Effective adsorptive removal of azodyes on synthesized copper oxide nanoparticles

Madiha Batool 1, Shazia Khurshid 1, Zahid Muhammad Qureshi 1, Walid Mohamed Daoush 2,3,* 1, 2
Farwa Hashmi 4, Nida Mehboob 4

1Department of Chemistry, Government College University (GCU), Lahore, Pakistan
2Department of Production Technology, Faculty of Industrial Education, Helwan University, Cairo, Egypt
3Department of Chemistry, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Al Riyadh, KSA
4Lahore College for Women University, Lahore, Pakistan

*corresponding author e-mail address: wmdaoush@imamu.edu.sa | Scopus ID 35609965600

ABSTRACT
Copper oxide nanoparticles were synthesized by using Camellia Sinensis leaves extract as a reducing and capping agent of the copper ions in solutions and its azodyes adsorptive efficiency were studied. The produced copper oxide nanoparticles were subsequently characterized by SEM, TEM, XRD, FTIR, and UV spectrophotometer for investigating its particle shape, size, crystalline phase and chemical composition. The particle size of the prepared copper oxide nanoparticle was calculated from the XRD data by using the Scherrer equation was found 17.26 nm. However, the median particle size calculated from the SEM and TEM image analysis was found 25–85 nm of tetragonal particle shape. UV spectrum was obtained with maximum absorption peak at 280 nm. The FTIR spectrum indicated -OH, -C=O and -C-H functional groups, which is due to the presence of the stabilized layer of the Camellia Sinensis leaf extract which is binded with the prepared copper oxide nanoparticles. The produced copper oxide nanoparticles were used for studying the degradation of Congo red and Malachite green azodyes. Different parameters were studied to optimize the reaction conditions. Kinetic models of Langmuir, Freundlich and Elovich models were also applied. The degradation percent of the investigated azodyes on the surface of the produced copper oxide nanoparticles in aqueous solutions was observed between 70-75%.

Keywords: Camellia Sinensis; Copper oxide nanoparticles; Green synthesis; Congo red; Malachite green; Adsorption kinetics.

1. INTRODUCTION
Industrial wastes contaminated by coloring dyes having a large number of organics, which are hazard to the environment by their capability to increase mutagenic effects [1, 2]. Malachite green dye is extensively used in industry and it is a water soluble cationic azodye, belongs to the class of triphenyl methane [3]. Congo Red dye is another water-soluble carcinogenic and xenobiotic azodye used in fabrication of textile and paper industry [4-7]. Table 1 lists the different properties and toxicity of the Malachite green and the Congo red azodyes.

Table 1. Properties and toxicity of Malachite green and Congo red azodyes [4-7].

<table>
<thead>
<tr>
<th>Properties</th>
<th>Malachite green</th>
<th>Congo red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular mass</td>
<td>364.91g/mol</td>
<td>696.68g/mol</td>
</tr>
<tr>
<td>Molecular formula</td>
<td>C23H21N2</td>
<td>C21H22N3Na2O1S2</td>
</tr>
<tr>
<td>Physical state</td>
<td>Green powder</td>
<td>Red powder</td>
</tr>
<tr>
<td>Toxic effect</td>
<td>Skin, eyes irritation and lung adenomas</td>
<td>Neurotoxic and pancreatic toxicity</td>
</tr>
<tr>
<td>Stability</td>
<td>stable</td>
<td>stable</td>
</tr>
<tr>
<td>Melting point</td>
<td>164</td>
<td>360</td>
</tr>
<tr>
<td>LD50</td>
<td>80mg/kg</td>
<td>296mg/kg</td>
</tr>
<tr>
<td>Water solubility</td>
<td>Soluble</td>
<td>Soluble</td>
</tr>
</tbody>
</table>

There are numerous methods to discard azodyes from the colored effluents to minimize their impacts. Adsorption is one of the unique technological methods for azodye degradation [8]. Synthesized metal oxide nanoparticles can be applied for the catalytic degradation of azodyes. It is an economical method as compared to other reported methods in the literature. This adsorption effect of pure metal oxides nanoparticles can be contributed to the ratio between the large surface area of the active sites and the small particle size [9]. However, the adsorption activity of these metal oxides nanoparticles is depending on the synthesis method, particle size, particle shape, particle dispersion, and the nature of supporting material.

