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ABSTRACT 

The concept of molecular sonification comprises total steps of methods that convert the physical data derived from chemical systems into 

acousmatic music. NMR data of the 13C are especially well suited data sources for Insulin sonification. Even though their resonant 

frequencies are typically in the MHz region, the resonant frequencies span around kHz.  The human insulin is consisting of 51 amino 

acids which can be divided into 7 series of amino acids for seven octaves of notes. During NMR calculation with ab-initio methods, 

these signals are routinely mixed down into the audible frequencies ranges, rendering the need for any additional frequencies 

transpositions unnecessary. By this work, insulin protein sequences into musical notes to reveal auditory algorithms have been 

converted. Calculation and optimization of  20 amino acids have been done and the total frequencies of each amino acid have been 

converted to 20 music notes and distinguishing those using variations of chemical shifts including pitch, time duration length of notes 

and even rhythm have been accomplished.  

Keywords: Protein, Insulin, artificial intelligence, sonification, classical music notes. 

 

1. INTRODUCTION 

 Converting molecular properties to sound is important for 

science information, therefore in the Sonification, sounds are 

produced from chemical properties in the bio molecular systems 

with the goal of facilitating data interpretation [1,2]. Sonification 

methods were used to DNA generating, to amino acids sequences, 

and to protein folding [3]. In all subjects, the mechanism of 

conversion has been done based on molecular properties through a 

suitable algorithm related to invisible phenomena with a visual 

inspection. Although the biological subjects have been started 

several billion years ago when life appeared on earth [4], it is 

possible to encode them into a sequence of chords and melodies. 

Obviously, the conversion from genomics to music would open a 

window to investigate genotype and phenotype. An auditory 

offering could also explain of more details concerning the 

concepts of DNA sequences and protein sequences via the use of 

auditory characteristics such as rhythm, melody, tempo, and 

chords. Several works have accomplished to convert DNA 

sequences directly to music [5, 6]. This method drag limited 

numbers of A; notes and B; melodies based on A; four bases: 

guanine (G), thymine (T), adenine (A) and cytosine (C) and B; 

DNA sequence organization, respectively [6]. In addition, the 

outputs build several series of notes that have differentiable from 

musical depth as a composition. Therefore accurate strategy has 

been done in which the convert DNA sequences to notes and 

melody have used mathematically based on the physical properties 

of codons for setting several equations for translating DNA 

sequences to musical notes [6,7]. Several works have conversed 

with pure amino acids sequences [8] as instance, Dunn and Clark 

applied an algorithm to the folding patterns and also translates 

amino acids sequences into musical themes [9]. They also tested   

9 notes, but without characterize among amino acids having the 

same note value. The aim of this work is to find a mode of 

converting 13C-NMR data of amino acids sequences to piano notes 

that sound reasonable to a musician’s ear. And also to present a 

model for overcoming the jump between consecutive notes as a 

consequence of the 20 musical notes related to 20 amino acids 

range with NMR data. The broad scope of the musical notes in 

many melodies has a problem, such as large range, stochastic 

jumps and unknown frequencies to make them difficult musically. 

A second matter is a question of how to incorporate rhythm into 

the sequence of notes. Based on NMR data, various innovations 

can be presented in coding assignments that generate a decreased 

musical note ranges and consequently introduce rhythm into the 

Notes. Our investigated is centralized to the 13C-NMR data of the 

insulin amino acid sequences. [scheme 1]. 

 
Scheme 1. Amino acids sequence of the human insulin. 

 

1.1. Convert NMR spectroscopy to music.  

Molecular specification can be turned through sonification of 

atomic resonant processes directly into sound, including Infra-red 

spectroscopy "IR" or nuclear magnetic resonance "NMR".  Via IR 

spectroscopy, it can be measured the vibrational behavior of 

molecules and it has been applied for its use as a sound source for 

spectroscopy’s sonification in theoretical musical backgrounds 
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[10-12]. One general trait of all these sonification methods is that 

artistic selection has to be made during the sonification 

mechanism including musical’s notes, pitches, melodies, Rythms 

and Chords to be designed for different chemicals images. In this 

work, 13C-NMR spectroscopy is applied as a novel source for 

protein specification towards sonification. In contrast to IR, 13C-

NMR spectroscopy experiments the frequencies of the nuclear 

signals which can be converted straightly into the audible 

described the sonification strategies which used NMR data in 

acoustic music composition [13].  

