Modelling and Controlling of ion transport rate efficiency in Proton exchange membrane (PEMFC), alkaline (AFC), direct methanol (DMFC), phosphoric acid (PAFC), direct forming acid(DFAFC) and direct carbon (DCFC) fuel cells

Fatemeh Mollaamin 1, Thu Thi Pham 1, Dung My Thi Dang 1, Majid Monajjemi1, 2, *, Chien Mau Dang 1, *

1Institute for Nanotechnology (INT), Vietnam National University - Ho Chi Minh City (VNUHCM), Ho Chi Minh City, Vietnam
2Department of chemical engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
*corresponding author e-mail address: Maj. Monajjemi@iauctb.ac.ir; dmchien@vnuhcm.edu.vn

ABSTRACT

Ion transport rate of DFAFC, PAFC, AFC, PEMFC, DMFC and SOFC fuel cells have been studied. AFC which uses an aqueous alkaline electrolyte is suitable for temperature below 90 degree and is appropriate for higher current applications, while PEMFC is suitable for lower temperature compared to others. Thermodynamic equations have been investigated for those fuel cells in viewpoint of voltage output data. Effects of operating data including temperature (T), pressure (P), proton exchange membrane water content (λ), and proton exchange membrane thickness (d_m) on the optimal performance of the irreversible fuel cells have been studied. Performance of fuel cells was analyzed by simulating polarization and power curves for a fuel cell operating at various conditions with current densities.

Keywords: Fuel cells, PEMFC Fuel cell, AFC Fuel cell, DMFC Fuel cell, DCFC Fuel cell, PAFC Fuel cell, DFAFC Fuel cell.

