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ABSTRACT 

The effect of hydration on the electronic properties of glucose (Gl) is studied by quantum mechanics by using DFT procedures 

atB3LYP/6-31g(d,p). Total dipole moment, the highest and the lowest occupied molecular orbital (HOMO/LUMO band gap energy) and 

molecular electrostatic potentials (ESPs) are calculated at the same level of theory for all model molecules. The results indicated that 

there is an enhancement in the electronic properties of Gl where TDM of Gl is increased from2.5454Debye to 4.3157Debye while 

HOMO/LUMO band gap energy is decreased from 13.0994 eV to 3.2749 eV. Also, the calculated ESP results are indicated that the 

electro-negativity is increased due to hydration which means that the reactivity is increased and hence the electronic properties are 

improved. 
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1. INTRODUCTION 

 Carbohydrates are classified among the most important 

biomolecules which have key role in several important processes 

in the biological systems [1-3]. Among them located Glucose 

which is a simple monosaccharide sugar, it is considered as the 

source of energy in animals and plants [4]. It is one of the main 

products of photosynthesis and starts respiration. The natural form 

(D-glucose) is also referred to as dextrose, especially in the food 

industry [5]. Hydration of Glucose as well as other carbohydrates 

is considered among the important point of research[6-7]. On the 

other hand computational methods are utilized extensively to 

study the electronic; physical and chemical properties of many 

systems and molecules [8-10]. It could be also utilized to study the 

biomolecules with promising results supporting the experimental 

findings [11-13]. Different level of theories was early utilized to 

elucidate different properties of glucose as well as other 

carbohydrates. Ab initio quantum mechanical calculations were 

used to study the crystalline structures α-D-Glucose and β-D-

Glucose monohydrate [14]. D-Glucose anomers were studied both 

in gas phase and solution with density functional theory DFT [15]. 

The study is further continued for conformational analyses with 

higher DFT level of the theory [16].  Studying such important 

biomolecules is not limited to theoretical approaches but also 

spectroscopic tools such as FTIR and FT-Raman could be used to 

elucidate the molecular structures of glucose and its derivatives as 

well as other carbohydrates [17-21].  Recently many researchers 

devoted their work to study the hydration and different functions 

of glucose [22-24]. Modeling materials with density functional 

theory level is not limited to biological molecules [25-27 ] but also 

covering many other emerging and new materials [28-30].  

Based upon this consideration the present computational work is 

conducted with DFT to study the hydration of glucose. The 

geometrical parameters, total dipole moment (TDM), energy band 

gap and electrostatic potentials (ESP) are calculated at B3LYP/6-

31g (d, p) level. 

2. MATERIALS AND METHODS 

Calculation details. 

 Density functional theory (DFT) is conducted to study the 

effect of hydration on the electronic properties of glucose (Gl).  As 

a consequence, model molecules presenting Gl and hydrated Gl 

are subjected to optimization at B3LYP/6-31g (d,p) [31-33] using 

GAUSSIAN09 [34] program at Spectroscopy Department, 

National Research Centre, Egypt. In addition to the geometrical 

parameters (bond distances and angels). Physical parameters such 

as total dipole moment (TDM), energy gaps(HOMO/LUMO band 

gap energy) and electrostatic potentials (ESP) are also calculated 

using the same quantum mechanics. Furthermore, the calculated 

IR spectrum is also introduced for all studied structures at the 

same level of calculation. 

3. RESULTS AND DISCUSSIONS 

 A model molecule for glucose (Gl) is built as indicated in 

figure 1 a, b. Glucose is studied at B3LYP/6-31g (d,p) then 

hydrated glucose is studied at the same level of theory. Glucose is 

proposed to interact with water molecules (W) through weak 

interaction as indicated in figure 1 c, d, e, f, g, and h, respectively. 

The hydrated glucose is following the scheme XW where X=1-6 

units of water which are subjected to optimization using 

B3LYP/6-31g (d,p). As indicated in figure 1 there are 7 model 

molecules for glucose as well as hydrated glucose up to 6 water 

molecules.  
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 The influence of hydration is recorded in terms of different 

physical properties including the electronic properties, total dipole 

moment (TDM) and band gap energy (HOMO/LUMO band gap 

energy). Electrostatic potentials are calculated as they considered 

the most important physical properties that depict the reactivity of 

the studied structures.  

Table 1 illustrates the change in TDM (as Debye) and 

HOMO/LUMO band gap energy (as eV) for glucose and glucose 

hydrated with water molecules up to 6 units. From the table, one 

can see that the calculated TDM of glucose structureis2.5454 

Debye which increases to2.7878, 4.2224, 4.2540 and 4.3157 

Debye for  Gl- 1W, Gl- 2W, Gl-3W and GL- 4W respectively. 

TDMof the studied structure decreases again to 2.3866 Debye for 

hydration with 5 units of water. For hydration of glucose with 6 

units of water, TDM increased again to 3.4471 Debye. 

