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ABSTRACT 

Dopamine (3, 4-dihydroxyphenethylamine) is an important compound in the human brain for sending signals to other nerve cells. 

Dopamine plays major roles in controlling, motivation, arousal, reinforcement, and reward in the brain. Lactation, sexual gratification, 

and nausea are also results of dopamine pathways. In this study the normal modes analysis of dopamine has been exhibited for 

understanding their relation between those dopamine structure and harmonic notes. This work demonstrated details of the musical 

conversion of molecular vibrational based on normal modes analysis of dopamine. The normal modes can be mapped to a spectrum in 

the audible frequencies ranges, and it can also be mapped to musically useful parameters.  
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1. INTRODUCTION 

 In the past decades, several attempts have been done for 

converting the molecular specifics to acoustic and musical 

behavior. Axen and coworkers in 1996 used a pattern of acoustic 

conversion due to sonic phenomenon at time coordinates 

dependent on coordinates of cells [1]. Moreover, nucleic acids 

linkages of DNA have been converted into sonic musical notes via 

using a simple coding of DNA bases [2- 5]. In another work, a 

method illustrated through acoustically converting mass-current 

oscillations based on the coherent quantum oscillations among the 

Helium atoms [6]. Based on converting of some molecular 

specifics such as frequency, amplitude and duration into sound 

dimensions the field of Sonification has been investigated by 

Albers 1994, Walker and Kramer 1996 [7, 8]. Although this 

method is applied for several other physical phenomena by 

Lunney and Foner, it has been reclaimed with analytical chemistry 

applications by Yeung and Frysinger in field of Sonification [9-

12]. Electromagnetic ray’s Sonification (such as infrared 

electromagnetic) is also a wonderful origin of musical acoustic 

which can be exhibited via spectral elements of light emitted [12, 

13]. Based on base absorption band in DNA a vertical line 

corresponds to the central frequency of the band has been 

assigned, while the transposition of this frequency into the 

acoustic range produces a micro-tonality characteristic of the 

specific base. With this phenomenon a musical scales related to 

the DNA bases has been assigned and converted by Alexander, 

Lunney and Morrison [9-17]. Although the lines were 

subsequently depend to the notes of the chromatic scales, the data 

of an entire infrared spectrum being mapped into several octaves. 

In 1992, McMillan and coworkers [18] applied a neural network 

for the musical conversion of IR spectrum which the sound was 

applied for playing the acoustic foundation. In whether scientific 

and musical objectives necessitate different approaches to 

Sonification, or whether the same mapping can sometimes be 

useful for both. Non-scientist musicians may not understand that 

molecules oscillate and play music under various conditions. In 

other words due to a very fast vibrate of the atoms in molecules 

that are orders of a large magnitude faster than acoustic vibrations 

cannot be possible to hear these frequencies physically. But, it is 

wondering how the vibrations would sound if mapped into the 

acoustic region. This perspective is become more amazing by the 

fact which each kind of molecules even each chemical reaction 

has a specific spectrum in a wide region. In any modeling of 

molecular properties towards musical Sonification any vibrations 

might be matched to the melodies, rhythms, pitch or duration of 

acoustic. This work demonstrated details of the musical 

conversion of molecular vibrational based on normal modes 

analysis. The normal modes can be mapped to a spectrum in the 

audible frequencies ranges, and it can also be mapped to musically 

useful parameters. In this study, a piece of music is considered to 

be a combination of elementary normal modes and depending on 

the time scale, the nature of the musical parameter, and the 

implementation, may be discrete or continuous including short or 

long durations. In the brain, dopamine (scheme 1) functions as an 

important neurotransmitter compounds released by nerve cells 

which are known as neurons for sending signals to adjacent nerve 

cells. Human brains have various  pathways for distinct dopamine, 

for example one of which has a main role in the motivational 

components of reward-motivated behavior which increases the 

level of dopamine in the brain [19], and many addictive drugs 

increase dopamine release or block its reuptake into neurons 

following release. Other brain’s dopamine pathway is consisting 

of motor control  and for releasing of several hormones and this 

pathway of dopamine system is neuron- modulatory. Although 

dopamine is often known as the main chemical of pleasure, the 

current belief in pharmacologist is that dopamine 

confers motivational salience [20-23]. Dopamine signals the 

perceived motivational preferences such as musical notes of an 

outcome that in turn propels the organism's behavior toward that 
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outcome [23]. Various diseases of the nervous are associated with 

invalidism of the dopamine system such as Parkinson's disease 

that is caused by a loss of dopamine-secreting neurons. There is 

strong witness that schizophrenia involves altered levels of 

dopamine activities, therefore dopamine as antipsychotic drug can 

be used for treating this kind disease. 