1. INTRODUCTION

Generally, the fuel cells convert the chemical energies of a fuel (mostly H2) and an oxidizing agent (usually oxygen in the air) into electricity through a pair of redox reactions [1]. Although there are several kinds of fuel cells, customarily they all consist of, a cathode, an anode, and an electrolyte which allows ions, frequently positively protons (H+) to move between two sides of the fuel cells [1,2]. Briefly, at the anode via a catalyst material and oxidation reaction, ions are generated through electrolytes which move toward the cathode [3]. Simultaneously, in a reverse direction, electrons flow towards the cathode via an external circuit. At the cathodes, various catalysts can be applied to produce ions, electrons, and oxygen for reacting and forming water or some other products. Fuel cells are categorized based on species of their electrolytes and also by the difference in startup time ranging between around one second for PEMFC [4] to ten minutes for solid oxide fuel cells (SOFC) with maximum efficiency among 45% to 60%. In the fuel cell of a solid acid electrolyte, H+ conducting oxanion salt (solid acid) consists of a solid supported within the membrane which is saturated with H2O for any further ions transporting. Anode reaction is: H2 → 2H+ + 2e- and Cathode reaction is: 1/2 O2 + 2e- + 2H+ → H2O and the overall reaction is: H2 + 1/2 O2 → H2O. In viewpoint of mechanism, at the anode, H2 first come into contact with a nickel catalyst and break apart, bonding to the nickel surface forming weak H-Ni bonds consequently the oxidation reaction can be proceed. Each H2 releases its electron, which moves around the external circuit to the cathode which is electrical current. Then the H+ bonds with H2O on the membrane surface for forming H3O+ that moves through the membrane to the cathode electrode, leaving the nickel catalyst for the next H2. At the cathode, O2 come into contact with a nickel catalyst on the electrode surface and break apart bonding to the nickel sheet forming weak O-Ni bonds, enabling the reduction reaction to proceed. O2 then leaves the nickel catalyst site, combining with two electrons that move in external circuit and two protons which have moved through the membrane for forming H2O. Increasing the H2 storage is a major section for the transition more and more hydrogen molecules in a fuel cell [4, 5]. Direct methanol fuel cell (DMFC) is a subcategory of PEMFC in which methanol is used as the fuel. The advantages which can be considered are the energy-dense, easiness of transport and reasonably stable liquid at all environmental situations and mean-while its disadvantages is low efficiency(around 10%), so they are targeted especially to portable applications, which power densities are more important than the efficiencies[6]. In contrast to indirect fuel cells, which CH3OH molecules are reacted to H2 molecules via a steam improving, direct form use a CH3OH solution for transporting the reactant into the cells; common operating temperature is in the range 55–115 °C, which high temperature is generally pressurized [6,7]. Direct methanol fuel cell, itself is more efficient at top temperature and pressure, but these situations finally creating so many problem in whole of system that the advantage windswept, so atmospheric-pressure forms are yet preferred and applied [7, 8].Due to the CH3OH "cross-over" phenomena or diffusion via the membrane (without reacting), CH3OH is unsuitable as a solvent, this decreases the performance of fuel cells considerably, since this phenomenon, directly reacts with air (in cathode), consequently reduction of the cell voltage accomplishes, therefore "cross-over" phenomenon is a main problem in inefficiency of direct methanol fuel cells[9].This matter can be reduced through improving membranes, developing catalyst layers, reclaiming the structures of gas layers and optimizing the design of the electrodes (such as management of carbon dioxide at the anode) in viewpoint of current densities distribution [10]. The DMFC has restricted in the
PT factor (power*time) factor which means they can produce the small quantity of power in a lengthy period of time. Of course those are suitable for large vehicles. The half-reactions of DMFC are; in anode (oxidation); \(\text{CH}_3\text{OH} + H_2O \rightarrow 6H^+ + 6e^- + CO_2 \) and in cathode (reduction) the half-reaction is \(\frac{2}{3} O_2 + 6H^+ + 6e^- \rightarrow 3H_2O \); while the overall reaction is: \(\text{CH}_3\text{OH} + \frac{2}{3} O_2 \rightarrow 2H_2O + CO_2 \). The \(CH_3OH \) oxidation over the catalyst layers produce \(CO_2 \) and \(H_2O \) is consumed at the anode and is again produced at the cathode [9, 10]. From each reaction 6-proton is transported through the PEM which usually made of from Nafion [2, 7] (sulfonated tetra-fluoro-ethylene based fluoro-polymer-copolymer). Although platinum (Pt) as a Nano particle might be suitable as a catalyst for both anode and cathode, it is very expensive and during oxidation the number of available sites in Pt will be occupied by CO which produced in oxidation of methanol, consequently the efficiency of the cell will be decrease. An alloy of platinum with suitable percentage of Au, Ru and Cu can be removing this problem. Storage of formic acid materials (HCOOH) are secure, safe, and confident compared to \(\text{H}_2 \), as it is a non-flammable liquid and also does not cross over the polymer membrane, so its performance can be higher than that of methanol. DFAFC convert HCOOH and O2 into CO2 and H2O to produce energy. The half-reactions of DFAFC are: anode; \(HCOOH \rightarrow CO_2 + 2H^+ + 2e^- \) and in cathode; \(\frac{2}{3} O_2 + 2H^+ + 2e^- \rightarrow H_2O \) and total reaction is \(HCOOH + \frac{4}{3} O_2 \rightarrow CO_2 + H_2O \) [11]. The alkaline fuel cell (Bacon fuel cell), is one of the important fuel cells with high performance that NASA has applied, in Apollo-series missions and on the Space Shuttles. The half-reactions of DFAFC are: anode; \(H_2 + 2OH^- \rightarrow 2H_2O + 2e^- \) And in cathode; \(O_2 + 2H_2O + 4e^- \rightarrow 4OH^- \). In AFC, two electrodes are divided through a porous martials filled with an alkaline solvent, such as KOH, NaOH or NH4OH. One of the important advantages of these kind fuel cells is that alkaline solutions can be reacting with \(CO_2 \) to produce conversion K2CO3. Environmentally, AFC is suitable to clean out as much of the \(CO_2 \) due to operate (even in high temperature) on pure oxygen, or at least purified air. Since, \(O_2 \) reduction reaction (ORR) at the cathode is easier than in acidic cells, AFCs in the systems can be operated up to 90 °C with higher performance than acidic electrolyte, such as PEMFC.

