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ABSTRACT 

Battery stores energy via a chemical process while a capacitor stores static electricity, therefore this generates when electric charges in a 

material are out of balance. Capacitors have several advantages than batteries because they charge and discharge faster, they don’t use 

harmful chemicals, don’t weigh as much and last longer. In this research, we have simulated one which is combined of a graphite layer 

that is separated through an insulating medium of polymerase’s wurtzite Ga-N sheets. It has been shown that the alternate boron and 

nitrogen atoms instead of carbon are the suitable dopants for hetero-structures of the G// wurtzite Ga-N//G capacitors. We have shown 

that the                has appeared in this capacitor due to the electropositive-electronegative coupled of wurtzite Ga-N and this 

effect cannot occur in the two electro negative or two electro positive elements layers. Therefore by this unique property our capacitor 

has been modeled to store a large capacity for green storage of energies in the new world of technologies. 

Keywords: graphene electrode, boron and nitrogen doping, nanoscale dielectric capacitors, wurtzite Ga-N dielectric. 

 

1. INTRODUCTION 

 Nanoscale capacitor has been developed for achieving the 

properties which are important to other systems of energy’s 

storage and also they have been developed as one of the most 

significant energy storage mediums. Those capacitors are able to 

deliver higher quantities of charges at higher power limits. Their 

stable durability and quicker load periods select them beneficial in 

several subjects and equipment [1-5]. Recently; Graphene, h-BN, 

Ga-N and Nano capacitors including two electrodes and dielectric 

sheets have been developed in Nano biotechnology [5-7]. These 

nanoscale dielectric capacitors (NDC) consist of two metallic 

graphene layers separated through insulating N-Ga thin layer 

which has been applied for simulating in view point of structures 

and molecular designing. Experimentally and theoretically 

investigations on this system were focused for understanding the 

dielectric depended of these structures to form a unique capacitor 

including thin layers as charge holding mechanism [4-

10].Furthermore it was explained that graphene might be preserve 

current densities five order of magnitude larger than the silver [6-

12]. Since the major goal of using capacitors are for reserving 

energies through storing equal magnitude of electrical charges in 

both opposite sign of two electrodes (plates), the charged 

capacitors are in a static and non-equilibrium state. The energies 

stored are liberated when the electrodes are connected together via 

an external circuit, so that the discharged mechanism shifts into an 

equilibrium state. In this study, we consider the above mentioned 

of NDC model including graphene as two electrodes which 

combined with Ga-N plates as insulator using ab initio, density 

functional theory (DFT) and Extended-Huckel calculations. This 

nanoscale capacitor model consists of a few hexagonal Ga-N 

layers, which are stacked between two graphene plates (Fig.1) . 

 
Figure 1. Nanoscale capacitor model consist of a wurtzite type Ga-N 

layer. 

Gallium nitride (Ga-N) is a binary III/V direct bandgap. Semi-

conductor usually applied in light-emitting diodes since the 1990s. 

These compounds are very hard material which has a Wurtzite 

crystal structure. Its wide band gap of 3.4 eV cause several special 

properties for using in optoelectronic or high -power and 

frequencies instruments. As forinstance, Ga-N is the substrate 

which makes violet (405 nm) laser diodes possible, withouttheuse 

of nonlinear optical frequency-doubling. 

It is not sensitive to ionization with radiation therefore it is a 

suitable material for solar cell arrays for satellites and especially 

for militaries in spaces activities. Due to Ga-N transistors which 

operate at much higher temperatures and also work at much higher 

voltages is better material than gallium arsenide (GaAs) 

transistors.  
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Ga-N layer (Fig.2) has a suitable and wide band gap which can 

vail as an insulator dielectric material among the graphite layers. 

Since the distances between two electrodes and wall thickness of 

those insulators separation of these kind capacitors are less than 11 

angstrom, the stored energy must be calculated from the first 

principles. In this work, the capacitance values have been obtained 

from the DFT and compared through an extended-Huckel method 

(QM/MM). Designing the spacing of capacitors between two 

electrode sheets at nanoscale is essential to achieve a high 

capacitance. So, the 3D combinations of those structures have 

been prepared via selected stacking of varying numbers of layers 

which can be enable us for offering number of options in 

constructing capacitors  with different situations. Thus, in this kind 

capacitor model, considerable quantum size effects at small 

separations by varying the separation distances can be observed 

and must be evaluated. 

 
Figure 2. Ga-N layer has suitable and wide band gap. 

 

 In this investigation, a sample of a capacitor 

is made via creating a few insulating layers of (h-Ga-N) between 

two BN-doped graphene electrodes. It has been assumed that the 

electrodes field by    charges from one of the electrodes toward 

the opposite electrode. By letting the electrons tunnel via the 

insulating layers from the (-) to the (+) terminals, thus the charges 

(Q+∆qe) reside on the top sheet and (−Q −∆qe) resides on the 

bottom sheet of electrodes. Therefore the stored energies in this 

position are now    
       

  
 and the initial energies stored 

through an electrostatic field among the capacitor sheets and are 

given by equation     
  

  
 . These energies cannot be stored in the 

capacitor’s sheets until an electron tunnels between insulator 

layers from the (-) to the (+) terminals. 

