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ABSTRACT 

In this work the concentration of Li/Li+ has applied for increasing the efficiency of Lithium ion batteries. Various numbers of lithium 

and lithium cations have been simulated as diffused atoms in graphite as anode materials. We have found the structure of (G// (h-BN) 

//G) can be to improve the voltage and electrical transport in anodic sheets-based LIBs. This system could also be assembled into free-

standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery 

design. Therefore, the above modification of BN-G sheet and designing of this kind structure provide strategies for improving the 

performance of material based anodes in LIBs. 

Keywords: lithium ion battery; graphene doped electrodes; h-BN sheet. 

 

1. INTRODUCTION 

 Lithium ion batteries (LIBs) are significant energy storage 

devices based on electrochemical energy, widely used in a small 

storage system. With the discovery of highly reversible, Li-

intercalation carbonaceous materials and low-voltage battery, 

Sony realized the commercialization of xC6/Li 1-x CoO2 cells in 

1991 [1]. Although the electrolyte establishes high ionic 

conductivity between two electrodes, the electrolytes are not 

responsible for the conduction of free electrons and so the 

electrons complete the half reaction will move through an extra 

external wire. In discharging, the lithium ions are extracted from 

the anode and move back to the cathode.  

 Graphite is currently the most common material used for 

the anodes of commercial batteries because of its capability for 

reversible lithium intercalation in the layered crystals (which 

represents the theoretical lithium storage capacity, around, 372 

mAh/g as LiC6) [2]. Although attempts have been made to find 

suitable replacements, currently only carbonaceous materials 

(natural graphite, carbon fiber and metal deposited carbon fiber) 

are used in commercial anodes and there are no theoretical or 

experimental reports from graphene doped anode cell interaction 

in LIBs.  The favorable electrochemical efficiency of LIBs 

regarding energy and power densities, as well as the progress in 

manufacturing and cell design, have made LIBs greatly successful 

for devices electronics. LIBs basically consists of a positive 

electrode, a negative electrode and a conducting electrolyte where 

store electrical energy in the two electrodes in the form of Li-

intercalation compounds. Electrolyte, electrodes and separator are 

the main components of the LIB where the anode plays an 

essential role in the efficiency of these devices.  

 Numerous experiments have been performed to confirm the 

application of graphene nano-sheets to increase lithium storage 

capacity and to improve recharge cyclic efficiency [3-6]. There are 

a number of reviews on anode materials [4-12] and many of them 

focus on both carbon and inorganic materials.  Furthermore semi-

empirical and first-principal calculations have been used to 

investigate lithium ion storage states between two graphene sheets 

[6], as well as some heteroatom-substituted carbon materials [7]. 

Discharging and charging of Li-ions in graphitized carbon is well 

established up to now [12–17].  

 Scaling down the particle size, while effective for 

improving diffusivity in cathode materials, may not be an option 

in carbonaceous anode materials, as the increased surface area 

leads to higher lithium consumption during SEI formation. Most 

reports on Li-ion diffusivity address improving measurement 

techniques and not the diffusion mechanism itself. This may 

derive from the various phase mixtures, the staging phenomenon 

of graphite, and the complexity caused by the SEI film  

 This work has investigated to find the suitable 

concentration of Li+/Li in replacement for carbonaceous materials 

and illustrate a novel mechanism of the graphite-anode cell 

interaction Scheme.1. As the efficiency of LIB including cycle 

life, power density and energy density is strongly influenced by 

anode materials, some of the certain characteristics to maximize 

the battery performance have been considered in our model. These 

items are including fast diffusivity of lithium ion, critical changes 

in the crystal structure of anode material (during intercalation-de-

intercalation by Li ions), required low potential of anode materials 

to supply a high cell voltage with the cathode and capability of 

storing a significant amount of charge (coulomb) per unit mass is 

necessary. 

 Conduction in anode’s material is complex due to 

continuous phase transformations and the formation of the solid–

electrolyte interphase (SEI) layer [18, 19]. In this work, to clarify 

the mechanisms related to the properties and performance of Li-

ion batteries, the exact investigation of the electronic state and the 

diffusion process in the carbon and the SEI layer is still required. 