 
Scheme 1. Dopamine optimized structure. 

1.1. Normal modes  

In the classical movement of various vibrations, the normal modes 

are defined as a simple harmonic oscillator including; symmetric 

stretching, asymmetric stretching bending and improper, The total 

rules based on normal modes are suitable for musical Sonification 

of any vibrations which matched to the melodies, rhythms, pitch 

or duration of acoustic. The basic principles are abstracted as; (1) 

acts like a simple harmonic oscillator, (2) is a concerted motion of 

many atoms, (3) the center of mass doesn’t move, (4) all atoms 

pass through their equilibrium positions at the same time and (5) 

Normal modes are independent without any interaction and are 

estimated using Newton’s rule of motion. 
   

            And 

m. 
   

   =                  is the basis for the classical 

calculation of the normal modes of a molecule. Based on Wilson 

method [FG-λI]=0, F is a Matrix of force constants due to 

potential energies and G is a matrix involves masses and certain 

spatial relationships of the atoms due to kinetic energies. “I” is a 

unit matrix and λ is related to the frequency         . As for 

instance for H2O in C2v character table the      consists of E=9, 

C2=-1,   (  )    and   (  )     which can be reduced to 

    3A1+A2+3B1+2B2 and A1+A2+2B1+2B2 are belong to 

translation and rotation accounts, while 2A1+ B1 belongs to the 

vibrational modes. Displacements of the internal coordinates 

including O-H ( d1 and  d2) distances and HOH angle (  ) are 

bases for the irreducible representation ( d1,  d2) = A1+ B1 and 

  = A1. Applying projection operators to only one of the member 

of  d1 or  d2 yields:  ̂    d1= {(1)  ̂+(1)  ̂ +(1)  ̂ (  )  +(1) 

 ̂ (  )} d1=  d1 +  d2 and  ̂    d1= d1 -  d2 . Consequently 

symmetry coordinates for vibrations are A1= {S1=   and S2= 
 

√ 
( d1 +  d2)} and B1= {S3 =  

 

√ 
( d1 -  d2)} and 

 

√ 
 is the 

normalized factor to constitute an orthogonal set ( di dj=   ). 

The potential energies can be written as    ∑            

(                   )  (1), therefore for H2O there are three 

internal coordinates and hence nine force constants including 

          

            

   

   

  
   

                    

                 

 where the force constants for (O-H) 

stretching, (HOH)bending and interaction of one bond stretch to 

other bond stretch or angle bending are   ,   ,     and 

    respectively. Therefore the equation (1) can be written as: 

     (   )
 +   (   )

    (  )      (      )  

    (     )      (     ) = ∑            

Here the     are force constants described by symmetry 

coordinates of     and    which provides the easiest routs due to 

secular equations as 2v=     or 2V=     and it is also to find the 

relationship between internal coordinates and symmetry 

coordinates as: S=Us which U Matrix is defined as 

           

                 
   

 
  
 

                  
 

√ 

 

√ 
 

                   
 

√ 
 

 

√ 
 

 

   is the invers matrix of U therefore s=    =     and    

(   )  =    and also it can be easily proved that         and 

by transforming f  matrix into F the F Matrix is :  

  √     

√           
        

   The G Matrix can also be calculated 

from        

For finding a function of Eigen-vectors converting as a specific 

irreducible representation, the projection operator might be used in 

the related group theories and character tables. “F” is defined as an 

arbitrary function which can be expanded into various irreducible 

representations   ∑ ∑   
 

    
  where α denotes the irreducible 

representation and  
 ,   

 are the coefficients of the expansion and 

functions transforming according to the representation α, 

respectively. Therefore the projection operators “ ̂” presented as: 

 ̂ ( )
 

 
  

 
∑   ( )

 
 (  )( ) . In this equation    is degeneracy of 

irreducible representation of     and g is the symmetry order of 

group and G  is the symmetrical operators operations for each l(n) 

element of D(β) character table. 

