The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: in silico study

Yohanes Bare 1,*, Gabriela Candrarikara Krisnamurti 2, Agustina Elizabeth 3, Yoga Tribakti Rachmad 4, Dewi Ratih Tirto Sari 5, Margarethia Rika Wahyusari Gabrella Lorenza 6

1Biology Education Study Program, Faculty of Teaching and Training, Nusa Nipa University, 86111 Maumere, East Nusa Tenggara, Indonesia
2Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, 10150 Bang Khun Thian, Bangkok, Thailand
3Physics Education Study Program, Faculty of Teaching and Training, Nusa Nipa University, 86111 Maumere, East Nusa Tenggara, Indonesia
4Research Group of Sekolah Progresif Bumi Shalawat, 61223 Sidoarjo, Indonesia
5Biology Department, Faculty of Mathematics and Natural Science, Brawijaya University, 65145 Malang, Indonesia
6Life Science Department, College of Health Science and Technology, National Central University, 32001 Taoyuan City, Taiwan
*corresponding author e-mail address: bareyohanes@gmail.com | 57203891132

ABSTRACT
Caffeic acid was formed from hydrolyzation chlorogenic acid caused roasting coffee. Caffeic acid has anti-inflammatory properties by in vitro and in vivo analysis. Inflammation is the body will be activator COX-2 as mediator inflammation. This study purpose to prediction, investigate and analyze caffeic acid as potential theuraphic to inhibit COX-2 by in silico study. The method of this research using in silico compound interaction models. COX-2 Protein data was taken from Protein Data Bank, caffeic acid from PubChem. Protein-ligand interaction docking using HEX 8.0.0. Although visualization and analysis of the molecular interactions of caffeic acid and COX-2 conducted by the Discovery Studio software 4.1. Caffeic acid is a potential therapist because easily absorbed and has high permeability. The results show that interacted between COX-2 and caffeic acid. The interactions showed by seven amino acid residues, which bind with the caffeic acid with hydrogen bond type. Energy binding formed from ligand and protein -210.23cal/mol. Interaction caffeic acid and COX-2 has a positive impact which potential as inhibitor COX-2.

Keywords: Anti-inflammatory; Caffeic Acid; Coffee; COX-2; In silico; Inflammation.

1. INTRODUCTION
Coffee is one of the most commonly used medicines. Other research showing that anti-inflammatory agent became mutation in inflammatory disease [13]. Therefore, treatment in inflammation case uses drugs.

Compound of nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly used medicines. NSAIDs are the drugs which use to suppress the COX-2 associated PGE2 production [14]. The use of synthetic drugs as agent anti-inflammatory often cause several side effects so patients are suggested to take combination oral medicine to maximize the healing chance and also to minimized the toxicity of the drugs [15-16]. The aims of this paper to investigate and analysis of potential chemical compound caffeic acid as an anti-inflammatory agent to inhibit COX-2 by in silico approach.

2. MATERIALS AND METHODS
2.1. Ligand Preparation.
Structure 3D of caffeic acid (CID 689043) was taken from the database of PubChem.com. Ligand structure optimized energy by PyRx Virtual screening tool Open Babel tool. Ligand, which formed SDF file format converted to pdb format by in PyRx Virtual screening software.

2.2. Protein Preparation.
Protein data bank (PDB) from http://www.rcsb.org. used to take the structure of COX-2 (ID= 6cox) [17]. COX-2 receptor downloaded in .pdb file. Removing water molecules, which incorporated with the receptor, used Discovery Studio Client 4.1.

2.3. Molecular Docking.
Ligand and receptor were docked. Molecule docking ligand and protein established using the Hex 8.0.0 software. Visualization and analysis data from the molecular interactions of caffeic acid and COX-2 in the Discovery Studio software V 4.1. In this section, we analyzed the free energy of binding (ΔG), amino acid residues and types of hydrogen bond. The higher ligand affinity towards the active site of the used receptor has more negative ΔG [18].

3. RESULTS

Caffeic acid (3,4-Dihydroconnamic acid) is one of the coffee chemicals compounds that have potent antioxidants and impart several health benefits like protecting the body from the hazardous effects of free radicals. The presence of caffeic acid slows inflammation process in human body [19].