The SEI layer displays much lower electronic and ionic 

conductivity compared to the bulk electrode. The diffusion process 
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can vary widely from carbonaceous materials to non-graphitic 

materials [20-22]. Boron doped graphite has also been researched 

as an option to enhance electrochemical efficiency [23-29]. Using 

the surfaces of graphene electrodes including h-BN dielectric in 

anode materials, boron nitride doped graphite, and other kinds of 

X-doped graphene (X=Be, Li) has been shown to increase cell 

performance by this work scheme 1.  

 
Scheme.1. Operating Li-ion battery. 

 

 The bonding orbit  of B-N is generally dominated via 2p 

orbitals of N, while 2p orbitals of B contribute basically to the 

anti-bonding orbital of. This indicates a considerable charge 

transfer from B to N, around 0.42 electrons. In contrast, there is no 

important electron transfer in the C-C bonding, therefore the B-N 

bonding is essentially ionic; while C-C bonding is covalent (This 

also leads to the different electron band structure).   

 The sp2-hybridization related to B-N and C-C bonds have 

very similar behavior in mechanics, while the large differences in 

optics and electronics.  

1.1. Li
+ 

diffusivity  

Electronic properties of graphite and h-BN are radically 

different from each other. It has been shown theoretically the 

calculations for the band structure  of the graphite mono layer and 

h-BN [31, 32]. For a graphene layer, two bands cross each other at 

the Fermi energies. So, graphene has a semimetal behaviour. In 

contrast of  graphene, for h-BN mono layer, similar bands do not 

cross each other, therefore a 4.55 eV band gap forms in this 

position. Experimentally, bulk h-BNs have been measured to have 

a band gap of 5.85 eV [33-35]. H-BN Multilayers has a wide band 

gap insulator  which might vail as a dielectric material among 

metal-doped graphene layers. Moreover, the plates which are 

lattice matched to graphene allow one to attain sturdy and high 

accuracy nanoscale spacing among a few paralleled metallic 

graphene plates, which can be set to favorable values. 
These graphene -based materials consist of few-layer-

stacked h-BN nano-crystallites with large interlayer distances in 

the range of 0.333–0.335 nm in the graphene/h-BN/graphene as 

anode. Both experimental and theoretical approaches of metallic 

properties for graphene were investigated on understanding the 

dielectric behavior of these structures to form thin layers which 

can bestead as charging holder plates [34, 35 and 36]. Furthermore 

they were exhibited that graphene can preserve current densities 

six orders of magnitude larger than copper.  In graphite, the 

stacking is slightly different; hexagons are offset and do not lie on 

top of each other. Interlayer distances are similar: 3.35 Å for 

graphite [30] and 3.33 Å for h-BN. An ideal form of an anode 

material should be composed of metal-doped on graphene layers 

including a dielectric material between these layers for increasing 

the capacitance value that can store and release charge quickly.  It 

has been theoretically [30-39] and experimentally shown that h-

BN layers of any thickness can be grown on graphene layers and it 

is also possible to flourish perpendicular carbon on top of the 

sheets [41-43]. In this study, charging and discharging of Li-ions 

has investigated in h-BN with the positive electrode reaction as: 

LiCoO2    Li (1-x) CoO2 + x Li+ + x  ̅  and the negative 

electrode reaction as: xB3N3 + x Li+ + x ̅   x Li B3N3, while the 

whole reaction is: LiCoO2 + x B3N3     Li1-xCoO2+ x Li B3N3 (1). 