1.2. Projection Operators  

 From a given irreducible presentation, the functions can be 

produced along the irreducible presentation. In the orthonormal set 

L(i) of the functions including   
  ,   

  ,   
 , …   

 which is applied 

for forming the ith irreducible representation of a group by order h, 

for the operators,  ̂, which defined as  ̂  
  ∑   

 
   (R)  

  (1), the 

multiply of this equation  by [ ( )    
 ]* and a summation over 

the symmetrical function it can be written as : ∑   ( )    
 ] * ̂  

  

= ∑ ∑    
 

   ( )  
  ( )    

 ] * (2) Considering are functions 

independent from R, the right side of the equation can be rewritten 

as:  ∑    
 

 ∑    ( )  
  ( )    

 ]  *. So we have a series of L (i) 

terms with production of    
  and coefficient of  . These 

coefficients are obey of orthogonally function: 

∑   ( )  
  ( )    

 ] *= (
 

    
)                (3) via using the 

equation (3) the equation (2) will be simplified as follows: 

∑   ( )    
 ] *  ̂  

  = (
 

  
)             (4) let us define the 

projection operator as follows  ̂
    
 

= 
  

 
 ∑    ( )  

  ( )    
 ] * ̂ 
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(5) which yields   ̂
    
 

  
              (6). The application of the 

projection operator is projecting function   
  from any function  

   
  . In other words   ̂

     
 

  
   =             (7). Through using 

projection operator linear combination of normal modes can be 

calculated. This linear combination consists of normal mode 

combinations which matched with melodies, rhythms, pitch or 

duration of acoustic. 

2. MATERIALS AND METHODS 

2.1. Wilson methods on dopamine. 

In this work the Urey-Bradley force field has been applied and the 

calculation of normal mode frequencies have been done according 

to GF Wilson matrix. By this method F Matrix for dopamine has 

been calculated via          transformation and G matrix or 

inverse kinetic energy matrix for dopamine has been estimated by 

the equation as follows:     ∑    
  
         (           

 ) where    is the mass of the ith atom. The kinetic energy is 

given by:         and         which    is transposing of  

  . The secular equation can be written as [FG- λ I] =0 where the 

frequency           and the normal coordinate Q is related to 

the internal coordinate R with the equation R=LQ. And normal 

mode    is described through the elements of the eigenvector    

belonging to  . The potential energy distribution helps for finding 

any coupling of normal modes which can be estimated with 

projection operator. Potential energy of Kth normal modes 

associating with ith internal coordinates can be written as:   
  

    
    

  
  Dopamine has 22 atoms or 3N-6=60 modes and the 

frequencies of these normal modes have been calculated with 

Wilson GF matrixes.  Each assignment can be exhibited based on 

PED, line intensity and its group theory. Refined force constants 

and internal coordinate are listed in Table 1. 

Table 1. Internal coordinates of dopamine for 60 normal modes. 
No Internal 

coordinate 

No Internal 

coordinate 

No Internal 

coordinate 

1  (    ) 21   (     ) 41      (   )  
2  (    ) 22   (     ) 42      (     )  
3  (    ) 23  (        ) 43      (     )  
4  (    ) 24  (       ) 44      (     )  
5  (    ) 25  (      ) 45      (     )  
6  (     ) 26  (      ) 46      (     )  
7  (      ) 27  (       ) 47      (     )  
8  (     ) 28  (      ) 48      (     )  
9  (    ) 29  (       ) 49      (     )  
10  (    ) 30  (      ) 50      (     )  
11  (    ) 31  (      ) 51      (     )  
12  (     ) 32  (       ) 52      (     )  
13  (     ) 33  (      ) 53      (     )  
14  (     ) 34  (      ) 54      (     )  
15  (     ) 35  (      ) 55      (     )  
16  (     ) 36      (   )  56      (     )  
17  (     ) 37      (   )  57      (     )  
18  (      ) 38      (   )  58      (     )  
19  (      ) 39      (   )  59      (     )  
20  (     ) 40      (   )  60      (     )  

 

2.2. Description of method. 

Some of the types of wave function and frequencies as normal 

modes are listed in table 2 and Fig.1, which can be investigated for 

any waveforms based on inverse Fourier transforms of vibrational 

spectra. This spectrum of dopamine is easily transposed down into 

the audible frequencies area, and its inverse Fourier transform can 

be taken for yielding a time -domain wave form. A transposition 

of about 60 notes in around 8 octaves (Table 3 &4) from normal 

modes yields the spectrum down to the musically useful ranges. 

