Microwave assisted prepared interpenetrating hydrogels from guar-gum: chitosan IPN and guar gum hydrogels as novel functional materials: bonding, antioxidant and bioactivity

V. Tamar Perchyonok 1*, Vanessa Reher 2, Shengmiao Zhang 3, Ward Massey 2, Sias Grobler 4

1 VTPCHEM PTY LTD, Research and Innovation Department, Southport, Australia
2 School of Dentistry and Oral health, Griffith University, Parkville, Australia
3 School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
4 Oral and Dental Research Institute, Faculty of Dentistry, University of the Western Cape, Private Bag X1, Tygerberg 7505, Cape Town, South Africa

*corresponding author e-mail address: tamaraperchyonok@gmail.com

ABSTRACT

The interpenetrating polymeric network (IPN) has emerged as one of the most useful novel biomaterial, which is entanglement of polymer networks of structurally and functionally different cross-linked molecular building blocks. The development of IPN is captivating because they provide free volume space for the easy encapsulation of drugs in the three-dimensional network structure, formulated by cross-linking of several distinct polymer network. Chitosan and guar gum are a natural, biodegradable, nontoxic, mucoadhesive, and biocompatible polymer, have found diverse pharmaceutical applications including functional biomaterials. Cytotoxicity of common dental resin components are well documented and is prone to cause the undesired biological responses such as oxidative damage of dental and related tissue as well as suppressing odontogenic differentiation of dental pulp cells. As antioxidants were found to protect cells from cytotoxicity of resin monomers in previous studies, we investigated the effects of common antioxidants, such as β-carotene, resveratrol, and propolis on anti-differentiation activity of bonding agents without compromising bond strength. Methacrylate monomers used in dentistry have shown to induce DNA double strand breaks (DSBs), a severe type of DNA damage. The formation of classical products of oxidative DNA damage, were investigated using the well established and reliable in vitro model, developed earlier by us which relies on correlation of BSA solubility and the amount of free radicals generated at the reaction site using UV-detection method. In this work, we hope to develop and evaluated novel functional biomaterials suitable for ameliorating dentin bonding system as well as asses in vitro the free radical protective properties of the novel materials by utilizing earlier developed model protein (BSA) probe was utilized to evaluate the chitosan-based carriers. Morphological behaviors, release behaviors (physiological pH and in acidic conditions) and stability guar gum: chitosan systems have been investigated. We considered worthwhile to study the antioxidant properties of β-carotene, resveratrol, and propolis as examples of the potential antioxidant additives.Conclusion: Antioxidant containing chitosan hydrogels may reduce detrimental effects induced by common composite restorative agent in vitro and introducing additional therapeutic health benefits.

Keywords: chitosan, guar gum, free radicals, hydrogels, functional biomaterials, bioadhesive dual functional materials.

1. INTRODUCTION

In the recent years interpenetrating polymeric network (IPN) hydrogels has generated considerable interest as a biomaterial vehicle for drug delivery [1-4]. IPN hydrogels amalgamate the conventional dosage forms as well as novel drug delivery systems, by offering a bio compatible, convenient, and stable drug delivery system for molecules as small as non-steroidal anti-inflammatory drugs or as large as proteins and peptides. Hydrogels are the three-dimensional polymers that expand in aqueous solutions. In the swollen state, they are soft and gelatious, resembling the living tissue therefor exhibiting excellent biocompatibility [5]. Polymeric hydrogels is of considerable interest as biomaterial in drug delivery research. IPNs represent a combination of two polymers in network form. [6,7]. The use of polymers as reactants in microwave-assisted reactions is less common than the use of monomers. Here, we demonstrated that microwave irradiation could serve as a valuable method of hydrogel synthesis by using a combination of polymeric reactants. This is the first report of the use of microwaves to form hydrogels in this way. Microwave irradiation is not ionizing and therefore cannot be used to form hydrogels from a single type of polymers. Modern dental adhesive systems come in close and prolonged contact with vital dentin, their influence on pulp tissue is critical [1–3]. Thus, the biocompatibility of dentin bonding agents is a relevant aspect of the clinical success of these materials [1–3]. Dentin bonding agents alone proved to be cytotoxic [4], and it adverse biological effects are closely correlated with the type and quantity of leachable components significantly influence the biological behavior of resin restorations [5–10]. Cytotoxicity of dentin bonding agents in vitro has been examined using a variety of cell lines including primary human pulp and pulp-derived cells [4,5,8,11-14]. Chitosan is a natural cationic polysaccharide derived from chitin by partially deacetylating its acetamido groups in strong alkaline solutions [15]. Over the last two decades, chitosan has been widely used used for various biomedical and drug delivery applications because of its low toxicity and good biocompatibility and antimicrobial and bio-adhesive properties [16–18]. The main objective of this study was to evaluate the effect of microwave synthesized with guar gum:chitosan- antioxidant hydrogels on the antioxidant defense mechanism (resveratrol, propolis and β-carotene on in-vitro model of oxidative damage potentially generated by the model composite.
Microwave assisted prepared interpenetrating hydrogels from guar-gum: chitosan IPN and guar gum hydrogels as novel functional materials: bonding, antioxidant and bioactivity