<table>
<thead>
<tr>
<th>Chemical Compound</th>
<th>MW</th>
<th>LogP</th>
<th>Torsion</th>
<th>HBA</th>
<th>HBD</th>
<th>PSA (A2)</th>
<th>Lipinski Legal Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeic Acid</td>
<td>180.159</td>
<td>1.1956</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>74.381</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Interaction between ligand and receptor result in seven amino acid residues that bind with caffeic acid. They are LEU224, SER146, LEU145, GLU140, ASN144, SER143 (Domain A) and LEU 238 (Domain B). Interestingly, we found Pi-AlkY1 in LUE145 (Figure 1). Hydrogen bonds we found in amino acid residues SER146, GLU140, and SER143, besides that Van Der Waals interaction in Amino Acid Residues LEU224, LEU238 AND ASN144. Hydrogen bonds have variety distance interactions around 2.2467-5.37782. The small distance formed by the hydrogen bond and amino acid residue from COX-2 in amino acid residue GLU140 will make the hydrogen bond stronger (table 2). Other function the bond caused interaction between caffeic acid and COX-2 protein bond is more stable. Xu D, Tsai, & Nussinov (1997) analyzed the smaller distance of hydrogen to the acceptor lead the hydrogen bond will be stronger [21]. Interaction ligand and protein had the energy binding of -210.23cal/mol (Table 2).

In our previous study, showed that effect of therapeutic nutrition against inflammation has a negative effect on COX-2 activity [22]. COX-2 blocking has a serious effect on tissue improvement. In another side, COX-2 inhibitor also has the potential function to become therapeutic amelioration from damaged tissue. COX-2 has function in biosynthesis of prostaglandins. The gene activated when the inflammation process occurs in human body. COX-2 will increase inflammation [23]. Interaction between caffeic acid and COX-2 mediated by blocking JNK, p38 and ERK phosphorylation. These interaction indicated that ligan (caffeic acid) has a potential role effective to suppress the UVB-activated signaling pathway. Caffeic acid one of the polyphenols that have small molecules with structures same with other pharmacological kinase inhibitors, and these can bind with specific kinases to reduce their activities [24]. Compare to other research, caffeic acid affects inhibited COX-2 conducted some metabolic effect. COX-2 pathway metabolites also directly linked to the development of tissue damage such as neuron tissue. Freshwater et al., [25] reported increased COX-2 expression and activity, as measured by PGE2 content, in the spinal cords of diabetic rats compared to normal rats. Increasing COX-2 expression was associated with enhanced pain behavior and hyperglycemia. In this research model, selective COX-2 inhibitor and resulted that COX-2 inhibitor can reduce markers of hyperglycemia within affected in a neuropathy.

When inhibit COX-2 will stop conversion of prostaglandin G2 to prostaglandin H2 and decreased in superoxide production and, subsequent lipid peroxidation, therefore reduce the inflammation in human’s body.

Table 2. Interaction Caffeic Acid and Cyclooxygenase-2 (COX-2).

<table>
<thead>
<tr>
<th>Complex</th>
<th>Energy (cal/mol)</th>
<th>Name</th>
<th>Distance</th>
<th>Category</th>
<th>Type</th>
<th>From chemistry</th>
<th>To chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LIG1</td>
<td>B:SER146:DG</td>
<td>2.08006</td>
<td>Hydrogen Bond</td>
<td>Conventional Hydrogen Bond</td>
<td>H-Donor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIG1</td>
<td>B:GLU140:OE1</td>
<td>2.2463</td>
<td>Hydrogen Bond</td>
<td>Conventional Hydrogen Bond</td>
<td>H-Donor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIG1</td>
<td>B:LEU145</td>
<td>5.37782</td>
<td>Hydrophobic</td>
<td>Pi-Alkyl</td>
<td>Pi-Donor</td>
</tr>
</tbody>
</table>
4. CONCLUSIONS

Caffeic acid has easily absorbed and has high permeability interaction with protein based on Lipinski Rules. The interactions between COX-2 and caffeic acid by hydrogen bond type. Seven amino acid residues which interacted with the caffeic acid. This interaction with energy binding -210.23cal/mol. Based on the result, Caffeic acid has therapy potential to inhibit mediator inflammation COX-2 and will be blocked peroxidase dependent that will the conversion of prostaglandin G2 to prostaglandin H2 and caused decreased in superoxide production and, subsequent lipid peroxidation.

5. REFERENCES