HOMO/LUMO band gap energy \also shows a big change due to 

hydration where it is highly decreased from 13.0994 eV to 3.4877, 

3.4812 and 3.4227 eV for Gl- 1W, Gl- 2W and Gl-3W 

respectively. For GL- 4W, Gl- 5W and Gl- 6W 3.2749, the TDM 

started to increase slightly to3.2749, 3.2847 and 3.5585 eV 

respectively.  

 

 

 

 
Figure 1. a) Model molecule for Glucose structure; b) schematic structure 

of the glucose. Hydrated glucose  in case of c) one water molecule 

through OH, d) two water molecules throughout OH, e) three water 

molecules throughout OH, f) four water molecules throughout OH, g) five 

water molecules throughout OH, h) five water molecules throughout OH 

and one from O-linkage. 

It is stated early that TDM and HOMO/LUMO band gap energy 

are together good indications for the reactivity of a given chemical 

structures. As the total dipole is increased and the band gap has 

decreased the reactivity is also increased [35-3630]. 

 
Figure  2. HOMO/LUMO band gap energy for a) Gl; b) Gl- 1W; c) Gl- 

2W; d) Gl- 3W; e) Gl- 4W; f) Gl- 5W and g) Gl- 6W respectively which 

calculated at B3LYP/6-31g(d, p) level of theory. 

 

Table1.TDM as Debye and HOMO/LUMO energies as eV for Gl and Gl-

XW where X=1-6 which calculated at B3LYP/6-31g(d, p) level of theory. 

E TDM Structure 

13.0994 2.5454 Gl 

3.4877 2.7878 Gl- 1W 

3.4812 4.2224 Gl- 2W 

3.4227 4.2540 Gl- 3W 

3.2749 4.3157 Gl- 4W 

3.2847 2.3866 Gl- 5W 

3.5585 3.4471 Gl- 6W 

 
Figure 3. ESP as total surface area for a) Gl; b) Gl- 1W; c) Gl- 2W; d) 

Gl- 3W; e) Gl- 4W; f) Gl- 5W and g) Gl- 6W  respectively which 

calculated at B3LYP/6-31g(d, p) level of theory. 

 

Figure 2 shows the HOMO/LUMO band gap energy for glucose 

and hydrated glucose model molecules. Molecular electrostatic 
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potentials (ESPs) also can predict the reactivity of a given 

structure via the distribution of charges around the molecule where 

the distribution can be explained according to colors in the 

following sequence: red> orange> yellow>green> blue [37-38]. 

The red color means that the molecule is more reactive (the 

molecule is electro-negative) whereas the yellow color means that 

it is neutral and finally the blue color means that the molecule is 

positive. It is stated that ESPs is a good tool to represent active 

sites of biological as well as many other chemical structures             

[39].   

 
Figure 4. ESP as contour action for a) Gl; b) Gl- 1W; c) Gl- 2W; d) Gl- 

3W; e) Gl- 4W; f) Gl- 5W and g) Gl- 6W  respectively which calculated 

at B3LYP/6-31g(d, p) level of theory. 

 

The most interesting point is to correlate activity with color 

scheme. The ESPs colors for the studied structures are shown in 

figures 3 and figure 4 for all the studied structures which present 

the change in ESP of glucose as a result of hydration. Figure 3 

shows ESPs of glucose as a result of hydration as a total surface 

area while figure 4 shows ESPs of glucose as a result of hydration 

as a contour. From figure 3and figure 4, one can see that the red 

color is increased with increasing the number of water molecules, 

the electro-negativity is increased and hence the reactivity is also 

increased. 

 
Figure 5. Infrared spectra for a) Gl; b) Gl- 1W; c) Gl- 2W; d) Gl- 3W; e) 

Gl- 4W; f) Gl- 5W and g) Gl- 6W  respectively which calculated at 

B3LYP/6-31g(d, p) level of theory. 

 

 

Figure 5 represented the calculated IR spectrum for all studied 

structures at the same level of theory. The assignments of the 

glucose are already carried out before and are not the scope of the 

present work.  

As indicated in the spectra no negative frequencies are obtained 

which indicate that the studied structures are corresponding to the 

energy minimum and all are optimized structures. 

 

4. CONCLUSIONS 

 The calculated parameters indicated that, from the 

electronic point of view, glucose is approximately insulator 

material where it possesses TDM of 2.5454 Debye and 

HOMO/LUMO energy of 13.0994 eV. As a result of hydration, 

the properties of glucose are enhanced where the TDM is 

increased to 4.3157 Debye while the HOMO/LUMO energy 

decreased to 3.2749 eV for hydration with 4 units of water. 

Furthermore, the electrostatic potential result also is indicated that 

the reactivity of glucose is increased upon hydration. Although the 

calculated spectra are not physical changes it is calculated to 

confirm that the studied structures are real and corresponding to 

optimized structures. This is indicated by the positive frequencies 

for all the studied structures. The obtained data confirms the 

suitability of DFT for studying biological and natural molecules 

such as glucose.  
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