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ABSTRACT 

Intrinsically disordered proteins (IDPs) are becoming an engaging prospect for therapeutic intervention by small drug-like molecules. 

IDPs structural binding pockets and their flexibility exist as a challenging target for standard druggable approaches. Hence, in this study, 

we have performed and identified the most probable druggable conformers from molecular dynamics simulation on α-synuclein based on 

the structural parameters: radius of gyration (Rg), solvent accessible surface area (SASA) and the standard secondary structure content. 

We found the conformers showing lower solvent accessible surface area and higher secondary structure content of α-helical are defined 

to be suitable binding pockets for druggability. 
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1. INTRODUCTION 

 Intrinsically disordered proteins (IDPs) exhibit prevalent 

key roles in the biological processes of all diversified living 

organisms. IDPs are broadly involved in crucial cellular activities, 

including regulation and signal transduction [1] and are also linked 

with a number of human diseases [2-4] such as in expression of 

cancer related proteins (p53, breast cancer protein BRCA-1/2) and 

other neurodegenerative disorders including the α-synuclein and 

tau protein in Alzheimer’s disease [5]. IDPs structural attributes of 

high flexibility and lack of stable secondary and tertiary structures, 

often engaged themselves at the hubs of protein-protein interaction 

networks and consequently associates with multiple partners [6-8]. 

The primary step of fibrillogenesis of IDPs requires the 

stabilization of monomeric or oligomeric partially folded 

conformations as they are devoid of a stable structure. As 

Statistically stated, 79% of malignancy related proteins and 57% 

of the distinguished cardiovascular disease-related proteins are 

anticipated to contain shorter regions which are disordered and no 

longer than 30 residues in length [9-10]. Therefore, IDPs can be 

perceived as active drug targets and to play a significant role in 

drug design [11-25]. However, prior to drug design on a specific 

protein it is crucial to evaluate its possibility to be a decent drug 

target. Also, presence of binding cavities of appropriate 

geometrical shape for ligand binding (“druggability”), acts as a 

crucial assessment problem in drug discovery [26]. Therefore the 

drug design strategy for IDPs are yet in their early stages [27] in 

comparison with the ordered proteins for which there exists well-

developed drug design pipelines[28]. In IDPs, the number of 

binding cavities were predicted to be more in  number than in the 

case of ordered proteins of  similar length. In addition, from the 

literature review studies, it is evident that the cavities of IDPs 

exerting greater surface areas and larger volumes shows higher 

druggability than those of ordered proteins. In addition, IDPs must 

possess important biological roles and establish their association 

with the specific disorder, which aids in drug designing towards 

IDPs. The obstacles along with the possible measures in designing 

the drugs for IDPs have been been reported [5]. Although there are 

few limitations developed during drug designing targeted IDPs of 

which major defaults were lack of efficient experimental screening 

strategies and determining specificity that impacts ligand-protein 

interactions. The enzymes and cell surface receptors become the 

target of the most of the drugs by regulating their functions, 

wherein the  small molecules can mimic the interactions made by 

their natural substrates [29]. Even though enzymes possess a 

certain degree of flexibility, their structures tend to fluctuate 

around equilibrium positions, making it easier to identify binding 

pockets and subsequently design drugs to fit in them. On the other 

hand, IDPs exist as large ensembles of structures, where their 

amino acid chains can rapidly form multiple conformations, 

sometimes within microseconds. They exhibit large 

conformational fluctuations and no evidence of permanent binding 

pockets. This type of conformational feature does not present 

suitable cavities for small drug-like molecules to form stable 

interactions [13-14, 30-31]. IDPs are frequently striking different 

postures. Allowing their highly dynamic nature into consideration, 

we have performed Molecular dynamics simulation on α-

synuclein protein, a typical IDP, to get a better sampling of 

conformers. The compactness of a protein which is measured as 

Radius of gyration (Rg) is known to affect the stability and folding 

rate of proteins [32]. In addition to this, recent studies have 

reported the use of compactness to define the binding pockets in a 

protein [33-35]. Some of the studies have highlighted the idea of 

considering compactness (Rg) of the protein or protein-ligand 

complexes for binding site prediction [33,35]. Recent studies 

suggest that lower the Rg, the compactness of the ligand-protein 

complex is higher, causing the interactions between ligand and 

protein to be stronger [34] . Also, Rg depicts the significance of a 

more compact well-docked protein-ligand complex to be a better 

therapeutic agent [36]. Structure-based prediction of ligand 
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binding sites approaches has also been reported to focus on 