It has been suggested that lithium atoms are stored via two 

mechanisms: intercalation and alloying. Electrical conductivity 

(Scm-1) of graphite, Li-GIC under various conditions are 1.89  

104 for graphite (parallel direction with respect to graphene layer), 

2.45   105 for Li-GIC, 2.5   102, for graphite thin film (bulk 

graphite), and 3.0  101 for ten-layers of thin films. The energy 

stored is liberated when the plates are connected to a circuit, so 

that the discharged electrodes shift into an equilibrium state. So 

the Li+ insertion in (BG//(h-BN)n//BG) occurs in a large capacity 

(mAh/g ) from Concentration of Li/Li+ towards the efficiency of 

Lithium ion batteries.  Although the materials used as electrodes 

for Li storage should have binding strength with Li within a 

certain range, binding to anode material matrix (M) should be 

weaker than on the cathode side. The matrix binding energy 

“     ”, can be determined from the curves as     , −     =  
  

 
 

(2) (It is linearly related to the average discharge voltage). In Li-

ion batteries, the Li+ ions arrive at the surface and are adsorbed on 

matrix in eq.3 .  (Li@ Lix M = [E (Lix M –E (M)]/X-TS (3).  

Based on the determined most stable structures, we estimate the 

formation energy of system. The formation free energy ∆G (m) of 

each cluster at concentration x is defined as: ∆G (m) = E 

(   @M-E (M)-m  (Li@ Lix M) (4). where  (Li@ Lix M is the 

chemical potential of Li under various conditions. The entropy of 

the reference phase is estimated by counting the number of 

adsorption configuration at a given concentration. The entropy S 

(per adsorbed Li atom) of the adsorbed phase is given by: -S(x) 

=   ( )          
(    )   (    )

  
  (4), where   is the Li: C 

ratios ranging and    is the Boltzmann constant. The lithiation 

depends strongly on the chemical potential of Li atoms. The 

cluster energy would be negative, and the formation of Li clusters 

is strongly favored, if the chemical potential is chosen to be that of 

atomic Li. whereas the formation energy is positive (meaning that 

cluster formation is unlikely), if the chemical potential is chosen to 

be that of Li in the bulk phase. We also include the 

configurationally entropy correction at an attenuate limit into the 

chemical potential of the reference phase. The interaction between 

anode matrix and Li clusters is stronger than that of neutral 

metallic bulk Li on matrix, which indicates the stronger ionic 

bonding and charge transfer from Li to anode material. The Li 

electrons should be localized inside the cluster during the 

formation of cluster, similar to bulk Li where each Li has zero net 

charges. At intermediate cluster sizes, the transition from the Li to 

bulk behavior occurs.  
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 In this work several lithium have applied as insertion 

function for investigating of our model (scheme 2).  In the cluster 

by two atoms “Li2” in vacuum, the Li electrons pair up and form 

the Li-Li bond. However, when adsorbed on boron doped 

graphene, our calculations indicate that the Li electrons are mainly 

transferred to graphene by filling up the upper Dirac cone, as 

shown in. It can be suggested that the Li2 is ionized and each Li 

carries +1 charge.  

 For Li3, a flat band appears below the Fermi level. Its 

charge density distribution indicates that two electrons are shared 

between the Li3 clusters. The remaining electron is transferred to 

graphene. Therefore, on average, each Li carries +1/3 charge. 

Diffusion properties of Li-ion cell determine some of the key 

performance metrics of Li-ion battery cells, including the charge 

and discharge rate, practical capacity and cycling stability. The 

governing equation describing the diffusion process is known as 

Fick’s law as:  

          (1)  And  
   

  
   (    )  (2) where “  ” is ionic 

flux, molcm−2 s−1,    is diffusivity of solute (i =1, 2), cm2 s−1
 and 

   is concentration of species “i”, (molcm3) [60]. The 

proportionality factor D is the diffusivity or diffusion coefficient 

as    
   

     
 (4) . 

 For Lin (n=even) two electrons are localized inside the 

cluster, and thus each Li has +1/2 charge averagely. The 

adsorption and mechanism of electron density in anode matrix for 

LiB3C3 is shown in, the Li2 atom to bulk LiB3C3 of large size. 

All the numbers are positive, indicating that the compound is 

indeed stable. Although in the Li loses its 2s electron to C, 

producing ionic Li–C bonding, the bonding energies are different: 

                                          . Therefore, when 

loaded with Li, the energy of Li–boron doped graphene system 

drops due to the increase in the favorable Li–boron doped 

graphene bonding, until reaching the LiBnCm composition, where 

further Li loading 5 results in a strong repulsion between Li-ions 

at neighboring hexagons. 

 
Scheme 2. Li diffusion. 