The biosynthesis of metal oxide nanoparticles like copper oxide nanoparticles, has been considered as a cost-effective and environmentally friendly alternative to the physical and chemical methods. Plant-mediated synthesis of metal oxides nanoparticles is one of the green chemistry approaches that consider plants extracts as stabilizing agents of metal oxide nanoparticles used in different applications in nanotechnology [10-12]. Copper oxide nanoparticles act as effective catalyst for dyes adsorption and removal leads to the degradation processes [13]. Most probably, copper oxide has low cost and can be recently used as a unique adsorbent of azodyes and its nanoparticles have efficiency of azodyes removal from industrial waste water [14, 15]. Copper oxide nanoparticles have been synthesized by using leaf extract of Camellia Sinensis. Camellia synesis leaves extracts have several types of organic compounds such as 30 wt.% of polyphenols, 15 wt.% of proteins, 4 wt. % of amino acids, 7wt. % of carbohydrates, 7 wt.% of lipids, 10 wt. % of Vitamin C and D. In addition; catechins which included -OH active groups used in solutions as a reducing agent of copper ions to copper metal [16].

The Camellia synesis leaves extract can be used as reducing and capping agents during the synthesis of metal nanoparticle from its soluble salts [17-21]. The phenolic content in plants extract which was biodegradable and can be catalyzed the synthesis of copper oxide nanoparticles acting as capping and reducing agent [22-24]. Table 2 lists the main active components.
of different types of plants which can be used as reducing and stabilizing agents of metal oxide nanoparticles.

The main aim of this work is, to synthesize copper oxide nanoparticles using *Camellia sinensis* leaves extract as a reducing, capping and stabilizing agent. The crystalline structure, chemical composition, particle size, shape and morphology were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic degradation efficiency of the prepared copper oxide nanoparticles was investigated by determining the degradation of Malachite green and Congo red azodyes in aqueous solution. The reaction parameters like pH, temperature and removal time and its effect on the dye degradation were studied. The kinetic models (pseudo-second order, Langmuir, Freundlich and Elovich) were studied to determine the mechanism of the dye degradation.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Metal oxide NPs</th>
<th>Active component</th>
<th>Size, nm</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aloe barbadensis</td>
<td>Cu₂O</td>
<td>Phenols and proteins</td>
<td>30-60</td>
<td>13</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Cu₂O</td>
<td>Flavanones or terpenoids</td>
<td>-28-30</td>
<td>12</td>
</tr>
<tr>
<td>Phyllanthus Amarus</td>
<td>CuO</td>
<td>Not mention</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Hibiscus rosasinensis</td>
<td>CuO</td>
<td>Phenolic compound</td>
<td>30-50</td>
<td>3</td>
</tr>
<tr>
<td>Aloe barbadensis</td>
<td>CuO</td>
<td>Carbolyn groups</td>
<td>15-30</td>
<td>4</td>
</tr>
<tr>
<td>Gum karaya</td>
<td>CuO</td>
<td>Carbohydrates, proteins</td>
<td>7.8 ± 2.3</td>
<td>25</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>Cu₂O</td>
<td>Phenolic compound</td>
<td>37</td>
<td>19</td>
</tr>
</tbody>
</table>

2. MATERIALS AND METHODS

2.1. Materials.

All chemicals used were of analytical grade and pure. The chemicals used for the preparation of copper nanoparticles include copper sulfate pentahydrate (CuSO₄·5H₂O) purchased from Sigma Aldrich Co. LTD. The *Camellia Sinensis* leaves were supplied from the botanical garden of the Government College University (GCU), Lahore, Pakistan.

2.2. Preparation of the *Camellia Sinensis* leaves extract.

Camellia Sinensis leaves of 30g were collected and then washed with distilled water. The cleaned leaves were dried and grounded. 100 ml of deionized water was added to the obtained powder of the grounded leaves. The obtained solution was boiled for 10 minutes and subsequently stored at low temperature after filtration [26].