designing consensus that includes the shape of the input protein 

fold, expressed by its Rg, as one of its features [37]. In our study, 

we have performed 80 ns of molecular dynamic simulation on α-

synuclein protein to analyze the conformational properties. From 

the MD simulation trajectory, the probable conformers of α-

synuclein having druggable features have been isolated based on 

the structural parameters; Rg, solvent accessible surface area 

(SASA) and moderate standard secondary structure content. 

2. MATERIALS AND METHODS 

2.1. MD Simulation. 

 The MD study was carried out using a standard procedure, 

where the energy minimized structure of α-synuclein was 

subjected to heating, equilibration and production dynamics. The 

system was gradually heated from 0-300 K in constant volume 

(NVT) conditions and then equilibration was conducted in NPT 

conditions (300 K and 1 atm pressure). To ensure the correctness 

of our NPT simulation protocol, the density, temperature, 

pressure, energy and RMSD (Root Mean Square Deviation) 

graphs were plotted and analyzed (shown in Figure S1-S5). Then 

80 ns MD production run was carried out on the equilibrated 

structure using the Particle Mesh Ewald (PME) algorithm [38,39]  

with the time step of 2 fs. To treat the nonbonding interactions 

(short-range electrostatic and van der Waals interactions) a cutoff 

of 8 Å was used during the simulation while the long-range 

electrostatic interactions were treated with the PME method. All 

the bonds present in the system were constrained with the SHAKE 

algorithm [40]. The pressure and temperature (0.5 ps of heat bath 

and 0.2 ps of pressure relaxation) were held constant by the 

Berendsen weak coupling algorithm [41] throughout the 

simulation process. The trajectory analysis of the system was 

carried out using cpptraj program [42]  from AmberTools. 

2.2. Clustering of Conformers based on Rg.     

 In order to identify the druggable conformer of α-synuclein 

protein from MD simulation trajectory, we have screened the 

conformers based on Rg values and grouped them into three 

clusters: L group (conformers having lower Rg values), M group 

(conformers having moderate Rg values) and H group (conformers 

having higher Rg values). For this study, we have pulled out the 

bottom five conformers depicted as L1-L5 from L group. 

Similarly, from M group and H group we have pulled out the top 

five conformers depicted as M1-M5 and H1-H5, respectively. To  

obtain information regarding the buried and exposed area present 

in each of these conformers, solvent accessible surface area 

(SASA) analysis was carried out using cpptraj program.  

2.3. Prediction of Binding pockets.  

 The conformers in the clusters were analyzed using the 

online server tool CASTp (Computed Atlas 

of Surface Topography of proteins) [43] that detects, measures and 

provides a detailed characterization of the binding pockets on the 

surface of the proteins as well as the voids in the interior of 

proteins. Usually, these surface pockets and voids that correlate 

with binding activities are the concave regions of the proteins. 

CASTp server determines all the surface pockets and voids present 

in the structure of proteins using an algorithm that focus on alpha 

shape and pocket. This algorithm was developed  in computational 

geometry. This server describes the surface pockets as concave 

regions of proteins with binding sites at the opening. These 

pockets also allow access to water molecules from the exterior.             

 

3. RESULTS  

 In this study, we have screened the conformers of α-

synuclein protein from the MD simulation trajectory that exhibit 

well defined binding pockets necessary for druggability. 

3.1. Radius of gyration Analysis. 

 To investigate the compactness of α-synuclein protein 

during the simulation, radius of gyration was analyzed. 