Where the change in stored energy can be indicated as:     

      
     

  

 
 

 
 (1). in this mechanism the larger voltages are 

in the range of 
  

  
     

  

  
, which are the tunneling currents 

and will only flow during sufficient voltages        
  

  
  . 

This effect is known as the coulomb blockade. 

 Obviously, the capacitor plate’s separation, “d”, might be 

small for the tunneling effect for any taking places in the system. 

In the macroscopic systems for a small capacitor (in the range of 

C 10-13 F), it can be exhibited that amount of            are 

needed for any tunneling occurring. And meanwhile for 

nanoscale capacitors with capacitances in the ranges of C   10-17 F 

and so on, the amount of             and for the nanoscale 

capacitor with C 10-19 F, the range of          are required for 

having the tunneling effects. Thus, coulomb block’s effects are not 

appearing in the macro-sized circuits because of the low charging 

energies.  However, it can be occur in the nanometers scales 

because of the charge quantization. For the small systems, the 

capacitances might be trivial that the charging energies “
  

  
” is 

going to be great therefore the energy value for tunneling of the 

quantum position would then increase.  

 The tunneling resistances can also be assumed as:      
  

 
 (2) that are not a normal resistance, however, theoretically 

allowing electrons for crossing the insulating junction 

as discrete occurrences where “I” is the resulting current due to the 

tunneling effect. Tunneling resistance is an imaginary one which 

allows the electrons for crossing the insulating junction during 

“t=       (3) “and    is the quantum capacitance. “ ” is a time 

associated with tunneling events and is considered to be the 

approximate life-time for the energies states of each electron. 

The        , have to be finite (not too big). Therefore in this 

condition, the charges are said to be well quantized and also the 

capacitors are evaluated to be a tunneling junction. When the 

quantum well descends below the Fermi’s level, an electron start 

to be accommodated in the position of the quantum well and any 

further electrons (in the graphene layers) become sensitive for 

charging spilling into the vacuum spaces of the capacitors [12-27]. 

The hybrid capacitances and consequently the quantum 

capacitances are related to the net capacitances,     , via the 

equation of  
 

    
 

 

  
 

 

  
 (4). It is notable that CQ is many orders 

of magnitude greater than the Cg.  

2. MATERIALS AND METHODS 

Computational details: Calculations were accomplished using 

Gaussian09 and GAMESS packages. In this investigation, it has 

been basically focused on the results from both DFT calculation 

and extended Huckel. For ab-initio the m06, m06-L methods have 

been applied and Extended-Huckel has been used for the non-

bonded interaction of G/ (Ga-N)/ G, which are monotonous 
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through the comparison between different situations. The  m062x, 

m06-L, and m06-HF are a novel ultra-hybrid density functional  

including a good reference in non-bonded interactions and  are 

suitable for calculating the energies of the distances among the 

fragments of the capacitors, in medium (∼3–6Å), and long ranges 

of dielectric thickness ( 6 Å)[28-32]. The double ζ-basis sets 

including polarization orbitals have been applied for doped 

graphene atoms. Meanwhile, single ζ-basis sets with polarization 

orbitals have been employed for the Ga-N layers. For the non-

covalent interactions, B3LYP and BLYP methods are unable for 

describing a van der Waals interaction between two plates of the 

capacitor system. In medium-range interaction, such as the 

interaction of two electrodes and also between dielectric and each 

electrode sheet meta- hybrid calculations are needed. In the lack of 

these kind abilities, most other popular functional describe 

medium-range of exchange and correlation energies limitation of 

their applicability for distant non-bonded systems between two 

electrodes and dielectric thickness. In addition, some recent works 

have been exhibited that in-accuracy for the medium-range 

exchange energies lead to large systematic errors for the prediction 

of molecular properties [33-36]. Geometry optimization and 

electronic structure evaluation have been carried out using the 

DFT approach which arebasedon an iterative solution of theKohn-

Sham equationof the densityfunctional.The Perdew-Burke-

Ernzerhof exchange correlation functional of the generalized 

gradient approximation (GGA) is adopted. In this simulation the 

two electrodes have doped through several percentages of boron 

atoms which are likely for adjusting to surrounding carbon host 

atoms. Therefore when graphene sheets are doped with one boron 

atom, this atom also undergoes sp2 hybridization. Because of the 

nearly same size of C and B, no significant distortions in 2-D 

structure of graphene are expected, except for changing in 

adjoining bond length. As a result, the bond lengths are found for 

expanding to 1.48 Å. Using the computationalprocedure as 

mentioned, the electronic  propertiesand band structures 

arepossible to be calculated. 

The electron densities have been defined as               
  

∑     ∑            
 (5). [39] Where   is orbital (i),   are orbital 

wave functions,  are basis functions. Atomic unit for electron 

density can be explicitly written as e/Bohr3.        

  
     

    
  +  

     

    
  +  

     

    
   

 

  (6)        
      

    + 
      

    + 

      

   (7) [39]. 

