>
<td>142</td>
<td>O12</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
</tbody>
</table>

Table 4. Same as Table 3 For CB[7]/Gem3.
4. CONCLUSIONS

Eight configurations of noncovalent interactions of cucurbit[7]uril (CB[7]) with drug gemcitabine (Gem) were studied at M06-2X density functional level in the gas phase as well as the aqueous solution. According to the binding energies, the adsorption of Gem on the internal and external surface of CB[7] is favorable and all host-guest complexes are stable. The configuration related to the internal surface adsorption is the most stable configuration. The values of solvation energies related to all configurations are more negative than those of Gem, showing the drug solubility increases in the presence of CB[7]. Quantum molecular descriptors indicated that the drug reactivity increases in the vicinity of CB[7]. In addition, AIM analysis showed that Gem could be adsorbed on CB[7] surface through hydrogen bonds between drug and carrier. The AIM results confirmed that the highest number of hydrogen bonds exist in the most stable configuration (CB[7]/Gem1).

5. REFERENCES

Application of quantum chemical calculations in modeling of the supramolecular nanomedicine constructed from host-guest complexes of cucurbit[7]uril with gemcitabine anticancer drug

© 2018 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).