Information regarding the overall shape and size of the molecule 

can be gleaned from Rg. The radius of gyration analysis for α-

synuclein protein as a function of simulation time is shown in 

Figure 1.  

 
Figure 1. Radius of Gyration analysis for α-synuclein as a function of 

simulation time. 

 

 The Rg value is known to affect both the stability and 

folding rate of a protein. From Figure 1, we can infer that the Rg 

value of α-synuclein to oscillate within the range of 41 Å to 48 Å 

during the course of simulation. In order to isolate the probable 

conformers of α-synuclein featuring druggability, the conformers 

from the MD simulation trajectory were clustered according to 

their Rg values. Conformers L1-L5, M1-M5 and H1-H5 were 

selected from the clusters of lower, moderate and higher values of 

Rg, respectively. 

 
Figure 2. SASA analysis for α-synuclein as function of simulation time. 

 

3.2. Solvent accessible surface area Analysis. 

 In order to investigate the absolute details about the 

mobility of flexible regions in α-synuclein protein, we calculated 

SASA from MD simulation trajectory using cpptraj program. The 

results were depicted in Figure 2. From Figure 2, we can infer 
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that the SASA value of α-synuclein takes the value in the range of 

13400 Å2 to 14800 Å2. Hence, it depicted that the mobility of 

flexible regions in α-synuclein protein was observed in the range 

of 13400 Å2 to 14800 Å2. It can be correlated with Table 1 with 

the number of Rg and binding pockets. 

3.3. Binding Pocket Analysis. 

 Binding pockets in the screened conformers of α-synuclein 

having lower (L1-L5), moderate Rg (M1-M5) and higher Rg (H1-

H5) values have been predicted with the help of CASTp server 

and results were depicted in Figure 3. In Table 1, we have 

summarized the Rg, SASA and the number of binding pockets of 

the corresponding screened conformers of α-synuclein. From 

Table 1, we observe the number of binding pockets to be more in 

the conformers having lower Rg values than conformers having 

higher Rg values. Also, we notice the conformers having lesser 

SASA values to contain more binding pockets.  Hence, we 

observe that among H, M and L group, the conformers under 

Group L contain a greater number of well-defined binding 

pockets. From these observations, we can infer that Rg and SASA 

value of the protein may be considered as critical aspects for 

identifying the conformers having druggable features. 

 
Figure 3. Binding pocket analysis for the conformers of α-synuclein 

having (A) Lower Rg values (B) Moderate Rg values. (C) Higher Rg 

values. 

3.4. Secondary Structure Analysis. 

 The Secondary structure analysis was carried out using the 

Kabsch and Sander algorithm [44] incorporated in their DSSP 

(Dictionary of secondary structure for proteins) program. The 

results were plotted in Figure 4. The plot shows the structural 

variation of each residue during the time course of the simulation. 

From Figure 4, we observe that α-helix secondary structure was 

mostly retained in the N-terminal region of the protein while in the 

NAC and C-terminal region there were rapid transitions from one 

secondary structure to another. 

 

Table 1. Rg, SASA and Number of binding pockets for the screened 

conformers of α-synuclein having lower, middle and higher Rg values 

CONFORMERS Rg  

VALUES 

(Å) 

   SASA    

VALUES 

(Å2) 

NUMBER OF 

BINDING 

POCKETS 

L1 41.582 13692.33 15 

L2 41.588 13748.63 17 

L3 41.597 13728.49 11 

L4 41.599 13791.03 19 

L5 41.603 13798.73 16 

M1 42.997 13973.61 9 

M2 43.999 13804.06 10 

M3 44.998 13862.44 11 

M4 45.973 14255.19 7 

M5 46.041 14655.89 15 

H1 47.895 14494.96 11 

H2 47.868 14477.31 7 

H3 47.868 14341.28 11 

H4 47.864 14377.58 9 

H5 47.855 14415.70 8 

 

 
Figure 4. The evolution of secondary structure evaluated using DSSP is 

shown for α-synuclein. Y-axis depicts residues and X-axis depicts time 

frames during the course of MD simulation. The secondary structure 

components of α-synuclein are color-coded as shown in the panel. 