(The frequency ratios corresponding to these octaves are 

approximately 3        ) (Speed of light cm/second). This 

procedure converts a vibrational perspective into the acoustic 

standpoint, or substitution of vibrational into the acoustic region. 

The spectrum can be converted such a molecular sound via 

computer software. In another methodology based on inverse 

Fourier transform of the molecular vibrational, the data of the 

spectrum will be converted to standard sound frequencies or 

acoustic notes. It is notable, the resulting wave shape might be 

present any time-varying musical data. The transposition 

frequencies for dropping the molecular vibrational waves into the 

lower-frequencies spectrum yield musical note forms that are 

important for controlling rhythm and also pitch or timbre. Based 

on our previous theoretical work and basic of molecular 

simulation, this work we has been simulated for any further 

resulting and discussing [24-54]. 

 

Table 2. Number of normal modes (No.), Degeneracy (D), Frequency (F) 

and Intensity (I) of 60 normal modes,  Hyper-Chem calculating. 

No D F I No D F I 

1 1 20.29 0.077 31 1 608.83 2.025 

2 1 32.6 0.185 32 1 643.42 1.931 

3 1 47.00 3.263 33 1 662.91 0.882 

4 1 57.5 0.638 34 1 685.57 2.476 

5 1 70.21 4.531 35 1 713.27 0.200 

6 1 89.65 8.005 36 1 734.43 3.927 

7 1 129.0 0.201 37 1 759.14 1.184 

8 1 149.3 2.963 38 1 816.47 0.330 

9 1 160.5 0.528 39 1 827.27 3.450 

10 1 188.7 0.206 40 1 933.12 3.075 

11 1 213.7 0.612 41 1 1073.0 2.876 

12 1 230.5 0.396 42 1 1131.9 0.737 

13 1 270.4 0.139 43 1 11.923 2.205 

14 1 277.8 1.454 44 1 1226.4 1.373 

15 1 286.3 0.253 45 1 1256.8 0.741 

16 2 320.3 0.810 46 1 1309.6 2.077 

17 2 321.6 1.975 47 1 1319.5 2.177 

18 1 352.2 0.370 48 1 1327.1 1.043 

19 1 367.4 0.131 49 1 1362.4 10.37 

20 1 376.0 0.081 50 1 1373.3 5.423 

21 1 386.1 0.073 51 1 1419.8 6.311 

22 1 398.2 0.491 52 1 1429.7 10.10 

23 1 442.9 0.336 53 1 1492.3 2.901 

24 2 454.3 1.360 54 1 1550.4 15.55 

25 2 454.9 1.536 55 1 1573.5 32.60 

26 1 465.3 2.724 56 1 1648.5 0.064 

27 1 498.5 0.070 57 1 1698.6 13.05 

28 1 518.5 1.827 58 1 1756.6 127.7 

29 1 547.1 2.460 59 1 1790.2 15.62 

30 1 575.9 1.448 60 1 1794.2 17.79 
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Figure 1. The normal modes analysis of dopamine. 

 

Table 3. Harmonic frequencies (F, cm-1), Red Mass (R), force constant 

(K, m Dyne/A) and  IR intensities (I , KM Mole-1), for Dopamine with 

B3LYP/6-31g* method. 
No F R K I No F R K I 

1 32.6 2.8 0.02 3.7 31 1166.0 1.3 1.0 3.03 

2 79.8 4.96 0.02 0.98 32 1178.3 1.5 1.2 11.5 

3 93.4 2.26 0.01 5.4 33 1194.3 1.4 1.2 88.2 

4 181.3 4.34 0.08 24.9 34 1228.2 1.4 1.3 40.9 

5 204.7 1.15 0.03 133. 35 1272.4 1.4 1.4 8.97 

6 253.5 1.32 0.05 47.9 36 1303.7 1.9 1.9 37.2 

7 264.2 3.22 0.13 2.48 37 1325.6 2.7 2.8 131. 