Through doping B atoms in graphite Fermi level shifts 

significantly below the Dirac point resulting intoa p-type doping. 

Therefore symmetry of graphite breaks into two graphene sub-

lattices. The charge transfer and electrostatic potential-derived 

charge were also calculated using the Merz-Kollman-Singh, chelp, 

or chelpG which a detailed overview of this effect the charge 

distribution can be calculated. Although infinite graphite sheets 

are intrinsically metallic, our works indicate an increase in the 

metallic properties. The interaction energy for capacitor was 

calculated in all items as indicated in equation 9:         

                +      (8) where the “   ” is the stability 

energy of capacitor. Based on some previous work our calculation 

has been modeled and simulated [40-67]. 

 
Figure 3. Nanoscale capacitor model consist of a wurtzite type Ga-N 

layer inside polymer’ solvent. 

 

3. RESULTS  

 In this investigation, Ga-N was selected as a capacitor sheet 

since it is suitable electrodes with excellent lattice constant near to 

that point of graphene. We specifically investigated the dielectric 

properties of graphene // (Ga-N)m // graphene, stacking for m= 1, 2 

and 3 layers of dielectrics. The results are plotted in 6 Figures and 

the data are placed in two tables. Since the “BN” in nature is an 

ideal electrical chemical bond that can be polarized by applying an 

external electric field, the number of Ga-N between two plates of 

graphene has been calculated and optimized as a suitable 

simulation of dielectrics Table.1 and Figs 1-6.  

Furthermore, graphene is well-known single layer honeycomb 

structure, so the proposed model can be easily fabricated. Similar  

to  graphene, the anisotropic binding of G-BN allows for 

theformation of several layered structures.  Long-range 

interlayer’s interactions plays suitable dominant in characterizing 

the structural and mechanical properties of those systems.  

 
Figure 4. The situation of Kinetic Energy of Ga-N as G/ Ga-N/G 

capacitor  

The values of the distances between Ga-N layers capping 

graphene layers, dielectric constants of the layered sheets (k), 
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magnitude of the charges on the graphene plates, electrostatic 

properties using the SCF density, fitting point charges to 

electrostatic potential charges from ESP fit, the stability energy of 

capacitor (eV), various capacitances including the net capacitance 

and the potential difference between two electrodes of graphene 

plates are listed in Tables1&2. Different numbers of dopants 

indicate proper situations for boron dopants in graphene electrodes 

.The potential energy difference between the two electrode layers, 

V =    ∑         
  
           

 (a.u.) are depicted in table2 

and varies between 2.45 and 4.20 volts (Table.2), which leads to 

the accumulation of approximately identical amount of surface 

charges of the opposite sign. 

 

 
Figure 5. The situation of Density Energy of Ga-N as G/ Ga-N/G 

capacitor versus X, Y and Z-axis in Bohr. 

Here we have considered the interlayer attraction using Extended-

Huckel force field for G-BN to describe its interlayer interactions 

including wurtzite -Ga-N inter-layer potential, attractive  

components and the classical mono-polar electrostaticterm that  

takes intoaccount thepartially ionic character of h-Ga-N (Fig.4). 

In this study, the number of h-Ga-N layers as a dielectric is 1, 2 

and 3. For the nanoscale G/ (Ga-N) m/ G and planar capacitor, the 

different voltages can be estimated from the band gap. For long 

distances of dielectric thickness, the classical capacitance rule of 

the “   
 

 
” is adaptable. This adaptability does not go for short 

distances, which is attributed to the quantum size effect. We 

identified the dielectric permittivity as a function of dielectric size 

through ab-initio calculations Fig.5. 

 
Figure 6. The color counter map of LOL Energies of Ga-N as G/ Ga-N/G 

capacitor  

 

Table 2. The potential energy difference of modeled capacitors in various 

thicknesses 

“Nano capacitor” 

Various sequence 

Number of 

insulator layers 

 
   ∑     

  

   

     
  

 m A               B                C 

G/ (GaN)/G 

G/ (GaN)2/G 

 G/ (GaN)3/G 

 

1 

2 

3 

2.453.10 2.70 

3.103.904.20 

3.252.152.30 

 

 

Table 1. The Charges of two G/ (GaN)/G and the stability energies. 

“Nano capacitor” 

Various sequence 

Number of 

insulator 

layers 

 

 
                           

        

      ∑    

  

   

    
  

m              A             B            C A                B                C 

G/ (GaN)/G 

G/ (GaN)2/G 

 G/ (GaN)3/G 

 

1 7.158.35        6.78 0.240.310.88 0.58         0.450.46 

2 9.65            9.50        11.15 0.32       0.58    1.75  1.24          1.26        1.25 

3 12.45         13.10        13.15 1.721.631.98 0.650.440.35 

 

4. CONCLUSIONS 

 In this study, we have shown the model of a nanoscale 

dielectric capacitor composed of a few dopant including metallic 

graphene layers separated by an insulating medium containing a 

few wurtzite -Ga-N layers. The capacitor with one layers of 

wurtzite -Ga-N has a high dielectric constant compared to other 

layers of wurtzite -Ga-N.  
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