1.2. PEM fuel cells.
Obviously fuel cells as an electrochemical instrument are able to convert chemical energies straightly into direct electrical currents (DC) through a sufficient electrolyte. Therefore, it is usually far yields than combustion engines. A fuel cell needs a stable reservoir of fuels and oxidants for to keeping the electrochemical reactions, same as hydrogen and oxygen [4, 6, 8-9]. Although Hydrogen can be used in a mixture with other gases such as \(N_2 \), \(N_2 \), and \(NO_2 \), the major fuel cell is electrolysis reversed consist of hydrogen and oxygen for producing electricity with high efficiency. It is notable that electrolyte has major roles which are different types this work is focused on graphene and h-BN electrodes with polymer membrane electrolyte (PEM) in low temperature. In the PEM fuels cells, the electrolytes are thin polymeric membrane including proton permeability. At low temperature around 90°C the presence of a catalyst such as typically nickel is needed for hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) on anode and cathode respectively (Scheme 1).

Cathode and anode gases diffusion layers, generally made of carbon porous including graphene layer for cathode and anode adjacent to catalyst, respectively which are distributed on each side of the polymer membrane. Currently, PEM fuel cell technologies have been combined to the R&D approaches in the automotive sections such as Chrysler, Toyota, Suzuki, Ford, General Motors, Volvo, Hyundai, Nissan and BMW and also as power back-up sources [11-13]. The electrochemical reactions accomplish at the catalyst electrodes on both sides polymer material including oxidation and reduction (equations 1&2).

Hydrogen flows into the PEM fuel cell and diffuses through the gases diffusion layers to the catalyst layers, where catalyst particles facilitate fuel oxidation and protons trap onto water molecules to form \(H_2O^+ \) that move via the membrane from the anode towards cathode. In addition two electrons from above equations (1&2) reach to the cathode electrode over the bipolar plates and over an external circuit. It is notable that this mechanism is known as electro-osmotic drag. On the cathode electrode, oxygen gases diffuse to the catalyst layer and chemically combined with protons and electrons to form water (ORR). Obviously, the electrodes must be selected of porous materials that facilitate water moving to outside and the excess oxygen gases might be help for pushing water out of the cell (scheme 2 & 3)[10-12]. Efficiency, permanence and cost reduction effort are the most important items for PEM fuel cells that cover construction and assembly methods [8]. There are several major items for increasing the life cycle and PEM fuel cells efficiency which are thermal management, water management, new catalysts, and novel material of membranes and also quality of electrodes. Operating conditions and operating strategies play an important role in a fuel cell lifecycle. Bad distribution of fuel cell reactants can appear in the presence of high cell currents, liquid water, fuel impurities, and different flows of fuel due to the sudden changes in the power demand and conditions between cell inlet and outlet [11-13]. In other hand, fuel starvation can cause severe degradation during of gross fuel starvation that cell voltages can become negative (as the anode) and the carbon is consumed given
the lack of fuel, consequently anodic current will be provided by carbon corrosion to form carbon dioxide [12-14]. In addition, oxygen starvation can result in generation of hydrogen in the cathode or oxygen in the anode similarly during oxygen starvation the reaction at the cathode will produce hydrogen. For avoiding these problems the suitable monitoring controlling sensors and indicators are needed [14].

In other words proton flux is large in the anode electrode; therefore a strong electro-osmotic force pulls the H2O from anode to cathode (due to the low water content). In contrast to the inlet of the anode side, at the exit current density is lower and H2 concentration has decreased, so, the partial pressure of water is high and closer to total anode pressure [18, 19]. Several researchers have assessment of various tactics and techniques for water managing. Su et al. [15] & He et al. [20] associated partial pressure straightly to the flooding level and considered it to be a suitable indicator for efficiency. They planned a tool for monitoring the flooding measure in PEM fuel cell with inters digitized flow field. Bosco and coworkers [21] record a USA patent for a simple way which monitors the pressure drop across the flow field to detect flooding in PEM fuel cells. Problem of membrane dehydration is related to drying out in anode which causes a protonic resistance and consequently collapse in cell voltage.

Therefore in dried situation radicals will produce and increased, to enhanced membrane dehydration. Anode dehydration is might be serious both at the inlet of the cell and at the outlet trajectory. In addition due to dehydrating conditions, the membrane leads to lower diffusion. One of the main reasons for dehydration is the strong electro-osmotic forces in the condition of high current densities where water replenishment by reactant humidification or back-diffusion is not quick enough to cope with the lack of water [22].