1.2. Insulin specifics. 

Insulin is a polypeptide hormone secreted by beta cells of 

the Pancreas which is one of the major anabolic hormones (Fig.1) 

Insulin hormones regulate the metabolism of fats, carbohydrate 

and proteins via increasing the suction of those compounds, 

especially glucose from the blood into  liver  and  muscle’s cell. In 

the mentioned tissues the glucose is converted into glycogen , 

triglyceride or both in the liver, respectively.  Circulating insulin 

also control the synthesis of proteins in several tissues. High 

insulin amount as an anabolic hormone causes to convert the small 

molecules in the blood into large molecules inside the cells and 

low amount level in the blood has an opposite effect towards 

catabolism. Simultaneous by increasing glucose in blood the beta 

cells secrete insulin into blood and as soon as glucose level 

decreases, secretion of insulin is inhibited. In contrast, alpha cell 

has activities based on beta cells, increasing secretion when blood 

glucose is low and decreasing secretion when blood glucose is 

high [14, 15]. Glucagon via stimulating the liver to produce 

glucose by gluconeogenesis has the opposite direction of 

insulin.  The secretion of glucagon and insulin in response to the 

blood glucose condensation is the primitive mechanism of glucose 

homeostasis [14].  

 
Figure 1. Optimized structure of insulin. 

If beta cell is annihilated by an auto-immune reaction, insulin can 

no longer be secreted into the blood which is called type 1 

diabetes mellitus and specified by un-normal high blood glucose 

condensation.  In type 2  the demolition of beta cell is less than in 

type 1 diabetes, and is due to an accumulation of amyloid in the 

pancreas, which probably interrupts its physiology. Although the 

pathogenesis of this kind of diabetes is not well known, it has been 

shown a decreased population of islet beta-cells due to the 

condensation of glucose in the blood [15].  As a result, the insulin 

concentrations, even when the blood sugar level is normal, are 

much higher than they are in healthy persons. The human insulin 

is consist of 51 amino acids, and has a molecular mass of 5808 Da. 

It is a dimer of two chains A and B (Scheme.1), which is attached 

together via disulfide bonds. Insulin's molecules differ somewhat 

among kinds of animals. Insulin from animal sources differs 

somewhat in mechanism from human insulin due to this 

difference.  Porcine insulin is particularly close to the human type, 

and was vastly applied for treating type 1 diabetics before human 

insulin could be produced through recombinant DNA methods 

[14, 15].  

1.3. Characteristics of sonified NMR. 

Nuclear magnetic resonance is mostly applied in structure 

illumination and confirmation which are strongly sensitive to 

conformational changes in molecules. The human insulin is 

combined of 51 amino acids which can be divided into 7 series of 

amino acids for seven octaves of musical notes, including; Gly-Ile 

-Val-Glu–Gln–Cys –Cys–Thr  as group (1), Thr-Ser-Ile-Cys-Ser-

Leu-Tyr-Gln as group (2) , Gln-Leu-Glu-Asn-Tyr-Cys-Asn-Phe as 

group (3), Phe- Val-Asn-Gln - His-Leu-Cys-Gly as group (4), Gly- 

Ser-His-Leu - Val-Glu-Ala-Leu  as group (5), Leu-Tyr-Leu-Val-

Cys-Gly-Glu-Arg as group (6) and Arg-Gly-Phe-Phe-Tyr -Thr-

Pro-Lys, as group (7) which are shown in Figs 2-8. It is difficult to 

explain the details of NMR and accurate mechanisms to analyses 

data without introducing a wide concept of scientific subjects.  

 

 
Figure 2. Chemical shifts value of 8 amino acids in first octave. 

 

In a simple concept, through a given parameter with a magnetic 

nucleus, each atom has a resonance that is split to several of 

resonances with somewhat differences in amount of frequencies if 

there are other magnetic nuclei nearby. The resonances are 

estimated through locating a sample in the powerful magnetic 

fields, then using a pulse of radio frequencies and recording the 

nuclear spins like a ringing. Basically, the molecules can be 

compared with tiny bells that are made audible by being hit with a 

radio frequency hammer. The signal is free induction decay (FID) 
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which might be changed via Fourier transformation towards NMR 

spectrum, which is known as chemical shift with part per million 

or ppm unit. The conversion of NMR or FID spectrum to sound is 

NMR sonification which has been applied for insulin protein by 

this paper. 

 
Figure 3. Chemical shifts value of 8 amino acids in second octave. 

 

NMR spectroscopy is able for detecting any atoms and their 

isotopes with an odd number of protons or neutrons particles, 13C 

is the most isotopes particularly suitable for sonification. This 

nucleus is the most commonly used in organic chemistry and 

database sites hosts spectra for more than 50,000 various 

chemicals found in the human body. Figures 2 -8 exhibit 13C 

NMR spectrum which converts the values to chemical shift units 

of ppm (deviation from a reference in parts per million) with 

Hertz. Here we will suppose which the reference frequencies are 

set to zero ppm.  

 
Figure 4. Chemical shifts value of 8 amino acids in third octave. 

 

 
Figure 5. Chemical shifts value of 8 amino acids in forth octave. 