Secondly, we aimed to investigate the chemical nature of the defense on the interface between the composites and antioxidant/chitosan hydrogel layer formation by the use of SEM.

2. EXPERIMENTAL SECTION

Preparation of chitosan-guar-gum based IPN gels with resveratrol, β-carotene or propolis as potential substrate for bonding to dentin. Antioxidant (resveratrol, β-carotene, or propolis) gels were prepared by dispersion of corresponding antioxidant powder 0.02 grams in glycerol (5% w/w) using a mortar and a pestle. 1 milliliters of glacial acetic acid (1% w/w) was then added with continuous mixing and finally guar gum and chitosan:guar gum (1:1 w/w) polymer was spread on the surface of

the dispersion and mixed well for 12 hours. The mixtures were subjected to microwave irradiation (CEM Discover Labmate) with set temperatures and held times. Processing conditions in the range 100-200°C and 10-60 min were used with a pressure cut-off of 200 psi and a power of 200W. Corresponding antioxidant gel had been prepared with 5 %w/w concentrations of chitosan:guar gum or gum gelling agent. The summary of the newly prepared materials is highlighted in Table 1.

Table 1. Gel formulation prepared in the study, containing Guar Gum: Chitosan and Guar Gum as a functional backbone of the newly designed material.

<table>
<thead>
<tr>
<th>Gel formulation</th>
<th>Chitosan / Guar Gum Concentration</th>
<th>Medium</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan/Guar Gum-H</td>
<td>Gel-1</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Chitosan/Guar Gum-H + resveratrol</td>
<td>Gel-2</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Chitosan/Guar Gum-H + propolis</td>
<td>Gel-3</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Chitosan/Guar Gum-H + β-carotene</td>
<td>Gel-4</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Guar Gum-H + resveratrol</td>
<td>Gel-5</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Guar Gum-H + propolis</td>
<td>Gel-6</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
<tr>
<td>Guar Gum-H + β-carotene</td>
<td>Gel-7</td>
<td>5</td>
<td>1% acetic acid</td>
</tr>
</tbody>
</table>

2.1. Determination of gel pH.

One gram of the prepared gels was also weighed and dispersed in 10 ml of purified water. The pH of the dispersions was measured using a combination pH glass electrode coupled to a potentiometer (HANNA instruments, HI8417, Portugal).

2.2. Morphology of the gels

The interior and the surface morphology were observed in scanning electron microscope (SEM, Hitachi S4800, Japan).