2. MATERIALS AND METHODS

2.1. Thermodynamic of fuel cells.

The enthalpy of hydrogen combustion reaction or hydrogen heating amount for one mole of hydrogen can be calculated via

\[\Delta H = \Delta H^\circ_{\text{H}_2O} - \Delta H^\circ_{\text{H}_2} = -286.31 \text{ KJ/mol} \]

Hydrogen heating amounts are used as a measure of energies input for the fuel cells and this is the maximum value of thermal energy which can be extracted from hydrogen. In addition Gibbs free energy is given by the following equation:

\[\Delta G = \Delta H - T \Delta S \]

which the difference between entropies of products and reactants can be calculated as

\[\Delta S = \Delta S^\circ_{\text{H}_2O} - \Delta S^\circ_{\text{H}_2} - \frac{1}{2} \Delta S^\circ_{\text{O}_2} \]

The maximum electrical work is:

\[W_{\text{max}} = -n(\text{emf})F = -\Delta G \]

where F is Faraday’s constant and “emf” is the ideal electro motor force or potential of the cell. Therefore the theoretical hydrogen/oxygen fuel cell potential or maximum voltage of fuel cells is:

\[\text{emf} = \]
Modelling and Controlling of ion transport rate efficiency in Proton exchange membrane (PEMFC), Alkaline (AFC), Direct methanol (DMFC), Phosphoric acid (PAFC), Direct forming acid (DFAFC) and Direct carbon (DCFC) fuel cells

\[E = \frac{-\Delta G}{nF} \approx \frac{237.342 J}{mol^{-1} \cdot 298486.5 \text{ Coulomb}} = 1.231 \text{ Volt} \]. The thermal efficiency is defined based on amount of useful energy released when a fuel is reacted with an oxidant (\(\Delta G\)), relative to the change in stored chemical energy (\(\Delta H\)) therefore the maximum theoretical yields in a fuel cell is \(\eta = \frac{\Delta G}{\Delta H} = \frac{237.342}{-286.31} = 82.9\% \). Based on Nernst equation a function of temperature and pressure can be applied for any fuel cells as: \(emf = E(T, P) = -\frac{\Delta H}{nF} \frac{T\Delta S}{nF} + \frac{RT}{nF} \ln \left(\frac{P_{H_2}^{a_0.5}}{P_{H_2O}} \right)\) \((1)\)

based on this equation, in an open circuit with reactant gases the actual cell potential is decreased (usually less than 1V) and it is called open circuit voltage (OCV). This decreasing of actual cell potential is due to irreversible losses and hydrogen crossover losses which often called polarization, over potential, or over voltage including activation polarization, ohmic polarization and concentration polarization [23]. Activation polarization is associated with sluggish electrode kinetics which happens at both anode and cathode which can be expressed by Tafel equation: \(\Delta V_{act} = \frac{RT}{nF} \ln \left(\frac{i}{i_0} \right)\) \((2)\) where \(i\) is the electron transfer coefficient of the reaction at the electrodes and \(i_0\) is the exchange current density. The ohmic polarization appears due to resistance against the flow of protons in the electrolyte and also resistance to the flow of electrons through the electrode materials as the equation \(\Delta V_{ohm} = \frac{RT}{nF} \ln \left(\frac{i}{i_L} \right)\) \((2)\) where \(i_L\) is the limiting current. The actual cell voltage can be written as: \(V_{cell} = E(T, P) - (\Delta V_{act} + \Delta V_{conc})_a - (\Delta V_{act} + \Delta V_{conc})_c - \Delta V_{ohm}\) \((3)\) by replacing the above equations in this equation the fuel cell polarization curve is: \(V_{cell} = E(T, P) - \frac{RT}{nF} \ln \left(\frac{i}{i_0} \right) - \frac{RT}{nF} \ln \left(\frac{i}{i_L} \right) - \frac{RT}{nF} \ln \left(\frac{i}{i_{L-c/1-c}} \right) - \frac{RT}{nF} \ln \left(\frac{i}{i_{L-c/1-c}} \right) \) \((4)\) [23, 24]. Due to the activation energy barriers the polarization terms voltage collapse very fast and in the ohmic term polarization voltage falls slower due to the membrane and electrode ohmic resistance. Nernst–Planck equation flux rate of \(n_j\) of the species \(j\) is given by: \(n_j = -D_j \frac{dc_j}{dx} + C_j \frac{\partial}{\partial t} + \frac{z_j F}{RT} D_j C_j \frac{db_j}{dx}\), where \(D_j\) is the mass diffusivities coefficients and \(C_j\) is the concentrations, \(\theta\) is the solution velocities, \(\Omega\) is the potential gradient. In an electrolyte without concentration gradients, Nernst–Planck equation equivalent to Ohm’s law and current in an electrolyte can be obtained as equation as follows: \(I = n z F \) \(-\frac{D_j}{\partial x} + C_j \frac{\partial}{\partial t} + \frac{z_j F}{RT} D_j C_j \frac{db_j}{dx} Z_j F\) [23, 24]. In static electrolyte systems [24], for several classes of fuel cells only diffusions and migrations terms remain. These categories of fuel cells specified via their electrolytes (Table 1). For both Phosphoric acid fuel cells (PAFC) and polymer electrolyte membrane fuel cells (PEMFC), the hydrogen molecules splitting at the anode into hydrogen ions are transport across the electrolyte to the cathode [24-30].