 

 In condensed materials both liquids and solids, diffusion is 

governed by random jumps of atoms or ions, leading to position 

exchange with their neighbors. The kinetics of this process is 

temperature dependent and follows an Arrhenius type relationship 

        ( 
  

   
)(5) . In liquids, the temperature dependence of 

the diffusion is much less than in solids. Note that no successful 

first-principles calculation has been made, due to insufficient 

understanding of the liquid structure. Thus, a simple expression 

derived from Stoke’s drag law is frequently used  

as an alternative for a diffusivity expression in liquids   (Eq. 3). 

 Thus diffusion can be the rate-determining process 

compared to electronic conduction in an electrochemical reaction. 

The van der Waals interaction, expressed as the Lennard–Jones 

potential, is relatively weak despite showing a longer interaction 

range. In the case of the graphite anode, a Li-ion can easily diffuse 

parallel rather than perpendicular to the graphene layers during 

intercalation. Thus in order to understand the diffusion of the Li-

ion it is important to consider crystal structure as well as the 

surrounding potential 

1.2. Densities energy in diffusion  

 The electron densities have been defined as  ( )  

     ( ) 
  ∑     ∑        ( ) 

 (6). Where    indicates an 

occupation number of related orbitals (i),   is l wave function,  is 

basis set function and C is the coefficient matrixes, of 

orbital j respect to basis function i. Atomic unit for electron 

density can be explicitly written as 

e/Bohr3.   ( )    (
  ( )

 ( )
) + (

  ( )

 ( )
) + (

  ( )

 ( )
)  

 

  (7)    ( )  

   ( )

    + 
   ( )

    + 
   ( )

   (8). 

 The positive and mines data of these functions correspond 

to the electron densities are locally depleted and locally 

concentrated respectively. The relationships between     and 

valence shell electron pair repulsion (VSEPR) model, chemical 

bond type, electron localization and chemical reactivity have been 

built by Bader [68]. We have calculated the Density and energy of 

lithium in diffusion model for 6 lithiom inside the Cx-BN electrods 

of Cx-BN// (h-BN) n//Cx-BN LIBTs (the carbon fractions are %14, 

%18 and %27 for the three representative nano-sheets denoted as 

C0.3-BN, C0.4-BN and C0.7-BN, respectively). 

The kinetic energy density is not uniquely defined, since the 

expected value of kinetic energy operator 

 <    (
 

 
)      can be recovered by integrating kinetic 

energy density from alternative definitions. One of the commonly 

used definition is:    ( )   
 

 
∑     

 
 ( )    ( ) (9) Relative to 

K(r)(66), local kinetic energies given as follow guarantee 

positivizes; hence its physical meaning is more commonly used. 

The Lagrangian kinetic energy density, “G(r)” is also known as 

positive definite kinetic energies densities. 

 ( )  
 

 
∑     (      

 

 
∑      (

   ( )

 ( )
) +(

   ( )

 ( )
) +(

   ( )

 ( )
)  } 

(10). K(r) and G(r) are directly depended to Laplacian’s electron 

density 
 

 
   ( )   ( )   ( ) (65-67)(11) 

 Becke and Edgecombe noted that spherically averaged likespin 

conditional pair probability has direct correlation with the Fermi 

hole and then suggested electron localization function (ELF) 

.ELF(r) =
 

    ( )   ( ) 
  (12) where D(r) =

 

 
∑         

  

 

 
 
       

   ( )
 

       

 ( )
  (13) and    ( )  

 

  
(   )

 

     ( )
 

  

   ( )
 

   (14) for close-shell system, since      ( )     ( )  
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, D and D0 terms can be simplified as D(r) =
 

 
∑         

  

 

 
 
     

 ( )
  (15),   ( )  

 

  
(   )

 

  ( )
 

  (16).  

 Savin et al. have explained ELF in viewpoint of kinetic 

energies, which causes ELF meaningful for Kohn-Sham DFT 

wave-functions. They indicated that D(r) reveals the excess 

kinetic energies densities caused by Pauli repulsion, while D0(r) 

can be considered as Thomas-Fermi kinetic energies densities.  