8 297.2 3.34 0.17 2.81 38 1335.8 1.4 1.4 35.0 

9 314.1 4.04 0.23 4.09 39 1366.9 1.4 1.6 9.39 

10 331.2 3.38 0.21 19.0 40 1369.8 1.5 1.6 141. 

11 389.7 5.46 0.48 3.05 41 1406.4 3.2 3.7 22.9 

12 432.7 1.19 0.13 70.2 42 1437.7 1.4 1.7 18.8 

13 460.1 2.67 0.33 5.86 43 1516.9 2.8 3.8 4.84 

14 471.3 3.88 0.50 2.75 44 1520. 1.0 1.5 1.40 

15 555.7 4.77 0.86 27.4 45 1545.9 1.0 1.5 3.42 

16 594.7 5.30 1.10 2.06 46 1566.5 3.3 4.7 153. 

17 638.4 4.75 1.14 5.82 47 1661.7 6.4 10. 42.9 

18 702.9 5.14 1.49 0.31 48 1681.4 6.2 10. 3.28 

19 764.7 4.04 1.39 12.8 49 1695.5 1.0 1.8 24.9 

20 792.7 1.63 0.60 8.50 50 2960.1 1.0 5.5 70.9 

21 803.9 1.46 0.55 23.2 51 3030.9 1.0 5.8 29.7 

22 806.5 2.26 0.86 19.3 52 3070.6 1.0 6.0 28.9 

23 881.6 1.39 0.63 13.7 53 3096.3 1.0 6.2 30.0 

24 885.2 1.29 0.59 139. 54 3166.4 1.0 6.4 19.8 

25 905.6 1.30 0.62 1.27 55 3194.2 1.0 6.6 16.9 

26 963.7 2.60 1.42 10.2 56 3198.0 1.0 6.5 3.3 

27 985.1 2.59 1.48 7.63 57 3456.6 1.0 7.4 3.5 

28 1061. 2.19 1.45 39.5 58 3541.9 1.0 8.0 1.0 

29 1099. 2.13 1.51 5.19 59 3717.4 1.0 8.7 82.0 

30 1137. 1.92 1.46 93.5 60 3773.6 1.0 8.9 62.0 

Table 4.Frequencies for equal-tempered scale A4=440HZ. 
Note F (HZ) λ(cm) Note F (HZ) λ(cm) 