2.3. Shear bond strength tests for dentine bonding.

Extracted non-carious, intact, human molars teeth stored in water containing a few crystals of thymol at 4°C were used within two months. Samples were checked before use for any damage caused by their removal. The teeth were embedded in PVC (Conslt Tubing, SA PVC, JHB, RSA) pipe containers with cold cure acrylic resin so that the ground occlusal surfaces projected well above the resin. occlusal surfaces were ground wet with 180-grit followed by 600-grit SiC on a polishing machine to expose the superficial dentin. The samples were washed under a stream of tap water. A standardized zig (Ultradent ISO A2-70) with an internal diameter of 2.5 mm and height of 3 mm was used to shape the composite resin stud (SDR, Dentsply, CA, USA, Batch number 1105000609, Exp 2013-04). Two of these studs were then bonded to the polished dentine surface of each tooth via the bonding agent XP bond (Dentsply, New York, USA), as suggested by the manufacturer. The bonding agent contains: carboxylic acid modified dimethacrylate (TCB resin), phosphoric acid modified acrylate resin (PENTA), urethane dimethacrylate (UDMA), triethyleneglycol dimethacrylate (TEGDMA), 2-hydroxyethylmethacrylate (HEMA), butylated benzenediol (stabilizer), ethyl-4-dimethylaminobenzoate), camphorquinone, functionalized amorphous silica, t-butanol. In this way were 72 teeth samples (each containing 2 studs) prepared and divided into 9 groups of 8 each, A, B, C, D, E, F, J, K, and L. (Table 2) and stored in a solution of artificial saliva. These groups were then treated as outlined in Table 1. After 24 hours one study of each tooth was tested for shear bond strength and the other one after 6 months. An Instron Universal Testing Machine at a crosshead speed of 0.5 mm/minute was used to test the de-bonding strength. All data tests were analysed using the non-parametric ANOVA test.

2.4. Morphology of the gels.

The interior and the surface morphology were observed in scanning electron microscope (SEM, Hitachi S4800, Japan).

2.5. Gel stability.

Stability of the gel formulations was also investigated. The organoleptic properties (color, odor), pH, drug content, and release profiles of the gels stored at 20°C were examined on days (0, 15, 30 and 178).

2.6. Studies of equilibrium swelling in the alternative drug delivery systems.

The equilibrium swelling ratio (SR) was calculated using the following equation:

\[SR = \left(\frac{W_s-W_d}{W_d} \right) \times 100\% \]

where \(W_s \) and \(W_d \) are the weights of the gels at the equilibrium swelling state and at the dry state, respectively [19]. Experiments...
were repeated in triplicate for each gel specimen and mean value was obtained.

2.7. Bioadhesive study.

Bioadhesion studies were done using Chatillon apparatus for force measurement [20]. This method determines the maximum force and work needed to separate two surfaces in intimate contact [20]. The hydrogels (0.1g) were homogeneously spread on a 1cm² glass disk, the disks were attached to the support of the tensile strength tester using double side adhesive. The gel was brought into contact with the commercially available band aid, in order to simulate the skin attachment or the contact with slice of dentin was established in order to imitate adhesion of the gel to the tooth structure, after a pre-evaluated contact time (1 min) under contact strength (0.5N). The 2 surfaces were separated at a constant rate of displacement (1mm/s). The strength was measured as a function of the displacement, which allowed to determine the maximal detachment force, Fmax, and the work of adhesion, W, which was calculated from the area under the strength-displacement curve.

<table>
<thead>
<tr>
<th>Table 2. Groups tested (8 teeth per groups).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>Group B</td>
</tr>
<tr>
<td>Group C</td>
</tr>
<tr>
<td>Group D</td>
</tr>
<tr>
<td>Group E</td>
</tr>
<tr>
<td>Group F</td>
</tr>
<tr>
<td>Group J</td>
</tr>
<tr>
<td>Group K</td>
</tr>
<tr>
<td>Group L</td>
</tr>
</tbody>
</table>

3. RESULTS SECTION

3.1. The characterization of antioxidants containing-Guar-Gum: Chitosan Gels: (Gel-1 to Gel-7).

The SEM images were obtained to characterize the microstructure of the freeze-dried composite gels and are presented in Figure 1. It could be seen that the gels displayed a homogeneously pore structure. It was thought that the micro-porous structure of the gels could lead to high internal surface areas with low diffusional resistance in the gels. The surfaces of the gels were also presented (Figure 1). The ‘skin’ of the gels can be seen, and the collapse of the surface pores may be due to freeze-drying process.

3.2. Studies of equilibrium swelling in Guar-Gum-Chitosan IPN Gels (Gel-1-Gel-4) and Guar-Gum Gels (Gel-5-Gel-7).

The hydrogels remain in the cylindrical form after swelling. Compared with dry state hydrogels, the swollen state hydrogel volume displays significant increases and are summarized in Figure 2.