2.3. Preparation of copper oxide nanoparticles.

A copper sulfate pentahydrate solution of 50 ml was added and stirred with 5ml of the obtained *Camellia Sinensis* leaves extract by using Magnetic stirrer. The reaction is started when the color of the solution changed from green to pale yellow then finally to dark brown. Whenever the reaction was completed, the solution was centrifuged for 20 mints at speed of 1000 rpm. After removal of supernatant, the obtained nanoparticles was washed with ethanol then dried. The obtained nanoparticles wasCalcination for one hour at 500°C. The obtained black colored nanoparticles were stored for characterization [26-30].

2.4. Characterization of the copper oxide nanoparticles.

Scanning electron microscope (SEM) supported with EDS unit, transmission electron microscope (TEM), X-ray diffractometer (XRD), UV spectrophotometer and Fourier transform infrared (FTIR) spectrophotometer were used in order to characterize the particle size, shape, crystalline structure and chemical composition of the obtained copper oxide nanoparticles.

2.5. Preparation of standard solution from the dye.

Two separate stock solutions of Malachite green and Congo red azodyes of concentration 1000 ppm in a liter of distilled water were prepared. The obtained stock solutions were used to prepare different solutions with different concentrations of the investigated azodyes. The stock solutions were diluted to prepare three different solutions contains 150, 200, 250 of the investigated azodyes separately. The azodyes removal or degradation efficiency using the copper oxide nanoparticles was evaluated by calculating the dye decolorization percentage according to equation (1) as follows;

\[\text{Decolorization \% of the dye} = \frac{A - B}{A} \times 100 \tag{1} \]

Where A and B are absorbance of the investigated azodye solution in the presence of the copper oxide nanoparticles and in the absence of the copper oxide nanoparticles respectively.

2.6. Dye degradation and Kinetic studies.

Exact 50 micro-liters of hydrogen peroxide H₂O₂ solution (200 µmole) was added as an oxidizing agent to release the peroxide free radicals. Four samples with different compositions were prepared to study the different reaction parameters of the degradation of the investigated azodye. Two samples for Malachite green and another two samples for Congo red dye with and without using hydrogen peroxide as a reducing agent were prepared. The effect of removal time, temperatures and pH were studied to optimize the reaction conditions. The initial concentration of the produced copper oxide nanoparticles adsorbent was chosen in the range between 20-250 mg/L. The concentrations of the Congo red and the Malachite green dyes in aqueous solutions were measured by using the UV–VIS spectrophotometry technique. On the other hand, the adsorption kinetics of the investigated azodye were carried out under the selected optimum operating conditions. A solution prepared by dissolving and stirring 20 mg of the produced copper oxide adsorbent nanoparticle in 50 ml solution contains 10 ppm of the investigated dyes was used to study the adsorption kinetics of the dyes on the surface of the prepared copper oxide nanoparticles.

3. RESULTS

3.1. Particle size, morphology and crystal structure.

During the reduction of the copper sulphate salt by the *Camellia sinensis* leaves extract, the green color of the solution turned into dark brownish color indicating the formation of copper oxide nanoparticles. The obtained nanoparticles were investigated to determined its particle size, shape, morphology and crystalline
structure. The median particle size, shape and morphology of the produced copper oxide nanoparticle were investigated by the SEM and TEM as shown in Figure 1 (a-c). It was observed from the results of the calculated median particle size that; the particle size is between 25 nm and 500 nm. It was also observed from the result that; the particles have tetragonal shape and some of the particles are agglomerated to form nanoclusters. The EDS analysis of the produced nanoparticles revealed that the particles are mainly composed of copper and oxygen. In addition; some elemental inclusions detected which is formed from the chemical solution of the leaves extract during the preparation method.

The X-ray diffraction pattern of the produced copper oxide nanoparticles was examined using the X-ray diffractometer. It was observed from the XRD pattern as shown in Figure 1(d) that; the produced copper oxide nanoparticles have diffraction pattern matched with the JCPDS card number (033-0480) of Cu$_2$O$_3$. The peaks which appeared at 20 of 28.09°, 30.61°, 36.14° and 44.1° of the crystal planes 112, 103, 202 and 213 respectively which revealed the presence of the tetragonal crystalline structure of Cu$_2$O$_3$. However, the crystal size which was calculated by the Scherrer equation was found 17.2 nm.