<table>
<thead>
<tr>
<th>Fuel cell</th>
<th>Electrolyte Use</th>
<th>Operating temperature</th>
<th>Efficiency Cell</th>
<th>Statuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFAFC</td>
<td>Polymer membrane</td>
<td><40</td>
<td><40%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>AFC</td>
<td>Aqueous alkaline</td>
<td><90°</td>
<td>60-70%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>DMFC</td>
<td>Polymer membrane</td>
<td>90-120</td>
<td>20-30%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Polymer membrane</td>
<td>50-100(Nafion)</td>
<td>25-40%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>Direct carbon fuel cell</td>
<td>Several different</td>
<td>700-900</td>
<td>70%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>Magnesium air fuel cell</td>
<td>Salt water</td>
<td>-25-50</td>
<td>90%</td>
<td>Commercial Research</td>
</tr>
<tr>
<td>Protonic ceramic fuel cell</td>
<td>H2 conducting ceramic</td>
<td>700</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Enzymatic Biofuel Cells</td>
<td>not denature the enzyme</td>
<td><40</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Phosphoric acid fuel cell</td>
<td>Mo1en (H3PO4)</td>
<td>150-200</td>
<td>45%</td>
<td>Commercial Research</td>
</tr>
</tbody>
</table>

For a PEMFC of static electrolyte with 25cm\(^2\) active area, 50µm thickness and 9 \(\times 10^{-7}\) cm\(^2\)·s\(^{-1}\) diffusion coefficient of H\(^+\) ions [25-28], current density obtained for applied potential difference between 0.5-1.0V at 75°C exhibited in Fig.1

![Figure 1. Current densities versus potential.](image)

Although PEMFC has a lower current than PAFC, due to its lower operating temperature allowing fast startup and can be applied in automotive power applications. Another advantage of PEMFC is that its electrolyte is a solid material and is less expensive to manufacture than the liquid electrolyte \(\eta(T, P) = \left(\frac{\Delta H - T\Delta S}{nF}\right) + \frac{RT}{nF} \ln \left(\frac{P_{H_2}^{a_0.5}}{P_{H_2O}} \right)\) [25,26]. It is notable that, the maximum electrical energies and the potential differences are achieved when the fuel cells are operating under the thermodynamically reversible condition. Practically, an open circuit potential is considerably lower than the theory due to three main losses which are, first concentration polarization \(V_{concen}\) second activation polarization \(V_{act}\), and third ohmic polarization \(V_{ohmic}\). The irreversible voltage loss \(V_{irrev}\) is a summation of these three parameters, \(V_{irrev} = V_{act} + V_{ohmic} + V_{concen}\). Based on Butler–Volmer equation, a specific potential is needed for overcoming to the energies barriers which called activation polarization \(i = I_c + I_0 \left[\exp(-\frac{\Delta G}{RT}) + \exp(\frac{\Delta G}{RT}) \right]\) where \(I_c\) and \(I_0\) are the anode and cathode current densities, respectively and \(i_0\) is the reaction exchange currents densities. Meanwhile \(\alpha_A\) and \(\alpha_C\) are the charge transfer coefficients at the anode and cathode and \(n\) is the number of exchange protons per mole of reactant. Here \(\eta\) is the activation over potential term or \(\Delta V_{act} = \eta = -\frac{RT}{nF} \ln \left(\frac{i}{i_0} \right)\).
For a fuel cell operating with a transfer coefficient of 0.45 activation losses versus current density are shown in Fig. 2.