 

 We have also calculated the percentage of individual 

secondary structure content across the screened conformers using 

YASARA software [45]. Considering both the secondary structure 

content and number of binding pockets in the screened 

conformers, we have summarized the results in Table 2. From 

Table 2, it can be observed that L4 in spite of having a 

comparatively higher Rg value than the other conformers in that 

group, was estimated to contain relatively a greater number of 

binding pockets.  This is the same for M5 and H3 under the group 

M and H respectively.  We found that in all these conformers (L4, 

M5 and H3), the percentage of α-helical secondary structure 

content is relatively more than the other conformers in the 

corresponding groups. From these observations, we notice that the 

percentage of the standard secondary structure content, especially, 

α helical portion of the protein to play a significant role in 

influencing the occurrence of a number of binding pockets. The 

additional information about the geometry (area and volume), 

number of residues and atoms involved in the binding pockets of 

all the screened conformers have been summarized in Table S1. 

The binding cavities of IDPs were reported to have larger surface 

area and volume than the cavities of ordered proteins [5]. 

Therefore, conformers with lower Rg value, lesser solvent 
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accessible surface area and higher standard secondary structure content are more preferable to possess druggable features. 

 

Table 2. Secondary structure content and the Number of Binding Pockets for the conformers of α-synuclein having lower, middle and higher Rg values. 
 

CONFORMERS 

SECONDARY STRUCTURES  

NUMBER OF BINDING 

POCKETS 
 

 

HELIX 

(%) 

 

SHEETS 

(%) 

 

TURNS 

(%) 

 

COILS 

(%) 

L1 21.4 0.0 14.3 64.3 15 

L2 22.1 0.0 14.3 60.0 17 

L3 17.9 0.0 22.9 59.3 11 

L4 22.9 0.0 14.3 62.9 19 

L5 17.9 0.0 14.3 65.0 16 

M1 19.3 0.0 20.0 60.7 9 

M2 20.7 0.0 22.9 52.9 10 

M3 20.7 0.0 20.0 59.3 11 

M4 26.4 0.0 11.4 59.3 7 

M5 40.0 0.0 11.4 48.6 15 

H1 12.9 0.0 31.4 55.7 11 

H2 11.4 0.0 40.0 48.6 7 

H3 21.4 0.0 25.7 52.9 11 

H4 15.7 0.0 34.3 50.0 9 

H5 12.1 0.0 25.7 59.3 8 

 

 

4. CONCLUSIONS 

 In conclusion, we have demonstrated here that isolation of 

the most probable conformer of α-synuclein from structural 

molecular dynamic analysis/ based on some critical aspects that 

emphasizes on its nature of druggabilty as a potential drug target. 

Our observations have supported that conformers having lower 

values of Rg have a definitely greater number of binding pockets. 

With higher compactness of the structure, greater cavities are 

observed which are aided by the conformers. However, this is not 

the only factor that is solely responsible for the druggable nature 

of the protein molecule. Compactness coupled with the solvent 

accessible surface areas of the conformers and also their 

secondary structure content, are equally crucial attributes. Also, 

the parameters of the binding pockets in a protein molecule, serve 

as an essential element to be considered for drug design 

approaches. In this study we have identified conformers of α-

synuclein containing druggable features that can serve as an input 

in designing drug like molecules. Our findings interpreted an 

idealistic insight on defining the druggability of α-synuclein that 

can be anticipated for which it will be considered as a preferable 

target in drug discovery initiatives in the future. From the above 

references studied and to the best of our knowledge, the proposed 

strategy may be used as a potential method to characterize 

druggability and can be generalized to overcome the obstacles for 

drug design of other IDPs as well.  
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Supplementary files 

 
Figure S1. RMSD analysis for α-synuclein as a function of simulation time 

 
Figure S2. Density of the system as a function of simulation time period. 