3.2. Ultraviolet and FTIR spectroscopy.

Figure 2 (a) shows the UV-Visible spectra of the prepared Cu$_2$O$_3$ nanoparticles. The wavelength at which the copper oxide nanoparticles can be detected is 200-400 nm. The maximum absorption peak was appeared at 280 nm which confirmed the presence of the copper oxide nanoparticles.

Figure 2 (b) presented FTIR chart of the stabilized copper oxide nanoparticles. The overall spectrum was observed in range from 500 to 4000 cm$^{-1}$. It was observed from the results that; the bands appeared at 3310, 2850, 1611, 1344 and 1100 cm$^{-1}$ indicate the presence of O-H stretching of the alcohol, the -C-H stretching of the alkene, the -C=C- stretching of aromatic ring, the bending of the -C-H bond and the Cu-O- of the Cu$_2$O$_3$ respectively.

3.3. Effect of experimental parameters on the dye degradation

3.3.1. Effect of time.

Effect of reaction removal time on the azodye degradation was studied by measuring the UV spectrum of the obtained copper oxide nanoparticles synthesized by using Camellia Sinensis as a reducing, capping and stabilizing agent. Figure 3 shows the effect of time required for the removal of the dye. The results observed that; the maximum degradation percentage has occurred after 45 min. and the removal percentage was observed for both Malachite green and Congo red dye is between 70-75%.

The result clearly shows the effect of removal time on the degradation of the Malachite green as well as the Congo red dyes by using the prepared Cu$_2$O$_3$ adsorbent nanoparticles in the presence and absence of the hydrogen peroxide as a reducing agent. It was observed from the results that the dye degradations were enhanced in the presence of the hydrogen peroxide reducing agent.

3.3.2. Effect of pH.

Effect of pH on the removal of Congored and Malachite green azodyes by using the UV spectrophotometry was studied. The degradation % of the dyes using the copper oxide absorbent nanoparticles was experimentally performed at pH range between 2 and 14. Figure 4 shows the maximum degradation % and removal of both the Malachite green and Congo red dyes was observed at pH around 3.
nanoparticles was studied. The observed results were shown in Figure 5 indicate that; the maximum degradation % in case of the Congo red dye has occurred at 60°C. However, in case of the Malachite green dye the maximum degradation % has takes place at 70°C.

Figure 5 Effect of temperature on the degradation % of a) Congo red and b) Malachite green dye in the presence and absence of hydrogen peroxide reducing agent by using the CuO$_2$ nanoparticles adsorbent.

3.4. Kinetics studies of the adsorption process.

The kinetic parameters are helpful for estimating the adsorption rate. It was observed from the results in Figure 6 that; the pseudo-second-order model is clearly presented the adsorption kinetics of the removal process. The results indicated a significant potential of the copper oxide nanoparticles as adsorbent for the investigated azodye removal. The straight line represented that the nanoparticles follow a pseudo-second-order kinetics rather than first order.

The plotted data proves that; the pseudo-second-order kinetics of the Congo red and the Malachite green dyes have regression coefficient (r^2) value of the values 0.997, 0.99, 0.998 and 0.989 in the presence and absence of H$_2$O$_2$ respectively. The graphical representation of the model in Figure 6 shows that the pseudo-second-order model explain the adsorption kinetics most effectively. The model can be represented by the following differential and its corresponding integrated equation as follows;

\[
\frac{dq}{dt} = k_1 (q_e - q_t)
\]

(2)

\[
(t/q_t) = (1/Kq_e^2) + (1/q_e)t
\]

(3)

Where, q_t represent the amount of adsorbent at time, t, is change in time interval, k_1 is a constant, q_e is the amount of the copper oxide nanoparticles adsorbent at equilibrium. The pseudo-second-order model considers the rate-limiting step as the formation of chemisorptive bond involving sharing of electrons between the adsorbate azodye molecules and the copper oxide nanoparticles adsorbent. If the pseudo-second-order kinetics can be applicable, the plot of (t/q_t) versus t gives a linear relationship that allows to compute the q_e and K. In the present experiment, the kinetics are investigated with (C_0 = 20 mg/L) at 303K with the interaction time intervals between 1 and 60 min. The obtained plots in Figure 6 between (t/q_t) versus the contact time (t) of the Malachite green and Congo red dyes decolorization represented that the model fitted the best decolorization % and also the results indicated a significant potential of the produced copper oxide nanoparticles as an adsorbent for removing the investigated azodyes.

