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ABSTRACT 

Amyloid beta (Aβ) plaque deposition is a pathological feature of Alzheimer’s disease (AD) that is characterized by dementia. Therapies 

approaches affecting Aβ synthesis and accumulation are necessary for improving AD. The present review, as the future prospective 

study, focuses on the possible effect of curcumin on the non-amyloidogenic pathways for inhibiting the Aβ plaque in AD. Activators of 

non-amyloidogenic pathways emerge as a novel strategy in attenuating Aβ. Drugs and natural compounds can affect neurotrophic 

signaling pathways including protein kinase C (PKC), tyrosine kinase (TK), mitogen-activated protein kinase (MAPK)-extracellular 

signal-regulated kinase (ERK) signaling, and Ca2+ signaling as wells serotonergic and acetylcholine systems, resulting to stimulate non-

amyloidogenic pathways. Curcumin, active constituent of Curcuma longa L. (turmeric), has a potent effect against AD through 

prevention Aβ generation and deposition. With attention to the effect of curcumin on the molecular mechanism behind the non-

amyloidogenic pathways, we suggest designing more studies to identify curcumin as a therapeutic restricting AD agent via its impact on 

the non-amyloidogenic pathway. 
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1. INTRODUCTION 

 Amyloid beta (Aβ) plaque accumulation is a major 

hallmark of Alzheimer’s disease (AD). The cleavage of amyloid 

precursor protein (APP) by β- and -secretase leads to produce 

Aβ2 [1]. Activation of -secretase as non-amyloidogenic pathway 

produces sAPP. -secretases consist of zinc metalloproteases, 

the members of disintegrin and metalloprotease (ADAM) families, 

including ADAM9, ADAM10, and ADAM17 which stimulate the 

non-amyloidogenic APP processing [2]. They are membrane-

bound, cell-surface glycoproteins that involved in cell adhesion, 

protein ectodomain shedding, matrix protein degradation, and cell 

fusion. It has been indicated that the modulation of α-secretase 

activity is very complex [2]. The activated secretase pathway 

competitively inhibits amyloidogenesis via proteolytic cleavage 

within the Aβ peptide sequence of APP [2]. Additionally, sAPP 

is confirmed to have memory-enhancing and neuroprotective 

effects [3]. Modulation of the non-amyloidogenic pathway may be 

as a suitable therapeutic strategy for AD, though the family of all 

α-secretase members and their functions have not been understood 

[3]. It was indicated that some natural products were effective 

against AD via stimulating the activity of α-secretase [3]. 

Curcumin, the major ingredients of the turmeric spice, has been 

recognized for two centuries ago [4]. It is obtained from the dry 

rhizomes of Curcuma longa L [5] from the ginger family. The 

cultivation of Turmeric is mostly done in South America and 

Asian [6]. Traditionally, curcumin is used to cure various diseases 

such as wounds, skin diseases, rheumatism, liver diseases, 

diarrhea, colic, urinary discharges, constipation, dyspepsia, 

amenorrhea, pyrexia, etc [6].  

In addition, turmeric is a suitable food additive and the coloring 

agent [6]. Curcumin, a phenolic compound, has a yellow pigment 

and an aromatic smell [6]. Today, curcumin has been increasingly 

investigated due to its several pharmacological impacts including 

anti-inflammatory, antioxidant, anti-microbial, and anti-tumor [7]. 

Curcumin affects several molecular pathways involved in 

inflammation, oxidative stress, and neurodegenerative disorders 

[7]. Although curcumin has numerous biomedical activities, 

however, its usage is limited due to its low bioavailability [7]. 

Curcumin is an insoluble water and soluble oil agent [8]. 

Curcumin is a safe and well-tolerated compound [9]. The 

bioavailability of curcumin is affected by low solubility, poor 

absorption,  rapid metabolism and elimination [9]. Therefore, 

several investigations have been performed to increase curcumin 

bioavailability. Synthesis of a phospholipid, liposome and 

nanoparticles curcumin formulations have been found to effective 

for elevating its bioavailability [10]. Curcumin, especially its 

novel formulations have been reported as a suitable treatment for 

several neurological disorders such as AD [11]. Recent 

experimentations on the efficacy of curcumin against AD. They 

have shown that curcumin inhibited AD progression by inhibition 

of Aβ formation and accumulation, oxidative stress, 

neuroinflammation, hippocampal neurogenesis, mitochondrial 

dysfunction and apoptosis modulation of cholinergic systems [11]. 