C0 16.35 2109.89 F#
4/G

b
4 369.99 93.24 

C#
0/D

b
0  17.32 1991.47 G4 392.00 88.01 

0 18.35 1879.69 G#
4/A

b
4 415.30 83.07 

D#
0/E

b
0  19.45 1774.20 A4 440.00 78.41 

E0 20.60 1674.62 A#
4/B

b
4 466.16 74.01 

F0 21.83 1580.63 B4 493.88 69.85 

F#
0/G

b
0  23.12 1491.91 C5 523.25 65.93 

G0 24.50 1408.18 C#
5/D

b
5 554.37 62.23 

G#
0/A

b
0  25.96 1329.14 D5 587.33 58.74 

A0 27.50 1254.55 D#
5/E

b
5 622.25 55.44 

A#
0/B

b
0  29.14 1184.13 E5 659.25 52.33 

B0 30.87 1117.67 F5 698.46 49.39 

C1 32.70 1054.94 F#
5/G

b
5 739.99 46.62 

C#
1/D

b
1  34.65 995.73 G5 783.99 44.01 

D1 36.71 939.85 G#
5/A

b
5 830.61 41.54 

D#
1/E

b
1  38.89 887.10 A5 880.00 39.20 

E1 41.20 837.31 A#
5/B

b
5 932.33 37.00 

F1 43.65 790.31 B5 987.77 34.93 

F#
1/G

b
1  46.25 745.96 C6 1046.50 32.97 

G1 49.00 704.09 C#
6/D

b
6 1108.73 31.12 

G#
1/A

b
1  51.91 664.57 D6 1174.66 29.37 

A1 55.00 627.27 D#
6/E

b
6 1244.51 27.72 

A#
1/B

b
1  58.27 592.07 E6 1318.51 26.17 

B1 61.74 558.84 F6 1396.91 24.70 

C2 65.41 527.47 F#
6/G

b
6 1479.98 23.31 

C#
2/D

b
2  69.30 497.87 G6 1567.98 22.00 

D2 73.42 469.92 G#
6/A

b
6 1661.22 20.77 

D#
2/E

b
2  77.78 443.55 A6 1760.00 19.60 

E2 82.41 418.65 A#
6/B

b
6 1864.66 18.50 

F2 87.31 395.16 B6 1975.53 17.46 

F#
2/G

b
2  92.50 372.98 C7 2093.00 16.48 

G2 98.00 352.04 C#
7/D

b
7 2217.46 15.56 

G#
2/A

b
2  103.83 332.29 D7 2349.32 14.69 

A2 110.00 313.64 D#
7/E

b
7 2489.02 13.86 

A#
2/B

b
2  116.54 296.03 E7 2637.02 13.08 

B2 123.47 279.42 F7 2793.83 12.35 

C3 130.81 263.74 F#
7/G

b
7 2959.96 11.66 

C#
3/D

b
3  138.59 248.93 G7 3135.96 11.00 

D3 146.83 234.96 G#
7/A

b
7 3322.44 10.38 

D#
3/E

b
3  155.56 221.77 A7 3520.00 9.80 

E3 164.81 209.33 A#
7/B

b
7 3729.31 9.25 

F3 174.61 197.58 B7 3951.07 8.73 

F#
3/G

b
3  185.00 186.49 C8 4186.01 8.24 

G3 196.00 176.02 C#
8/D

b
8 4434.92 7.78 

G#
3/A

b
3  207.65 166.14 D8 4698.63 7.34 

A3 220.00 156.82 D#
8/E

b
8 4978.03 6.93 

A#
3/B

b
3  233.08 148.02 E8 5274.04 6.54 

B3 246.94 139.71 F8 5587.65 6.17 

C4 261.63 131.87 F#
8/G

b
8 5919.91 5.83 

C#
4/D

b
4  277.18 124.47 G8 6271.93 5.50 

D4 293.66 117.48 G#
8/A

b
8 6644.88 5.19 

D#
4/E

b
4  311.13 110.89 A8 7040.00 4.90 

E4 329.63 104.66 A#
8/B

b
8 7458.62 4.63 

F4 349.23 98.79 B8 7902.13 4.37 

 

3. RESULTS  

 In this study, the possibility controlling of physical 

properties such as density of states versus normal mode energies 

(Fig.2) allows the construction of more molecular wave forms, 

with different time-domain shapes but with the same timbres 

based on the inverse Fourier transform of a vibrational spectrum. 

According to the normal modes principles, each mode form is 

static for a stable and homogeneous musical samples (Tables 4 

and 5). Therefore, it is possible to acoustically convert each 

normal modes of frequency to the relative intensity mapped 

acoustic notes. A molecular vibrational spectrum is independent of 

the other physical properties, so it can be separately described 

versus time and any other conversions of the musical notes 

spectrum. As a simplified item of that mechanism, it is also 

feasible for limiting such conversions to the musical’s peaks. Such 

conversions produce a series of simplified normal modes forms. 

Consequently, each of those normal modes forms can be based 

either directly on the extracted peaks, or else on their inverse 

Fourier transforms. If the normal modes of dopamine describe 

acoustic or molecular sounds, this method is helpful to listen of 

the specific frequency proportion of the vibrational spectral peaks. 
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As an instance, each sound of the group corresponds and assigned 

to a separate key of a musical instrument’s keyboard. In other 

words for the simple item of a series of sinusoidal components, 

each sound can be considered one note of a normal modes.  Once 

a conversion is produced, the individual acoustic note of the 

family might be considered as independent notes, which can be 

composed in any further sequence for producing the large varieties 

of musical combinations. 

Table 5 shows the series notes based on normal modes technique. 

The dopamine spectrum has been applied for generating group 

notes of molecular sounds which are played using sine oscillators. 