Based on those atoms which are available in each mentioned of 

seven groups, frequencies clusters will occupy distinct 

frequencies. The number of signals in each spectrum relates to the 

complexities and structures of the molecules from one signal up 

even to 1000 or more peaks.  

 

 
Figure 6. Chemical shifts value of 8 amino acids in fifth octave. 

The peaks can be extended over a vast frequencies region or 

concentrated in narrow regions as seen in Figures 1-7. 
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13C NMR exhibit a deviation of 1 ppm with frequency shift of 125 

Hz and the frequencies ranges of 13C NMR peaks can appear 

between 0 – 30000 Hz which the most peaks generally locate 

above 12500 Hz.  In contrast to proton NMR spectra, 13C NMR 

peak cannot be split and appears as a single frequency. For 

converting NMR spectrum to related sounds there are several 

ways based on mathematics of “Fourier transformation” and 

analyzing data through additive synthesis. The FID data in NMR 

calculation can be sonified straightly, through direct recording 

with related software in programs such as Matlab or Mathematica, 

from the output of the spectrum. Obviously the sonification of will 

leads to the most authentic molecular sounds which made from 

FID data, and occasionally are included of some useless of 

additional frequencies, arising from weak samples. FIDs Sounds 

consist of stochastic noises than sounds artificially created via 

additive synthesis. Therefore FIDs generated in a standard 13C 

NMR calculated sometimes decline within a short time.  

 
Figure 7. Chemical shifts value of 8 amino acids in sixth octave. 

 

 

 

 

Figure 8. Chemical shifts value of 8 amino acids in seventh octave. 

 

A few experimental procedures exist that generate continuous 

signals or rapidly repeating FIDs. Via mathematical program it is 

possible to select particular frequencies from the sonified data and 

change the theme for each frequencies peak individually. 

Therefore, this action leads to more compatibility in the sounds 

creation processing and provides the construction of short bell-

type sounds like murmur sounds. Using molecular sonification for 

providing a collection of applicable sounds, their utilization has to 

lie somewhere between two items first, it is possible to do the 

sounds unchanged and second it is possible to completely change 

the sonic characteristics of the starting material and convert to a 

new condition. Molecular sonification, as a sound creation method 

based on scientific approaches, might be useful tools for musical 

ideas that are describable via chemical mechanisms, such as 

Parkinson or Alzheimer’s disease. It can be argued that using 

calculating NMRs data as a source for sonification is more 

suitable than any indirect sonification method [16-18]. 

 

2. MATERIALS AND METHODS 

Expriments methods of NMR &music sonification. 

The start codon on mRNA inside ribosome is AUG, so natural all 

protein might contain methionine as starting amino acid, which 

means methionine acts as same as Sol’s key in musical notes. In 

addition the last amino acid in insulin is “Ala” which applied for 

ending of notes. Based on frequency calculations via DFT and ab-

initio methods, the conversion of optimized energy of each amino 

acid to musical notes are listed in Table.1  

In abinitio calculation, the energies are related to specific methods 

and basis sets which are used in a model. In other words results 

during optimization of amino acids with any kind of methods or 

basis set are not equal. Consequently, the conversion of 

frequencies music notes for each amino acids might be different to 

data in table 1. Pitch, is one of the important components of 

musical notes which pivotal section of acoustics is related to it. In 

abinitio chemical calculation each methods including density 

functional theory, Moller -Plesset, Hartree- fock and semi 

empirical are related to a type of pitches. Treble clef symbol 

indicates that the second line from the bottom (the line that the 

symbol curls around) is "G". On any staff, the notes are always 

arranged so that the next letter is always on the next higher line or 

space. The last note letter, G, is always followed by another A. 

In standard notation, a single musical sound is written as a note. 

The two most important things a written piece of music needs to 

tell you about a note are its pitch - how high or low it is - and its 

duration (time) - how long it lasts. To find out the pitch of a 
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written note, you look at the clef and the key signature, and then 

see what line or space the note is on. In NMR map the distances 

between chemical shift picks indicate the time scale between notes 

(Figs.10 & 11). A dot that is someplace other than next to the head 

of the note does not affect the rhythm. Other dots are articulation 

marks. They may affect the actual length of the note (the amount 

of time it sounds), but do not affect the amount of time it must be 

given.  

Table 1. Frequency conversion of optimized amino acids via abinitio 

method ( B3Lyp/6-311G* ) to acoustic music notes. 

Music Note Amino Acids Music Note Amino Acids 

C Trp F Gln 

D Met G Glu 

E Pro A Arg 

F His B Phe 

G Tyr C Ile 

A Leu D Ala 

B Val E Ser 

C Cys F Asn 

D Gly G Asp 

E Thr A Lys 

 
Figure 9. Treble Clef Symbol of amino acids. 

 

 

 

 
Figure 10. Time scales symbols for duration length of acoustic music 

notes. 