This study reviewed the neuroprotective activities of curcumin and 

its novel formulations by mostly focusing on curcumin effects on 

the non-amyloidogenic APP processing. 
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2. MATERIALS AND METHODS 

Methods. 

Google Scholar, Scopus, Medline and ISI Web of Science were 

searched by terms of (curcumin OR turmeric) AND (non-

amyloidogenic OR Amyloid beta OR Alzheimer's disease) from 

the beginning to May 2019. All references in the selected articles 

were also reviewed to obtain more related studies. Only published 

English language articles were selected in the present study.  

3. RESULTS  

3.1. Curcumin, inflammation and Alzheimer's disease. 

Neuroinflammation is responsible for the induction of 

amyloidogenic and non-amyloidogenic pathways in the AD, as 

evident by the activation of microglial cells and the production of 

inflammatory mediators [12]. Microglia cells are composed of M1 

and M2 phenotypes. The M1 type releases toxic inflammatory 

mediators including tumor necrosis factor-α (TNF-α), interleukin-

6 (IL-6), IL-1β, reactive oxygen and nitrogen species (ROS and 

RNS) and prostaglandins, however, the M2 type secretes anti-

inflammatory cytokines that preserve the neuronal hemostasis 

[13]. Under AD condition, microglia cells are shifted to the M1 

phenotype [14]. A close link was seen between inflammation, Aβ 

aggregation and activated glial cells. The inhibition of this 

association may be a suitable target to treat the progression of AD 

[15]. Curcumin can be effective for AD treatment via modulating 

molecular signaling pathways involved in the activation of M1 

microglial. Extracellular signal-regulated kinase 2 (ERK1/2) and 

p38 kinase signaling are the two molecular pathways that activate 

M1 glial cells. Curcumin could suppress microglia activity by 

blocking these pathways, resulting in a decrease in inflammatory 

cytokines [16]. Curcumin administration to microglia cells 

exposed to lipopolysaccharide (LPS) markedly ameliorated the 

secretion of inflammatory mediators and nitric oxide [17]. 

Curcumin also modulated the activities of nuclear factor kappa B 

(NF-k) and phosphoinositide kinase (PI3K)/Akt pathways, 

leading to inhibition glial activity and inflammation [17].  

 
Figure 1. The impact of curcumin on inflammation and oxidative stress 

and release of sAPPa. 

 

Curcumin stimulated the activation of peroxisome proliferator-

activated receptor gamma (PPAR), leading to inhibition of 

neuroinflammation. PPAR can suppress the activities of the NF-B 

and ERK pathways and decrease inflammation. Additionally, 

curcumin could enhance the protective impact of M2 microglia, 

leading to a decrease in A aggregation. Finally, curcumin can 

stimulate signaling pathways involved in sAPPα release by 

inhibition oxidative stress (Figure 1). 

 

3.2. Curcumin, oxidative stress, and Alzheimer's disease. 

Oxidative stress is a key mechanism in the pathogenesis of 

diseases including AD [18]. It is caused due to an imbalance 

between oxidant-antioxidant content in cells [18]. The brain has a 

high sensitivity to oxidative damage due to its high amount of 

lipid in the cellar membrane and the high rate of oxygen 

consumption [19]. Oxidative stress also can affect the proteins and 

DNA structures, resulting in the apoptotic cell death [19]. 

Curcumin combats against oxidative stress directly via scavenging 

free radicals and indirectly via enhancing antioxidant content [20]. 

Oxidative stress can initiate and progress the AD process through 

activating both amyloidogenic and non-amyloidogenic pathways 

[21]. Therefore, modulation of the redox cycle may be a suitable 

approach for AD therapy. It was indicated that curcumin can be 

effective against AD through modulating oxidative stress in the 

brain. Curcumin attenuated increased lipid peroxidation, calcium 

concentration, caspase 3 and 9 in SH-SY5Y neuronal cells 

exposed to hydrogen peroxide [22]. Curcumin also blocked 

mitochondrial apoptosis induced by AB through regulation of 

PARP, caspase activation and DNA oxidation [23]. In addition, 

curcumin has also a beneficial impact on synaptic damage through 

modulating oxidant-antioxidant system. In vitro studies suggested 

that since pre-treated with curcumin was effective than post-

treated in cells, therefore, this agent may be suitable for prevention 

of AD [24]. 