3.5. Adsorption reaction isotherm models.

3.5.1. Langmuir isotherm model.

The Langmuir isotherm is one of the applicable expression of solute adsorption as monolayer adsorption on a surface having few numbers of identical sites. Langmuir isotherm model provides energies of adsorption by easy way. That’s why the Langmuir isotherm model is selected for evaluating the adsorption capacity of the monolayer surface of the adsorbent. Adsorption process fits the Langmuir and pseudo-second order models. Langmuir isotherm or single crystal surfaces describes also the adsorption process at low, medium and multilayer coverage are also ruled out.

Adsorbates are chemically adsorbed at a fixed number of well-defined sites, each sit can hold only one adsorbate species, all sites are energetically equivalent, there is no interaction between the adsorbate species according to this model. The Langmuir relationship can be represented by deferential as well as and its corresponding integrated equation as follows;

\[
q_t/q_m = b C_t/(1+b C_t)
\]

(4)

\[
C_t/q_t = 1/(K_L q_m) + (1/q_m) C_t
\]

(5)

Where q_m is, the adsorption capacity in unit mg/g and q_t is the adsorption capacity at equilibrium, K_L is the Langmuir isotherm constant which provides the binding affinity between the copper nanoparticles adsorbent (CuO$_2$) and the investigated azodye. C_t is the equilibrium concentration of the investigated azodye. The values of isotherm q_m and constant K_L can be calculated by plotting a graph between C_t/q_t and C_t in case of the Congo red and the Malachite green azodyes as shown in Figure 7 (a, b). The characteristics of the Langmuir isotherm can be examined in terms of its equilibrium parameters and the K_L and can be calculated by the above mentioned mathematical formula.

From the plotted data between (C_t/q_t) and C_t as seen in Figure 7 (a, b), the slope 1/(bq_m) and the intercept (1/b) can be calculated by extrapolation. Further analysis of Langmuir equation is studied on the basis of the values of the separation factor R_L according to the following equation;

\[
R_L = 1/(1 + b C_t) \quad (where \, 0 < R_L < 1 \, for \, a \, favorable \, adsorption) \quad (6)
\]

It was observed from the plotted data that the obtained linear isotherm has the value of $R_L < 1$. The rate constant K_L was estimated by calculating the slope and it was found to be 0.015 for Congo red dye and 0.0076 for Malachite green dye with concentration of 20 mg/L and nanoparticles adsorbent concentration of 0.25 g/L for all the obtained isotherms at 35°C. The Langmuir isotherm was drawn for the data to and the correlation coefficient R^2 values were observed of 0.9819, 0.999 in the presence of H$_2$O$_2$ reducing agent and 0.994, 0.996 in the absence of H$_2$O$_2$ reducing agent for Congo red and Malachite green dye. The decolorization % indicating strong binding of the investigated azodyes to the surface of CuO$_2$ nanoparticles.
adsorbent [26-28]. It was observed from the results that the Langmuir adsorption model well fit the experimental data.

3.5.2. Freundlich Isotherm model.

Freundlich presented an empirical dye decolorization isotherm equation that can be applied in case of low and intermediate dye concentrations. The Freundlich isotherm model is suitable for the adsorption of dye on the adsorbent particles. It is easier to handle mathematically in more complex calculations. The Freundlich isotherm is given by applying the following equation;

\[q_e = K_f C_e^n \]

(7)

Where \(q_e \) is, the amount used of the investigated azodye in unit of mg/g, \(C_e \) is the equilibrium concentration of the dye, \(K_f \) in mg represents the dye decolorization capacity at the dye equilibrium concentration and \(n \) represents the dye decolorization degree of dependence at the equilibrium concentration. By applying the logarithms on both sides of equation (7), the following equation was obtained;

\[\ln q_e = \ln K_f + n \ln C_e \]

(8)

By drawing the Freundlich isotherm between \(\ln C_e \) and \(\ln q_e \). It was observed from the results that the obtained graph between \(\ln q_e \) and \(\ln C_e \) shows a linear relationship as shown in Figure 8 (a, b).