![Figure 2](image)

Figure 2. Activation loss as a function of current densities.

With an exchange current density of 10^{-3} Acm$^{-2}$, activation losses for different transfer coefficients are shown in Figure 3 which indicate that for large exchange current densities, fuel cell has insignificant activation over potential. This is a measure of the system abilities for delivering a net current with significant energy loss. When the transfer’s coefficients are low, the activation over potentials is large for any specific current. If the transfer’s coefficients are large, the fuel cell will provide large current with small activation over potential. The electrolytes have an intrinsic resistance to prevent charge flow due to ohmic polarization including $R_{\text{electronic}}$ and R_{ionic}. Fuel cell resistances can be written as:

$$V_{\text{ohmic}} = iR_{\text{ohmic}} = (R_{\text{electronic}} + R_{\text{ionic}})$$

R_{ionic} indicates the ionic resistance and $R_{\text{electronic}}$ consist of the total electrical resistance of all components concluding bipolar plates, cell interconnects and all connection path.

![Figure 3](image)

Figure 3. Activation loss versus transfer coefficient.

The big amount of ohmic loss appears during the transport of ions through the membrane which depends on membrane water or membrane relative humidity (ϕ_m) parameter as a function of $\lambda = C_0 + C_1 \phi_m + C_2 \phi_m^2 + C_3 \phi_m^3 + C_4 \phi_m^4 + \ldots$ where C_n are coefficients. It is notable that the resistance of the membrane changes with water because of water uptake results in membrane swelling, which changes the membrane thickness along with its conductivity. The ionic resistance can be written as:

$$R_{\text{electronic}} = \frac{2\mu_l}{\sigma_d}$$

where l_d and σ_d are diffusion layers of thickness and electronic conductivities, respectively [25-27]. The concentration over potential is due to the mass transfer of H_2 and O_2. When the PEMFC cathode (O_2) and the anode (H_2) gases interact as an electrochemical process, the concentration of the H_2 and O_2 at the two electrodes will be consumed, that is lower than the initial concentration, and the irreversible loss caused by this concentration gradient is called the concentration over potential [31, 32]. The concentration over potential can be expressed as $V_{\text{conc}} = CLn\left(\frac{i_{\infty}}{i - i_L}\right)$. Where i_L indicates that the PEMFC can reach the limiting current density during operation and c indicates the concentration loss constant [33].

2.2. Modelling and simulation

The details mechanism of the PEM fuel cells are very complex due to the different and tightly phenomenon which occur within a cell-fluid-dynamic, migration, electrochemical reaction, diffusion, water transports inside polymer membrane involving both electro-osmotic drag and back diffusion, proton transports via proton-conductivities of the polymer membranes, electron conduction via electrically conductivities of the cell components, heat transfer involving both conduction via solids components of the cells and convection of reactant gases and cooling medium, water transports both evaporation and liquids via porous catalyst layer and gas diffusion layer, and phase changes (scheme 4). Modelling is needed for describing the basic phenomenon to evaluate the cells steady-state and dynamic behavior. However, the complex mechanism inside the fuel cell causes challenging in some models involving reactants, cooling, and humidification and conditioning systems. Models are able to predict fuel cell efficiency under different operating situations and optimization and designing of control systems [34-37].

![Scheme 4](image)

Scheme 4. Processing and operating of a PEM fuel cell.

