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ABSTRACT 

On the basis of experimental and analytical studies, a method for calculating and selecting of vacuum drying systems for drying food 

products wascompiled. Also, a method for calculating the parameters of the process of vacuum cheeses drying has been developed. In 

addition, there were obtained some regression equations for calculating the duration of the process of vacuum cheeses drying and for 

organoleptic evaluation of dry cheese products. The cost of the produced dry cheese products by the method of vacuum drying was 

calculated as well. 
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1. INTRODUCTION 

 Mainly it is irrational to dry heat-sensitive, expensive and 

air-oxidized materials by convection at atmospheric pressure [1-

4]. Therefore, vacuum drying is used to intensify the process and 

preserve the quality of the material being dried. Vacuum drying is 

used for chemical and food products, explosive and heat-sensitive 

materials. When drying in a vacuum chamber, the main heat is 

transferred to the material by radiation or conduction from the 

heating surfaces [5-13]. 

In practice, vacuum drying of food products is carried out in an 

air-proof heat-insulated chamber, equipped with heating elements 

connected to a vacuum line [14-18]. 

Generally, when drying at a pressure of 1330 Pa and above 

(vacuum drying), the mechanism of heat and moisture transfer 

inside the dried material is similar to the equivalent mechanism at 

contact drying [19-24].  

The vapor, formed during the material liquid evaporation process, 

is removed by a vacuum pump as well as air flowing through the 

leakages of the chamber. To facilitate the operation of the unit’s 

vacuum pump, it is applied some absorbers for steam or 

capacitors; the latter partially condense the vapor and turn it into a 

liquid [25-31]. 

 

2. MATERIALS AND METHODS 

 A food product (cheese) is a thermolabile material, which 

is placed in a special pan of bulk density and of a certain size for 

ground particles частиц [32-37]. 

When considering vacuum methods of drying solid food products, 

the following methods of heat supply are observed: 

- gradual method of heat supply at a constant residual pressure of 

the medium. In this case, the drying process proceeds at a 

gradually decreasing heat load and a constant temperature in the 

chamber; 

- pulsed (or "oscillating") method of heat supply at a constant 

residual pressure of the medium. In this case, the drying process 

consists of alternating stages of heating and binning at a constant 

temperature in the chamber; 

- multi-stage (multi-level) method of heat supply at a constant 

temperature in the chamber and alternating values of residual 

pressure and heat load. 

 The process of vacuum drying starts with the condenser 

gaining a temperature mode (minus 20–25 ° C) and the air is 

pumped out of the working cavity of the apparatus (Fig. 1). 

 This starting stage excludes the resistance phase, 

contributes to more intense heat and mass transfer from the wet 

material to the drying agent. To remove the air environment, the 

vacuum pump is working; therefore, the duration of this stage is 

insignificant compared to the duration of the entire drying process. 

Heat is applied after achieving the required residual pressure in the 

vacuum chamber. 

 
Figure 1. General view of the residual pressure changes during vacuum 

cheese drying process consisting of: 1 – one stage; 2 – two stages; 3– 

three stages. 

 

  The process of vacuum cheeses drying is divided into two 

stages: 

1) the stage of constant drying rate (the period of material 

heating); 

2) the stage of the falling drying rate. 

The energy and substance transfer in the process of drying the 

material is a subject to the general thermodynamics laws of 

irreversible heat and mass transfer processes. Until the drying unit 

gains the mode of residual pressure, the heat is not supplied and 
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the temperature of the surface layers of the product is reduced due 

to self-evaporation. While this process, a temperature gradient 

occurs and it coincides in direction with the gradient of moisture 

content, leading to the intensification of the removing moisture 

transfer. 

The first stage begins when the heaters are turned on and is 

characterized by a constant drying rate. Due to the fact that the 

process takes place under reduced pressure, material warming 

causes intense boiling of moisture throughout the entire cheese 

volume. The temperature difference between the surface and 

internal layers is the potential for heat transfer into the product due 

to thermal conductivity. 

The mechanism of the drying process at reduced pressure is based 

on the well-known laws of the drying theory and of equilibrium 

between liquid and vapor. A decrease in vapor pressure above the 

surface of the material shifts the dynamic equilibrium towards the 

evaporation of moisture, i.e. the driving force of the process is the 

difference in the partial pressure of the vapor of the removed 

moisture above the surface of the material and in the medium.  