Localized orbital locator (LOL) is another function for locating 

high localization regions likewise ELF, defined by Schmider and 

Becke in the paper. 

 Local information entropy is a quantification of 

information, this theory was proposed by Shannon in his study of 

information transmission in noise channel, and nowadays its 

applications have been tightly widened to other areas, including 

theoretical approaches. As instance, Aslangul and coworkers tried 

to decompose diatomic and triatomic molecules into mutually 

exclusive spaces through interpretation information entropies. 

Parr et al. discussed the relationship between information entropy 

and atom partition as well as molecular similarity .Noorizadeh and 

Shakerzadeh suggested using information entropy to study 

aromaticity . The formula of Shannon’s information entropy for 

normalized and continuous probability function is   

 ∫ ( )    ( ) x (19). For chemical system, if P(x) is replaced 

by
 ( )

 
, then the integrand may be called local information entropy 

of electrons.  ( )   
 ( )

 
  

 ( )

 
 (20) Where, N is the total 

number of electrons in current system.  

   ( )  
 ( )

   ( )
 (17), where ( )  

  ( )
 

 
∑         

 
 (18),   ( )  for 

spin-polarized system and close-shell system are defined in the 

same way as in ELF [73]. We have calculated the Hamiltonian 

kinetic energy and density Electron localization function of 

lithium in diffusion model for 6 lithium inside the Cx-BN electrods 

of Cx-BN// (h-BN) n//Cx-BN LIBTs (the carbon fractions are %14, 

%18 and %27 for the three representative nano-sheets denoted as 

C0.3-BN, C0.4-BN and C0.7-BN, respectively). 

 

Table 1. The diffused lithium (N=1 to  N=5) 

 

 The ESP evaluated under default value is accurate enough 

in general cases. Reduced density gradient (RDG) RDG and Sign 

(2)* are a pair of very important functions for revealing weak 

interaction region, [135] for detail. The basic applications are 

exemplified in Sections 4.100.1 and 4.200.1. RDG is defined as 

   ( )  
 

 (   )
 
 

   ( ) 

 ( )
 
 

 (21) by default x is 0.05; it can be nullify 

this treatment by setting the parameter to zero. 

There are a lot of reviews on ESP, interested readers are suggested 

to consult. 

    ( )  ∑   
        

 (    )  Where   
        

(22) is pre-fitted 

spherically averaged electron density of atom a . We have 

calculated the local information entropy and electrostatic potential 

of lithiums in diffusion model for the “Cx-BN” electrods of the 

“Cx-BN// (h-BN) n//Cx-BN” LIBTs. (The carbon fractions are 14, 

18 and 27 at. % for the three representative nano-sheets denoted as 

C0.3-BN, C0.4-BN and C0.7-BN, respectively. The representative 

atomic charges for molecules should be computed as average 

values over several molecular conformations [30-35]. 

2. MATERIALS AND METHODS 

 Calculations were performed using GAMESS-US 

packages. In this study, we have particularly concentered on 

getting the optimized data for each tube from DFT calculation 

including the m06 and m06-L. Pm6, Extended-Huckel and 

Pm3MM including pseudo=lanl2 calculations using Gaussian 

program have done for the non-bonded interaction between two 

tubs.  We employed density functional theory with the van der 

Waals density functional to model the exchange-correlation 

energies of h-BN sheets. The double ζ-basis set with polarization 

orbitals (DZP) were used for x lithium over the h-BN sheets.   

 The B3LYP and most other functional are correctly 

insufficient to illustrate the exchange and correlation energy for 

distant non-bonded medium-range systems. Moreover, some 

recent studies have shown that inaccuracy for the medium-range 

exchange energies leads to large systematic errors in the prediction 

of molecular properties   [36- 39].   

 We further calculated the interaction energy between x 

lithium h-BN sheets. The interaction energy was calculated via an 

Mp6 method in all items according to eq.23: 

   (  )          (                )  +       (23) Where 

the “   ” is the stability energy of system. The electron density 

(Both of Gradient norm & Laplacian)have been calculated, value 

of orbital wave-function, electron spin density, electrostatic 

potential from nuclear/atomic charges, electron localization 

function (ELF), localized orbital locator (LOL  defined by Becke 

& Tsirelson),  total electrostatic potential (ESP) and the exchange-

correlation density, correlation hole and correlation factor, 

Average local ionization energy using Multifunctional Wave-

function analyzer . 