 

 
Figure S3. Energy (Total energy, Potential energy and Kinetic energy) of the system as a function of simulation time period. 

 

 
Figure S4. Pressure of the system as a function of simulation time period. 

 
 

Figure S5. Temperature of the system as a function of simulation time period 

 
Table S1. Binding Pocket Information for the conformers of α-synuclein. 

BINDING POCKET INFORMATION: L1 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 193.56 984.96 12 46 

2 158.94 484.77 12 41 

3 19.93 60.39 4 7 

4 21.62 14.97 4 13 

5 12.98 11.36 5 14 
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6 17.84 10.64 4 13 

7 16.53 8.49 4 13 

8 10.52 7.73 5 8 

9 19.52 7.36 6 13 

10 26.98 5.26 8 20 

11 7.57 0.93 6 11 

12 1.42 0.25 3 5 

13 1.38 0.16 4 4 

14 1.51 0.14 4 7 

15 0.38 0.00 4 6 

BINDING POCKET INFORMATION: L2 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 178.50 749.40 16 50 

2 33.16 17.73 5 13 

3 27.29 14.46 5 14 

4 16.42 14.45 4 11 

5 13.94 8.26 4 11 

6 5.37 6.53 5 7 

7 27.47 4.56 8 21 

8 10.64 4.55 4 6 

9 2.71 0.42 5 7 

10 3.76 0.40 3 6 

11 4.00 0.24 6 11 

12 0.62 0.06 3 4 

13 0.78 0.02 4 8 

14 0.36 0.00 5 6 

15 0.01 0.00 4 5 

16 0.01 0.00 3 4 

17 0.00 0.00 3 4 

BINDING POCKET INFORMATION: L3 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 137.68 733.85 10 30 

2 50.50 18.02 10 33 

3 16.15 11.97 4 10 

4 19.01 11.88 4 12 

5 26.05 9.91 5 12 

6 16.39 8.25 5 13 

7 9.65 6.58 4 7 

8 5.74 0.75 6 12 

9 5.83 0.52 6 10 

10 0.95 0.11 3 4 

11 0.06 0.00 4 5 

BINDING POCKET INFORMATION: L4 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 143.66 770.42 14 32 

2 12.25 286.00 5 5 

3 12.62 8.27 4 10 

4 27.92 7.15 7 15 

5 12.39 6.77 5 8 

6 2.70 6.51 4 9 

7 5.85 5.12 4 6 

8 9.47 4.18 4 7 

9 20.99 3.85 8 20 

10 9.38 2.41 4 8 

11 3.64 2.00 3 5 

12 0.85 0.15 3 4 

13 1.43 0.11 4 6 

14 0.97 0.08 4 5 

15 0.19 0.00 3 5 

16 0.14 0.00 3 4 

17 0.09 0.00 4 5 

18 0.06 0.00 3 4 

19 0.00 0.00 4 4 

BINDING POCKET INFORMATION: L5 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 178.30 1063.89 14 41 

2 33.12 21.01 6 13 

3 23.05 15.25 4 15 

4 33.81 13.09 7 20 

5 8.47 9.83 4 7 

6 23.73 2.49 8 21 

7 3.74 0.68 3 6 

8 4.25 0.50 5 10 

9 0.71 0.17 2 4 

10 1.51 0.16 4 4 
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11 0.45 0.03 4 4 

12 0.21 0.01 3 4 

13 0.21 0.00 3 5 

14 0.20 0.00 3 4 

15 0.05 0.00 3 4 

16 0.03 0.00 4 4 

BINDING POCKET INFORMATION: M1 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 252.50 864.36 18 46 

2 25.87 20.37 6 18 

3 12.76 14.29 7 13 

4 25.48 9.64 7 14 

5 6.69 2.46 4 9 

6 8.18 2.35 4 10 

7 6.66 0.60 6 14 

8 0.15 0.03 3 4 

9 13.24 -0.77 4 10 

BINDING POCKET INFORMATION: M2 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 50.09 88.77 7 16 