Therefore, curcumin can stimulate signaling pathways involved in 

sAPPα release by inhibition inflammation (Figure 1). 

3.3. Activation of the non-amyloidogenic pathway. 

sAPP increases neuronal survival by stimulating several 

neurotrophic signaling pathways. The protein kinase C (PKC) 

signaling is the most pathway that increases the levels of anti-

apoptotic BCl2 and Bcl-xL proteins and caspase-mediated 

apoptosis in the AD brain [25]. Other mechanisms involved in the 

anti-apoptotic mechanism of sAPP include tyrosine kinase (TK), 

mitogen-activated protein kinase (MAPK)-extracellular signal-

regulated kinase (ERK) signaling, and Ca2+ signaling. 

Additionally, serotonergic and acetylcholine systems increase 

sAPP release [25]. 
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3.4. Stimulating sAPP signaling pathways by curcumin. 

3.4.1. Curcumin and PKC pathway. Stimulation of PKC 

signaling is considered as the main strategy to promote -

secretase cleavage of APP [26]. Indeed, all pharmacological 

pathways enhancing sAPP release induced by PKC activators 

[26]. Curcumin, tetrahydrocurcumin, amino acid conjugates 

curcumin-isoleucine, curcumin-phenylalanine and curcumin-

valine stimulates sAPP signaling pathways [27]. Curcumin and 

tetrahydrocurcumin stimulate sAPP signaling pathways in 

association with muscarinic (M1) receptors. However, other 

derivatives of curcumin could stimulate ADAM10 through 

activation PKC pathway [27]. The finding indicated the effects of 

curcumin and its derivatives on the PKC activation is different and 

more studies should be done in this context [27]. However, 

previous findings showed that PKC signaling preferentially 

stimulates regulated sAPPα secretion and affects only 30-40% of 

constitutive secretion. The effect of PKC signaling on α-secretase 

activity needs deep investigations.  Muscarinic (M1/M3) 

acetylcholine receptors are as functional activators of PKC 

signaling that PKC binding to muscarinic receptors promotes 

sAPPa release [28]. Inhibition of acetylcholinesterase activity 

stimulates PKC signaling and increases sAPPa release leads to 

improve cognitive function [29]. Thus, cholinergic inhibition is 

one of the major factors causing cognitive deficiency [29]. It was 

indicated that supplementation with the curcuminoids mixture 

inhibited AChE activity in the reducing order as 

bisdemethoxycurcumin, demethoxycurcumin and curcumin in the 

ex-vivo model [29]. It is needed to study the association between 

curcumin, AChE inhibition and sAPPa pathways to understanding 

how curcumin and its derivatives improve AD. 

3.4.2. Curcumin and TrK Pathway. Platelet-derived growth 

factor (PDGF), brain-derived neurotrophic factor (BDNF), EGF 

and FGF activate TrK signaling and leads to Aβ suppression via 

-secretase pathway [30]. Suppressed TK signaling was observed 

in the hippocampus and frontal cortex of AD [30]. Activation of 

TrK signaling through non-amyloidogenic APP-processing 

protected against AD pathology [30]. It was indicated that 

curcumin dose- and time-dependently protected against 

neurotoxicity via up-regulation of BDNF expression and TrkB 

signaling pathway in rat primary cortical neuron [31]. Lipid-

nanoparticle (NP)-encapsulated curcumin activated TrkB signaling 

pathways following neurotrophin binding and resulting in 

phosphorylation of the transcription factor CREB and release of 

BDNF in SH-SY5Y cells [30]. Curcumin ameliorated AD like 

behavior in aged human tau transgenic mice via decreasing the 

soluble Tau dimers levels, Tau/Fyn linking and binding the TrkB 

with NMDA receptors [32]. The above-mentioned findings 

propose that curcumin may induce Aβ inhibition via activating 

BDNF/TrkB signaling-mediated -secretase pathway stimulation 

[31]. 

3.4.3. Curcumin and MAPK Pathway. MAPK-ERK pathway is 

suggested as the main modulator of -secretase activity [33]. 