Therefore for seven NMR groups the notes and time scales can be 

calculated (Fig.10).  Time scale and note Lengths of group (1) 

based on distances between chemical shifts, each 10 ppm is one 

unite, as for instance among  200 to 170 there are 3 units so are 

equal to one half not plus to one quarter note. The simplest-

looking note, with no stems or flags, is a whole note. All other 

note lengths are defined by how long they last compared to a 

whole note. A note that lasts half as long as a whole note is a half 

note. A note that lasts a quarter as long as a whole note is a quarter 

notes. The pattern continues with eighth notes, sixteenth notes, 

thirty-second notes, sixty-fourth notes, and so on, each type of 

note is half the length of the previous type. Note lengths work just 

like fractions in arithmetic: two half notes or four quarter notes 

last the same amount of time as one whole note. Flags are often 

replaced by beams that connect the notes into easy-to-read groups. 

A question is; how long does each of these notes actually last, that 

depends on a couple of things. A written note lasts for a certain 

amount of time measured in beats.  

 
Figure 11. Time scale and note Lengths of group (1) based on distances. 

Between chemical shifts, each 10 ppm is one unite, as instance 

among 200 to 170 there are 3 units so is equal to one half not plus 

to one quarter note 

2.1. Computational details. 

Each part of the Insulin has been optimized using abinito with 

DFT calculations individually (Figs.1-8). The whole of insulin has 

been calculated with QM/MM methods and the systems have been 

simulated through semi empirical methods. The final molecular 

structures were computed using SCF calculations in order to find 

the optimal starting geometries, as well as the different energies 

for those vibrational spectrums. The DFT with the van der Waals 

density functional theory was investigated to a model of exchange-

correlation calculation. All optimization of seven groups were 

performed by GAMESS-US package. The accurate calculations 

performed using m062x, m06-L, and m06 for normal mode 

analyzing. The m062x, m06-L and m06-HF methods are suitable 

for non-bonded calculations for non-covalent interactions between 

each part of seven groups. The ONIOM methods including 3 

levels of high (H), medium (M) and low (L) calculations have 

been done. DFT methods were used for the high (H) layer and the 

semi empirical method of pm6 and Pm3MM was used for the 

medium and low layers, respectively. In this work, differences of 

force fields are debated through comparing density and energies 

with OPLS and AMBER force fields. In addition, a Hyper-Chem 

professional release 7.01 program has been applied for some 

additional keywords such as PM3MM, PM6 (pseudo=lanl2). All 

calculation and estimation both modeling and simulation have 

been done based on my previous works [19-46]. 
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3. RESULTS  

 Here is reported a self-consistent field calculation through 

abinitio and DFT method and also sonification approaches [47-64] 

for translating amino acids sequences into audible music sounds 

and applying it to generate protein of insulin designing using 

artificial intelligence (Figs 11, 12). 

 
Figure 12.Time scale and note Lengths of group (2) based on distances. 

Between chemical shifts, each 10 ppm is one unite, as for instance 

among 200 to 170 there are 3 units so is equal to one half not plus 

to one quarter note.  

The sonification methods supposed here uses the optimized 20 

vibrations of the amino acids to compute an audible representation 

of each natural amino acid. The NMR chemical shifts are 

transposed to the audible spectrum following the musical concept 

(Figs 11 &12). 13C NMR chemical shifts have been calculated for 

seven groups of amino acid’s sequences based on insulin structure 

[figs 2-8]. Generally, 13C NMR peaks might be occupied higher 

frequencies than 1H NMR. Via 13C NMR a combination of sounds 

created using chemical shifts data that might be occupied the 

whole audible spectrum. The acousmatic piece of spins has been 

created, exploring the aesthetic possibilities of NMR derived 

sounds. The use of sounds made by sonification of NMR data in 

musical compositions and sound art is almost unexplored. This 

trans-position approach enables us to correspond the relative 

values of the vibrational frequencies within each amino acid 

towards musical notes. The specific frequencies spectrum and 

sounds associated by each of the amino acids exhibit a type of 

musical scale that includes 20 tones. For making playable music, 

each tone associated with the amino acids is assigned to a special 

key on a musical instrument, which enables us to draw the 

sequences of amino acids in insulin or any other proteins into a 

musical format. 

 

4. CONCLUSIONS 

 The structure of the human insulin being analyzed related 

to the features present in its NMR spectra. In addition, it is 

possible to choose proteins based on their structural features in 

order to create acoustic music notes. Based on this work, using the 

sonification methodology presented in this paper, it was possible 

to create an acoustic music composition based exclusively on 

publicly accessible NMR data. It is certain that NMR sonification 

as an acoustic sound creation methodology based on physical and 

chemical data has high potential to be a strong tool for any further 

controlling the human diseases such as Cancer, Alzheimer, 

Parkinson and diabetes in the global environment. 
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