In past decades, several of PEM fuel cell models are defined to the purpose of gas channel, gas diffusion layers, catalyst layers and polymer membrane of electrolyte [35, 36]. Models can also be categorized based on their dimension, single, double or triple which can be considered either isothermal or non-isothermal [37]. Single cell model explains the electrochemical and transporting processes in the fuel cell component including pressure drop, flow distribution, and temperature profile in the gas channel. This simulation, quantitatively explain interaction between physical and electrochemical phenomenon which can also be divided into two sections, first an empirical simulation for prediction how the fuel cell voltages change with the current densities with polarization curves [38] and second principle simulation is build-up from ordinary differential equations or solving partial differential equations (PDEs) including distributed parameter, Stefan-Maxwell convection and diffusion account for species conservation. Based on Darcy’s law, the principle of mass conservation is applied to simulate reactant concentration. Recently, in advance simulation, two-dimensional and three-dimensional simulations have been developed. The two-dimensional simulation can be separated into two classes, first one explains the plane perpendicular to the flow channels and second describes the direction along the flow channel [39, 40]. An extended simulation of 3-dimensional, 2-phase, non-isothermal unit cell systems was investigated by Tao [38] for performing
parameters sensitivities examination. Generally, simulated systems are lumped data of parameters for evaluating fuel cell efficiency under various operating situations for any controlling as a function of time through solving differential equations (ODEs). Pukrushpan [37] investigated a system including fuel cell stack, hydrogen supply, air supply, cooling and the humidification systems with a constant temperature due to the dynamics variables.

2.3. Inputs and outputs parameters for the simulation:

Six input parameters are applied for any simulation involving voltage U, cooling temperature T_{cool}, hydrogen inlet ($n_{H_2}^{Anode}$), anode water inlet ($n_{H_2O}^{Anode}$), Air inlet ($n_{Air}^{Cathode}$) and the cathode water inlet ($n_{H_2O}^{Cathode}$) while the output parameters are current “I” and temperature “T” and the gas channels (GCs) are the trajectory for flow of reactant gases. The common equation for mass conservation in a channel is as:

$$\frac{\partial n}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

where ∇ is the gradient operator, ρ is the density and \vec{v} is the velocity vector, respectively. The first term corresponds to accumulation of mass as a function of time and the second term corresponds with the mass flow changing [31]. Derived from equation (5), the mass balance for the anode and cathode gases channels are given by:

$$\frac{\partial n_i}{\partial t} = -\frac{\partial \rho_i \vec{v}_i}{\partial x} + \frac{n_i}{\delta y}$$

where δy is the channel thickness in y-direction. In this kind modeling it is better to apply the molar mass instead of mass; therefore the boundary equation is given by:

$$\frac{\partial n_i}{\partial t} \bigg|_{y=0} = n_{n_i}$$

where the superscript n is denoted both anode and cathode. On the anode side “i” can be either H_2 or H_2O and on the cathode it can be either O2, N2 or H2O. n_{n_i} denote molar flow densities between gas channels and gas diffusion layers meanwhile (n_{i}^{in}) denote inlet molar flow densities (positive in direction towards membrane for both sides). The general equation for mass conservation is given by:

$$\frac{\partial n_i}{\partial t} = -\frac{\partial \rho_i \vec{v}_i}{\partial x} + \frac{n_i}{\delta y}$$

The boundary condition is:

$$\frac{\partial n_i}{\partial t} \bigg|_{y=0} = n_{n_i}$$

where $k = 1, 2, ... , n$.

3. RESULTS

Power density P of PEMFC in an irreversible path is depending on several variables including operating temperature T, working pressure a, proton exchange membrane water content λ or membrane water or membrane relative humidity (ϕ_m) parameter and the proton membrane thickness d_{mem} and current density i, which can be expressed as $p = f(T, a, \lambda, d_{mem})$. It is important to keep some variables as a constant parameter such as working pressure a, the water content λ, and d_{mem} of, therefore the output power density is only a function of two variables i & T as $P = f(i, T)$. In isotherm of T, the output power densities of the irreversible PEMFC is function of current density, $P = f(i)$. When the operating temperature of the irreversible PEMFC is T_1, T_2, ..., T_n the maximum output power densities are $P_{max}(1)$, $P_{max}(2)$, $P_{max}(n)$, respectively of an irreversible PEMFC in a finite time. Alike with the effect of a, λ, and d_{mem} on its optimal output power density can also be discussed as same the above equation [Fig.4].