![Figure 1. SEM photographs of the freeze dried interior morphology of the selected gels under investigation for (a) Gel-1, (b) Gel-2, (c) Gel-3, (d) Gel-4, (e) Gel-5 (f) Gel-6 and (g) Gel-7.](image-url)
Equilibrium swelling ratio (SR) of hydrogels directly influences the functional material release rates. The reduction in equilibrium swelling capacity is attributable to the formation of a tight network structure in high content. Environmental pH value in case of chitosan containing IPN hydrogels and presence of long hydrophilic chains has a large effect on the swelling behavior of these gels. From Figure 2, it is clear that the SR value increases with the increase of pH as well as the presence of polyol in the hydrogel makeup.

Namely, when the pH value of the buffer solution (pH 9.0) was far higher than the isoelectric point (PI) of GEL (PI 4.0–5.0), the carboxyl groups were de-protonized to carry negative charges, which made molecular chains repulsed to each other. The network became looser and it was easy for the water molecules to diffuse into the cross-linked network. Interestingly, the swelling trends of guar gum containing hydrogels prepared by microwave-assisted synthesis in our case are similar to the ones containing chitosan (non-charged versus charged groups containing functionality of the polymer and therefore warrant further investigation into this unique property.

3.3. Shear Bond Strength.

Mean shear bond strength values after 24 hours were listed in Figure 2. A significant increase in bond strength of the dentine treated with all 6 different gels (Figures 2) was found relative to the two groups with the conventionally bonded dentine (i.e. dentine not treated with phosphoric acid). Interestingly the increase in bond strength was also observed in the groups treated with phosphoric acid and chitosan:guar gum hydrogels, suggesting that there additional benefits associated with IPN: antioxidant system are in need of further investigations.

It was found that chitosan: guar gum-H treated dentine gives higher values than dentine treated with guar-gum based hydrogel alone no phosphoric acid. Furthermore, the presence of the anti-oxidants (resveratrol, propolis and β-carotene) improved the shear bond strength without (D, E, F) phosphoric acid treatment.

In general, all 9 groups gave a relapse in the shear bond strength after a 6 months (Figure 5) storage period compared to 24 hours (Compare groups in Figure 4 to that in Figure 5).

The results of this study suggested that the optimum values for the strengthening of dentine can be achieved through the immediate treatment with resveratrol, beta-carotene and propolis newly designed hydrogels with the increase of dentine bond strength (Figure 2). The results further demonstrated that resveratrol, β-carotene and propolis showed synergistic effect with guar gum and guar gum: chitosan containing interpenetrating hydrogels on significant improvement in bond strength after 24h and 6 month (Figure 4 and 5). Additional benefits of chitosan:guar gum interpenetrating networks are currently being further evaluated in our laboratories as the in-depth understanding of the mechanism of action of this unique materials.

These results are in accordance with the previously reported observations by Upin [21] on the performance of sodium ascorbate hydrogels on the bond strength of composite material as well ability of the newly developed hydrogels to counteract the prohibitive oxygen layer formation on the interface of the
composite and adhesive material as well as allow the material to be easily applied in the desired area due to the higher viscosity and better handling properties in comparison to aqueous solution of corresponding active agents.

3.4. Solubility of BSA and free radical detection in vitro.

In the present work we adopted the method of Zs.-Nagy and Nagy [22] for recording changes in the water solubility of BSA exposed to the chemical source of hydroxyl free radicals to characterize the antioxidant efficiency of Propolis, Chitosan and BSA in a non-lipid protein system [22]. BSA, a completely water soluble protein, exposed to the above Fenton reaction system, was losing its water solubility depending on the concentration of the chelated iron, as shown in Figure 7. Control experiments showed that omission of either chelated iron or H_2O_2+ascorbate from the reaction mixture gave no decrease in protein solubility (data not shown). Characteristic fluorescence of 325 (excitation)/415 (emission) was significantly increased in incubations of BSA with the Fenton system supported with 0.75 mM ferrous chelate, indicating the presence of bityrosoine covalent bridges. The specific yield of bityrosoine fluorescence was found to be strongly dependent on the initial concentration of BSA, which suggests an intermolecular character of bityrosoine cross-links. On balance then, the results obtained in this study strongly indicated that the insolubilization of BSA induced by the Fenton system of Fe^{2+}/EDTA/H_2O_2/ascorbate was caused by free OH radical mediated polymerization giving rise to true covalent cross-links. The model system was found suitable for convenient testing of OH radical scavenging ability of new antioxidants in a non-lipid environment.