Binding of ERK1 to threonine-735 (T735) of ADAM17 induced 

the translocation of ADAM17 to the membrane [33]. The complex 

relation between PKC-modulated -secretase processing and ERK 

has been also observed [34]. The inhibition of monoamine oxidase 

B (MAO B) for treating AD has also done through suppression of 

MAPK signaling pathway that resulted in the sAPPα secretion 

inhibition [34]. However, the interaction between PKC-modulated 

-secretase pathway and ERK and ADAM17 has been reported, 

but this interaction should be more investigation. Additionally, 

ERK is involved in the activation of -secretase by TrK pathway 

[34]. Altogether, the above findings indicated that the activation of 

three pathways including PKC, MAPK, and TrK are necessary for 

a-secretase activation and sAPPα release. It was indicated that 

curcumin could improve AD through modulating BDNF/TrkB-

MAPK/PI-3K-CREB signaling pathway in cultured rodent cortical 

neurons [35].  Chronic administration of curcumin improved AD-

related cognitive deficits by up-regulating BDNF-ERK signaling 

in the hippocampus of a rat model of AD ([36]). 

3.4.4. Curcumin and Ca2+ Signaling. Homeostasis of calcium is 

necessary for the normal function of sAPPα, as it affects neuronal 

development and neurotransmitters release [37]. The calcium 

ionophore could elevate the release of sAPPα and reduce the 

expression of Aβ in primary neurons and B104 neuroblastoma 

cells [38]. The curcumin modulated cytoplasmic Ca2+ signaling 

and calcium-dependent cysteine protease activity in SH-SY5Y 

neuroblastoma cells [39]. According to this potent association 

between calcium homeostasis and normal function of sAPPα, it is 

hypothesized that curcumin may be effective for the normal 

function of sAPPα by modulating calcium homeostasis. 

3.4.5. Curcumin and acetylcholine and serotonergic receptors, 

and sAPPa. The loss of cholinergic neurons causes memory and 

cognitive impairment, the main characterization of AD [40]. 

Therefore, inhibition of cholinesterase is one of the pharmacologic 

targets that activates non-amyloidogenic APP processing, resulting 

in the improvement of cognitive function [40]. It is reported that 

curcumin can act as an acetylcholinesterase inhibitor, resulting in 

AD improvement [29].  It is assumed that inhibition of 

acetylcholinesterase activity by curcumin leads to enhance the 

non-amyloidogenic processing of APP, and thereby down-

regulation of Alevels in the brain.  Activation of the 

serotoninergic system increases sAPPα release [41]. When the 

brain neurotransmitter levels were assessed after curcumin 

treatment, it was observed that the levels of serotonin increased in 

the mouse brain [42]. Figure 2 indicates the impact of curcumin on 

factors stimulating a-secretase cleavage and release of sAPPa. 

 
Figure 2. The impact of curcumin on factors stimulating α-

Secretase cleavage and release of sAPPa.  
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4. CONCLUSIONS 

 Molecular pathways activating the non-amyloidogenic APP 

processing were increasingly focused in recent years. ADAMs, 

especially ADAM10, 9 and 17 are the key a-secretase members 

that are being responsible for increasing the sAPPa synthesis. 

Nevertheless, more investigations are necessary to clarify the 

specific molecular mechanism of ADAM members. One approach 

for inducing the activity of a-secretase is activation of ADAM-

trafficking along the plasma membrane. Since sAPPa acts as 

neurotrophins, natural and chemical agents directly affect its 

elevation may also be found. Natural agents including flavonoids 

may be suitable for this purpose. Curcumin may be behaving like 

an a-secretase activator by targeting the PKC, TK, PI3K, and 

MAPK signaling pathways. Additionally, curcumin may stimulate 

APP non-amyloidogenic pathway by affecting Ca2+ signaling, 

acetylcholine, and serotonergic receptors. However, curcumin 

needs to be further studied, so that it introduced as a novel drug 

ameliorating AD via activation of APP non-amyloidogenic 

pathway. Although curcumin is well found in improving the 

neurodegenerative diseases, however; it may be studied for its 

effects on APP metabolism. According to the effect of curcumin 

on the molecular mechanisms involved in the activation of APP 

non-amyloidogenic pathway,  this natural compound may be 

considered as a novel and less toxic a-secretase activators for 

reducing cerebral Aβ deposition. 
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