Furthermore the rhythms are derived from these sequences and the 

pitches are played repetitively at a rate symmetrical to the 

corresponding normal modes frequency. Although the normal 

modes described in this paper were constructed using theoretical 

data, other wave based on experimental vibrational ranges could 

also be used.  

 
Figure 2. Density of states versus 40 normal modes energies. 

 

Table. 5. Harmonic frequencies (F, cm-1), IR intensities (I , KM Mole-1), 

and Acoustic frequencies (A, HZ) for Dopamine with B3LYP/6-31g* 

method. 

F I pitch A F I pitch A 
32.6 3.7 C1 32.70 1166.0 3.03 D6 1174.6 

79.8 0.98 D2 73.42 1178.3 11.5 D6 1174.6 

93.4 5.4 F#
2/G

b
2  92.50 1194.3 88.2 D6 1174.6 

181.3 24.9 F#
3/G

b
3  185.0 1228.2 40.9 D#

6/E
b

6  1244.5 

204.7 133. G#
3/A

b
3  207.6 1272.4 8.97 D#

6/E
b

6  1244.5 

253.5 47.9 B3 246.9 1303.7 37.2 E6 1318.5 

264.2 2.48 C4 261.6 1325.6 131. E6 1318.5 

297.2 2.81 D4 293.6 1335.8 35.0 E6 1318.5 

314.1 4.09 D#
4/E

b
4  311.1 1366.9 9.39 F6 1396.9 

331.2 19.0 E4 329.6 1369.8 141. F6 1396.9 

389.7 3.05 G4 392.0 1406.4 22.9 F6 1396.9 

432.7 70.2 A4 440.0 1437.7 18.8 F#
6/G

b
6  1479.9 

460.1 5.86 A#
4/B

b
4  466.1 1516.9 4.84 G6 1567.9 

471.3 2.75 B4 493.8 1520. 1.40 G6 1567.9 

555.7 27.4 C#
5/D

b
5  554.3 1545.9 3.42 G6 1567.9 

594.7 2.06 D5 587.3 1566.5 153. G6 1567.9 

638.4 5.82 D#
5/E

b
5 622.2 1661.7 42.9 G#

6/A
b

6 1661.2 

702.9 0.31 F5 698.4 1681.4 3.28 G#
6/A

b
6 1661.2 

764.7 12.8 F#
5/G

b
5 739.9 1695.5 24.9 G#

6/A
b

6 1661.2 

792.7 8.50 G5 783.9 2960.1 70.9 F#
7/G

b
7  2959.9 

803.9 23.2 G#
5/A

b
5  830.6 3030.9 29.7 F#

7/G
b

7  2959.9 

806.5 19.3 G#
5/A

b
5  830.6 3070.6 28.9 G7 3135.9 

881.6 13.7 A5 880.0 3096.3 30.0 G7 3135.9 

885.2 139. A5 880.0 3166.4 19.8 G7 3135.9 

905.6 1.27 A#
5/B

b
5  932.3 3194.2 16.9 G7 3135.9 

963.7 10.2 A#
5/B

b
5  932.3 3198.0 3.3 G7 3135.9 

985.1 7.63 B5 987.7 3456.6 3.5 A7 3520.0 

1061. 39.5 C6 1046. 3541.9 1.0 A7 3520.0 

1099. 5.19 C6 1046. 3717.4 82.0 A#
7/B

b
7 3729.3 

1137. 93.5 D6 1174. 3773.6 62.0 A#
7/B

b
7 3729.3 

 

 

 

4. CONCLUSIONS 

 The present method explained a sonification ways for 

normal mode analysis. In other words by this invistegation, the 

sonification which is application of a non-speech audio to convey 

information or perceptualize data has been used for normal modes 

of dopamine. Auditory perception has advantages in temporal, 

spatial, amplitude, and frequency resolution that open possibilities 

as an alternative or complement to visualization techniques[55-

57]. 

 It can be applied with the following goals: 1. Audio character of a 

molecular substance, after adopting an efficacious musical coding 

which is identical for all those analyzing of the same category. For 

controlling audio real-time of the evolution the chemical sample’s 

properties might be applied for time or analysis zone. 
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