2 6.23 2.62 4 6 

3 6.86 1.56 7 10 

4 5.47 1.29 5 7 

5 2.72 0.43 4 6 

6 1.23 0.25 4 7 

7 2.78 0.13 4 6 

8 1.92 0.12 3 5 

9 0.40 0.00 3 4 

10 0.13 0.00 3 6 

BINDING POCKET INFORMATION: M3 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 473.13 2505.87 26 88 

2 16.50 79.05 4 7 

3 48.09 78.88 7 14 

4 -0.29 0.12 3 6 

5 0.81 0.11 3 4 

6 0.62 0.03 5 5 

7 0.37 0.01 4 6 

8 0.39 0.00 4 5 

9 0.12 0.00 3 5 

10 0.01 0.00 3 4 

11 0.01 0.00 3 4 

BINDING POCKET INFORMATION: M4 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 15.61 77.29 4 5 

2 29.58 12.04 6 17 

3 27.65 7.96 6 14 

4 4.24 3.45 3 6 

5 6.73 1.04 4 6 

6 -0.88 0.84 4 7 

7 2.45 0.35 4 4 

BINDING POCKET INFORMATION: M5 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 307.12 2134.89 22 64 

2 152.19 506.34 11 33 

3 44.26 104.99 7 14 

4 16.62 5.30 7 16 

5 17.33 2.23 7 16 

6 1.63 0.37 3 5 

7 1.42 0.24 4 5 

8 0.45 0.21 2 4 

9 1.22 0.17 3 5 

10 2.06 0.15 4 7 

11 1.30 0.10 4 7 

12 1.43 0.04 4 7 

13 0.30 0.01 4 5 

14 0.51 0.00 3 5 

15 0.11 0.00 4 4 

BINDING POCKET INFORMATION: H1 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 12.49 124.01 4 6 

2 25.51 122.40 4 9 

3 57.36 70.22 8 22 
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4 21.98 46.99 5 10 

5 16.38 14.53 4 8 

6 2.53 3.78 3 5 

7 9.26 1.16 4 10 

8 1.89 0.10 4 6 

9 0.74 0.04 2 4 

10 0.59 0.04 2 4 

11 0.62 0.03 4 6 

BINDING POCKET INFORMATION: H2 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 27.44 135.05 4 9 

2 50.20 58.95 8 21 

3 49.60 39.36 8 17 

4 1.90 28.35 3 4 

5 1.04 0.22 2 4 

6 0.41 0.05 2 4 

7 0.79 0.04 5 5 

BINDING POCKET INFORMATION: H3 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 15.33 157.75 5 7 

2 39.06 128.30 5 12 

3 13.80 61.39 4 9 

4 71.76 60.45 9 23 

5 15.94 29.62 4 5 

6 21.85 19.34 6 13 

7 3.87 1.18 3 6 

8 2.45 0.35 4 11 

9 0.92 0.04 3 8 

10 0.29 0.01 5 6 

11 2.64 -0.38 4 6 

BINDING POCKET INFORMATION: H4 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 52.79 191.90 5 15 

2 26.01 75.72 6 12 

3 45.78 47.28 6 15 

4 43.92 42.65 7 15 

5 50.52 41.42 8 18 

6 5.77 1.87 4 7 

7 4.45 0.51 6 10 

8 4.42 0.07 4 9 

9 0.24 0.00 3 5 

BINDING POCKET INFORMATION: H5 

POCKET ID AREA 

(SA) 

VOLUME 

(SA) 

NUMBER OF 

RESIDUES 

NUMBER OF 

ATOMS 

1 17.70 96.24 4 6 

2 56.92 56.07 7 20 

3 60.50 48.41 8 21 

4 3.47 0.84 3 9 

5 1.83 0.30 3 7 

6 1.35 0.20 3 5 

7 1.23 0.08 3 8 

8 0.92 0.03 4 5 

 