 
Figure 1. Densities of lithium between h-BN and graphene. 

  

1 Li Charge 2 Li Charge 3 Li Charge 4 Li Charge 5 Li Charge 

Mullike

n 

ESP fit Mullik

en 

ESP fit Mullik

en 

ESP fit Mullik

en 

ESP fit Mullik

en 

ESP fit 

-0.234 0.0486 -0.094 0.0299 -0.142 0.0597 -0.142 0.0606 0.2210 0.0846 

-0.081 -0.000 -0.194 0.0055 0.3337 0.0146 0.3337 0.0188 0.5006 0.0343 

0.0002 -0.007 -0.155 0.0034 -0.155 0.0085 -0.265 0.0202 -0.265 0.0199 

0.0002 0.0065 -0.122 0.0344 -0.122 0.0332 -0.191 0.0708 -0.191 0.0706 
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 In such a condition, variations of the innermost atomic 

charges will not lead towards a significant change of the MESP 

outside of the molecule, meaning that the accurate values for the 

innermost atomic charges are not well-determined by MESP 

outside the molecule. This approach (CHELPG) is shown to be 

considerably less dependent upon molecular orientation than the 

original CHELP program. The results are compared to those 

obtained by using CHELP. 

 Some of our previous work has been applied for improving 

our calculations [40-74]. The contour line map has drawn via 

Multiwfn software [75]. The relief map has used to present the 

height value at every point. If values are too large they will be 

truncated in the graph, it can be chosen to scale the data with a 

factor to avoid truncation. The graph is shown on interactive 

interface. Shaded surface map and shaded surface map with 

projection are used in our representation of height value at each 

situation. 

3. RESULTS  

 We have listed the data of density, energy, electron 

localization function (ELF), localized orbital locator (LOL) and 

local entropy, gap energy, charge from ESP, electrostatic 

potential, ionization energy, the charges of two BN-graphene 

electrodes and the stability energy of several lithium insertion 

(concentration of Li+ )(tables1,2) and these data have plotted in  

the figures (Figs.1-8). 

 
Figure 2. ELF and LOL of 10 cluster lithium with optimized dimension 

between two layers of h-BN and two electrodes of B doped graphene. 

 

 We have calculated the gradient norm and the Laplacian of 

electron density via Eqs (7, 8) for the lithium diffused in the 

batteries system respectively and the data are listed in table1-2. 

For calculation the electron spin density from the difference 

between alpha and beta density, we have  Used   ( )    ( )  

  ( )  then the spin polarization parameter function will be 

returned instead of spin density  ( )=
  ( )   ( )

  ( )   ( )
  .The data of   

going from zero to unity corresponds to the local area going from 

un-polarized case to completely polarized case Table1.  

The kinetic energies densities, Lagrangian, and the electrostatic 

potential can be calculated as eqs. (9), (10) and:     ( )  

∑
  

         where RA and ZA denote position vector and nuclear 

charge of atom A, respectively and are listed in tables1, 2.  

If electrons are completely localized, then they can be 

distinguished from the ones outside. In which kinetic term in D(r) 

from eqs. 15-16 is replaced by Kirzhnits second-order expansion, 

that is 
 

 
∑         

     ( )  
 

  

     

 ( ) 
 

 
   ( )

 so that ELF is 

totally independent of wave-function, and then can be used to 

analyze electron density from X-ray diffraction data.  

 Bader explained that the large electron localization have a 

large amount of Fermi hole. ELF is within the range of [0, 1]. A 

large ELF means which electrons are largly localized, due to  a 

covalent bond. LOLs datahave same expression compared to ELF. 

Actually, LOL and ELF are generally qualitative comparable, 

while Jacobsen pointed out that LOL conveys more decisive and 

obvious picture than ELF, So LOL can be interpreted in kinetic 

energy way as for ELF. Small or large  LOL data usually appears 

in boundary or inner region of localized orbitals. The value range 

of LOL is identical to ELF, namely [0, 1]. 