When vacuum drying with infrared heat supplied to the product 

throughout the whole process, the temperature gradient has a 

positive effect on the process of moisture removal due to the same 

direction of the temperature gradient and moisture content. 

The kinetics of unbound moisture removal during vacuum cheese 

drying is determined by the change in water vapor pressure in the 

vacuum chamber; while at the bound moisture removal this does 

not occur, since the change in cheese moisture content is 

determined by the internal processes of heat and mass transfer 

characterized by various forms of moisture and dry matter.  

Having considered the basic laws of moisture removal during 

vacuum cheese drying with heat supply, it was established the 

need to develop a mathematical model for calculating the duration 

of the vacuum cheese drying process.  

3. RESULTS  

 The mathematical description of the real process of food 

products’ vacuum drying is a rather complicated and time-

consuming task. Therefore, to describe this process, it is necessary 

to introduce some basic assumptions:  

1) during the process of vacuum drying, the moisture content of 

the cheese surface is equal to the current value of the partial 

pressure of water vapor above it, which corresponds to the 

temperature of its surface; 

2) drying cheese has the same temperature and moisture content 

throughout the whole product volume; 

3) during vacuum drying, laws derived for ideal gases can be 

applied for water vapor; 

4) the thermophysical properties of moisture removed from the 

cheese during vacuum drying are equal to the thermophysical 

properties of distilled water. 

Fig. 2 shows a diagram of vacuum cheese drying with an infrared 

method of heat supply.  

When drying, to intensify the process of evaporation of moisture, 

heat is supplied to the material. In the process of vacuum drying of 

cheese with a residual pressure of at least 2 kPa, heat is transferred 

by convection and radiation. In this case the heat balance equation 

is the following:  
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where                   – black-body coefficient; 

       – heat transfer coefficient, W/(m²∙K); 

      кt – temperature in the chamber, °С; 

      ct – temperature of the cheese supplied for drying, °С; 

      r – specific heat of evaporation, J/kg; 

       d

du

 – drying rate, %/min. 

 

 
Figure 2. diagram of vacuum cheese drying with an infrared method of 

heat supply: m – mass of water vapor in the vacuum chamber; Нm
–

cheese mass; КОНQ
– volume capacity of condenser; ВНQ – volume 

capacity  of vacuum pump. 

 

The specific heat of vaporization is determined by the formula: 
   273 cВПo Tccrr ,             (2) 

where or
– heat of vaporization at 0 °С, J/kg; 

       Пc
– heat capacity of steam, J/(kg∙К); 

       Вc
– heat capacity of evaporated moisture, J/(kg∙К). 

The convection heat transfer coefficient can be determined by the 

equation: 






,                        (3) 

where  – thickness of the cheese particles, m; 

            – coefficient of thermal conductivity, W/(m∙К). 

As shown in fig. 2, during the drying process the moisture 

evaporated from the cheese and the air entering the vacuum 

system through leakages are pumped from the drying chamber.  

It is necessary to obtain an analytical relationship that describes 

the evaporation of moisture during vacuum drying. The required 



Vladimir Alexandrovich Ermolaev 

Page | 3832  

amount of residual pressure in the vacuum system is supported by 

a vacuum pump. The equation of material balance during the 

moisture evaporation in the drying process is:: 

Нисп Qq 
,           (4) 

where испq
– moisture evaporation rate, kg/h; 

      


– steam density, kg/m³; 

       НQ – vacuum pump capacity, м³/ч. 

The intensity of moisture evaporation from the material during the 

drying process is equal to: 




d

du
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.                             (5) 

The density of saturated steam is determined by the equation:  

                           кTR
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




,                                (6) 

where P – gas pressure, Pa; 

         M – molecular mass of water, kg/mol; 

R – molar gas constant, equal to 8314 J/(kg∙K). 

Applying equations 5 and 6 into formula 4, it is: 
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Applying equation 1 into equation 7, the equation of heat and 

mass transfer is obtained:                  
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Multiplying equation (8) by dt and integrating, it is obtained: 
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Expressing from the equation 9, the duration of drying   is: 
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Adequacy of the mathematical model (equation 10) was evaluated 

by comparing the calculated and experimental drying times. The 

average error of the calculated model is 6.3%.  

 

 

4. CONCLUSIONS 

 Thus, a model to calculate the duration of the cheese 

vacuum drying process, taking into consideration the drying 

temperature, the residual pressure and the area of the being dried 

cheese, has been developed. 
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