![Image](attachment:image_url)

Figure 4. Optimal output power densities as a function of temperature. It can be realized that the optimal output power densities of the irreversible PEMFC increase with the increasing of the operating temperature in the finite times. Obviously, due to the increase of T, the exchange current densities should be increased, the activation over potentials are reduced, and the proton pass rates have to be increased, as a result of the Ohmic over potentials and power dissipation are reduced. In small power dissipation, the minimum entropy production also decreases.
Consequently, increasing the operating temperature of the PEMFC can impressively develop its optimal output power densities in an appropriate working range. Increasing the operating pressure can also increase the density power of the irreversible PEMFC due to the increasing exchange current densities and decreasing activation over potential. Consequently the irreversibility of the irreversible PEMFC is diminished and the reversibility is elevated and the minimum entropies are decreased (fig. 5).

<table>
<thead>
<tr>
<th>Figure 5. Optimal output power densities as a function of pressure.</th>
</tr>
</thead>
</table>
| As it can be seen corresponding optimal output power densities of pressures 3 and 4 atm, are 0.46 and 0.505 W/cm², respectively. By increasing pressure from 3 atm. to 5 atm., the optimal output power densities are increased by 9.8% and also By increasing pressure from 4 atm. to 5 atm. the optimal output power densities are increased by 6.9% which means, the irreversible PEMFC can further improve its optimal output power density by suitably increasing its operating pressure during finite time operations. Our calculation exhibits a maximum output power density through increasing the proton membrane thickness and this phenomenon is due to increase the hindrance of ions via the proton exchange membrane. Simultaneously, the Ohmic loss has been growth, the output power densities are decreased, and the maximum output power is also decreased (Fig. 6). With a proton exchange membrane thickness is around 0.15 mm, the corresponding optimal output power density is 0.515 W/cm²; when the proton exchange membrane thickness is 0.20 mm, the corresponding optimal output power density is 0.415 W/cm². This shows that when the proton membrane thickness is decreased from 0.020 cm to 0.015 cm, the optimal output power density is increased by 24%. As a result, reducing the thickness of the proton exchange membrane can increase the optimal output power density of the fuel cell in the finite times. It is notable that the thickness should not be thin less than a level, due to avoiding needle punching or cracking. Increasing the water content of the proton membrane can also promote the efficiency of the irreversible PEMFC, as result optimal output power density.

<table>
<thead>
<tr>
<th>Figure 6. Optimal output power densities as a function of thickness.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within the membrane water content of λ = 6, the optimal output power density is only 0.3 W/cm², which indicates that the performance of PEMFC is seriously degraded when the water content of the membrane is too small; when the membrane water content λ = 20, that is, the water content of the proton membrane reaches saturation state, The optimal output power density is only 0.48 W/cm². The optimal output power density of the PEMFC increased by 15.6% when the water content of the proton exchange membrane increased from λ = 1 to λ = 20(Fig.7). Controlling the water contents of the protons exchange membranes between the ideal state and the saturated state at any time can strongly improve the optimal output power densities of an irreversible PEMFC [79-86].</td>
</tr>
</tbody>
</table>

| Figure 7. Proton exchange membrane of water in 350K and 2.8 atm. |

<figure>

|Figure 7. Proton exchange membrane of water in 350K and 2.8 atm.

4. CONCLUSIONS

Hydrogen fuel cells will play a significant role in the transportation industry in the near future. The price of fuel cells will reduce in producing fuel cells in large quantities and commercializing them. Modelling and controlling of ion transport rate efficiency can be investigated for various fuel cells in viewpoint of voltage output data. Effects of operating data including temperature (T), pressure (P), proton exchange membrane water content (λ), and proton exchange membrane thickness (d_mem) on the optimal performance of the irreversible fuel cells have been studied. Performance of fuel cells was analyzed by simulating polarization and power curves for a fuel cell operating at various conditions with current densities. Controlling T, P, d_mem, and the water contents (λ) of the proton exchange membranes between the ideal state and the saturated state at any time can strongly improve the optimal output power densities of an irreversible PEMFC, AFC, DMFC, PAFC, DFAFC, and DCFC fuel cells.

5. REFERENCES

78. Jalilian, H.; Monajjemi, M. Capacitor simulation including of X-doped graphene (X = Li, Be, B) as two electrodes and (h-BN)m (m = 1–4) as the insulator. *Japanese Journal of Applied Physics* **2015**, *54*, 085101-7.