3.5. % of BSA solubility.

We also wanted to examine the antioxidant properties of β-carotene, resveratrol and propolis also in a non-lipid environment of a pure protein. Therefore, we adopted the method for recording changes in water solubility of the model protein bovine serum albumin (BSA) exposed to free radicals generated by an inorganic chemical system. In the present study we used the Fenton reaction system of Fe^{2+}/EDTA/H_2O_2/ascorbate as a source of free radicals to prove the ability of β-carotene, Resveratrol or Propolis to protect BSA against free radical mediated cross-linking, in comparison with an. The reactive nature of the surface has been investigated using the SEM and comparison confirms the reactive nature of the transformation. (Figure 8)

![Figure 7](image7.png)

Figure 7. Free radical damage protection during the bonding process after 24 hours using BSA solubility as a probe, with Guar gum:Chitosan hydrogels, where Y-axis is % of BSA solubility and X-axis is time in hours.

![Figure 8](image8.png)

Figure 8. SEM images of the reactive surface of the composite under experimental conditions: a. Gel-2 b. Gel-3, c. Gel-3, d. Gel-4, e. Gel-5, f. Gel-6.

Higher adhesiveness of the gels is desired to maintain an intimate contact with skin or tooth structure and results are summarized in Table 2. Chitosan hydrogels showed the highest adhesive force and the work of adhesion this can be expected because of the well known intrinsic bioadhesive properties of chitosan [23]. The adequate water absorption capacity together with the cationic nature which promotes binding to the negative
Microwave assisted prepared interpenetrating hydrogels from guar-gum: chitosan IPN and guar gum hydrogels as novel functional materials: bonding, antioxidant and bioactivity

The presented values are an average (n=5)

Table 3. Bioadhesion testing in vitro

<table>
<thead>
<tr>
<th>Hydrogel</th>
<th>Adhesive Force(N) ±SD (Skin)</th>
<th>Adhesive Force (N) ± SD (Dentin)</th>
<th>Work of Adhesion (Ncm) ±SD (Skin)</th>
<th>Work of Adhesion (Ncm) ±SD (Dentin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel-1</td>
<td>1.25±0.40</td>
<td>1.09±0.35</td>
<td>3.35±0.48</td>
<td>2.92±0.34</td>
</tr>
<tr>
<td>Gel-2</td>
<td>0.97±0.25</td>
<td>1.17±0.42</td>
<td>3.19±0.52</td>
<td>3.49±0.42</td>
</tr>
<tr>
<td>Gel-3</td>
<td>0.99±0.30</td>
<td>0.99±0.40</td>
<td>2.85±0.41</td>
<td>2.94±0.29</td>
</tr>
<tr>
<td>Gel-4</td>
<td>1.12±0.34</td>
<td>1.09±0.24</td>
<td>3.31±0.31</td>
<td>3.58±0.31</td>
</tr>
<tr>
<td>Gel-5</td>
<td>1.18±0.26</td>
<td>1.11±0.26</td>
<td>3.49±0.31</td>
<td>3.55±0.28</td>
</tr>
<tr>
<td>Gel-6</td>
<td>0.89±0.45</td>
<td>0.96±0.41</td>
<td>2.55±0.46</td>
<td>2.98±0.21</td>
</tr>
<tr>
<td>Gel-7</td>
<td>1.12±0.29</td>
<td>1.23±0.30</td>
<td>3.48±0.46</td>
<td>3.81±0.28</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

We have developed and evaluated novel class of biocompatible polysaccharide based hydrogels by exploiting microwave-assisted synthesis as an efficient and reliable method of preparation. The mechanical properties of the newly prepared gels are better then the corresponding hydrogels prepared using conventional gelation procedure. The functionality of the inter-penetrating hydrogels to deliver a “build in free radical protection mechanism” as well as increased bonding to dentine systems was demonstrated using all the newly prepared hydrogel. SEM was used to characterize all the aspects of structural features of unique materials as well as some insights into bonding capacities and capabilities of the materials.

5. REFERENCES

Page | 855
6. ACKNOWLEDGEMENTS

VTP would like to acknowledge the contribution from VTPCHEM PTY LTD, University of Western Cape and East China University of Technology for research support.