 
Figure 3.electron density of B-graphene//(h-BN)2//B-graphene indicates a 

negative plate and positive plate of B3C3 electrodes. 

 

 As lithium has an unpaired electron, leading to a difference 

in spin-up and spin-down, when two lithium atoms are adsorbed 

simultaneously electrons get paired and magnet moment 

disappears. 
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Figure 4. Electron densities for all atoms in Li8-B3C3 complexes. 

 

 As a result, spin polarized cluster has a gap which size 

depends on adsorbed electron spin polarization. 

 
Figure 5. LOL and ELF for the electron localization (ELF) for all atoms 

in Li8-B3C3 complexes. 

 

 In this work we have calculated the local Information 

entropy for each lithium atom via eqs. 19-20 and the   integrating 

of this function over whole space yields the information entropy. 

The data of local Information entropy are listed in Tables 1-3. 

Weak interaction (eqs 20-21) has a significant influence on 

conformation of macromolecules,; however reproduction of 

electron density by ab initio and grid data calculation of reduced 

density gradient (RDG) for such huge systems are always too 

time-consuming.  

 
Figure 6. DOS for 10 Li/Li+ simulation of LIBTs. 

  

 By this work, we have shown the Concentration of Li/Li+ 

towards the efficiency of Lithium ion batteries which demonstrate 

high electrical conductivity, good mechanical strength, excellent 

flexibility, great chemical stability and high specific surface area. 

This is especially noticeable when graphene is chemically 

converted with a greater proportion of functional groups, proving 

that it is suited for use as a base composite electrode material.  

 

 
Figure 7. LOL versus concentration of Lithium numbers. 

 

 When used as electrode material, G-(h-BN)2-G can 

effectively reduce the size of the active material, prevent 

agglomeration of nanoparticles, improve electrons and ions 

transmission capacity, as well as enhancing the electrode’s 

mechanical stability.  

 
Figure 8. The LUMO and HOMO gap versus Li+/Li concentration. 

 

 As a result, G-(h-BN)2-G -containing electrode materials 

have high capacity and good rate performance. G-(h-BN)2-G  

flexibility makes it an ideal material to buffer metal electrode’s 

volume expansion and contraction during the charge– discharge 

process. Further, the excellent electrical properties of G-(h-BN)2-

G can enhance the conductivity of metal electrode material. 

Smaller particles mean the diffusion distance of lithium ions and 

electrons is reduced, this improves the material’s rate 

performance. Finally, the lithium storage capacity for most metal 

oxide composite materials with G-(h-BN)2-G can be useful 

greatly. 

Table 2. The layers distance and ESP compare to Mullikan charges. 

layer Distance  1 Li 

(Ȧ) (m) Name Mulliken 

5.015 5.015E-10 1-2 (G-BN) -0.15331 

4.94 4.940E-10 2-4 (BN-BN) -0.081232 

5.015 5.015E-10 4-3 (BN-G) 0.000418 

14.97 1.497E-09 1-3 (4 sheets) -0.31538 

  å Li charge 1.315382 

  å system 1.000002 

2 Li 2 Li 3 Li 3 Li 

Mulliken ESP fit Mulliken ESP fit 

0.099844 0.02439 0.191519 0.045112 

-0.071721 -0.028893 -0.211006 -0.018658 

0.032465 0.030978 0.032508 0.024675 

-0.566943 0.07343 -0.753881 0.116217 

2.566946 1.926572 3.75388 2.883789 

2.000003 2.000002 2.999999 3.000006 
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4. CONCLUSIONS 

 In contrast to graphite, BN layers is transparent and is an 

insulator. In BN layers boron atoms in one layer are located 

directly on top of nitrogen atoms in neighboring layers and vice 

versa and the hexagons lie on top of each other.  In our previous 

works [28,29]we have reported a nanoscale dielectric Li batteries 

to consist of two metallic graphene layers separated by insulating 

h-BN thin layers that have been successfully used to simulate 

structures of graphene/h-BN/graphene. 
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