3.5.3. Elovich adsorption model.

Elovich model can be applied in adsorption reaction kinetics. It can be used to follow the mechanism of reaction. The intensity of adsorption process is a prediction of the bond energies between the investigated azodyes and the copper oxide nanoparticles adsorbent, indicating the possibility of the chemisorption (formation of chemical bonds) process rather than the physisorption (electrostatic attraction) process [31- 33]. The pseudo-second-order reaction differs with Elovich model in the type of constants. Elovich model used to study the rate constant, the pseudo-second-order half-life time and the initial rate of reaction are calculated. In Elovich model a logarithmic mathematic function are applied. This model shows a chemisorption process as in the following equation;

\[q_t = \ln (\alpha \beta) + \ln t \]

(9)

The Elovich model is specified to determine the rate constants (adsorption rate and desorption rate). It relates the extensive absorptions sites and the equation of the boundary conditions gives as follows;

\[q_t = 1/\beta \ln (\alpha \beta) + 1/\beta \ln t \]

(10)

Where \(q_t \) is the adsorbent amount at time \(t \), \(\alpha \) (mg. g\(^{-1}\). min\(^{-1}\)) is the initial sorption rate and \(\beta \) (g·mg\(^{-1}\)) is related to the extent of surface coverage and the activation energy involved in the chemisorption. By applying the obtained data in equation 10, the Elovich model can be obtained as shown in Figure 9. The \(r^2 \) values of the obtained CuO\(_3\) nanoparticles adsorbent with and without using H\(_2\)O\(_2\) reducing agent for the Congo red and Malachite green azodyes were 0.989, 0.997, 0.987, 0.988 respectively. This show that; the Elovich model is suitable to fit the data, however, it is less fitted the data than the Langmuir kinetic model. However, the Freundlich kinetic model is the least model to fit the data than the other models [27-33].

4. CONCLUSIONS

This study has been carried out by using copper oxide nanoparticles synthesized via *Camellia Sinensis* leaves extract as a reducing, capping and stabilizing agent. A nanosized CuO\(_3\) particles was obtained. The UV spectrum of the obtained nanoparticles indicating an absorption peak at 280 nm which confirmed the formation of the CuO\(_3\) nanoparticles. The particle size was calculated by Scherrer equation and was about 17.26 nm. The SEM and TEM image analysis of the obtained nanoparticles

Figure 7. Langmuir model of a) Congo red and b) Malachite green dye in the presence and absence of hydrogen peroxide reducing agent by using the CuO\(_3\) nanoparticles adsorbent.

Figure 8 Freundlich model of a) Congo red and b) Malachite green dye in the presence and absence of hydrogen peroxide reducing agent by using the CuO\(_3\) nanoparticles adsorbent.

Figure 9. Elovich model of a) Congo red and b) Malachite green dye in the presence and absence of hydrogen peroxide reducing agent by using the CuO\(_3\) nanoparticles adsorbent.
confirmed a tetragonal particle shape of the prepared CuO particles with average diameter of 25 ~ 85 nm. The FTIR spectra indicated different bands of -OH, -C=O, -C-H functional groups, which is due to the presence of the Camellia Sinensis leaf extract layers surround and stabilized the obtained CuO nanoparticles in the solution. The calculated surface area of the obtained copper oxide nanoparticles was 65 m²/g. The obtained copper oxide nanoparticles were used as bio-sorbent for the removal of Congo red and Malachite green azodyes. The degradation % of Malachite green and Congo red azodyes are in the range between 70-75% at the optimum reaction conditions. Results of different reaction parameter revealed that the optimum pH was found 3-4, removal time of 30-40 minutes and reaction temperature of 70-80°C. The kinetic isotherm data revealed that a correlation with common adsorption isotherm equation which confirmed a chemisorption of monolayer follow the Langmuir, Elovich models with maximum capacity of 20 mg/g for Congo red and 32 mg/g for Malachite green azodyes. The reaction kinetics followed a pseudo-second order for both the investigated azodyes rather than first order. The Langmuir model fits better with linearity rather than Freundlich model predicted chemisorption. The Elovich model also has a linear fitting of the obtained data. It was expected that the copper oxide CuO nanoparticles keep excellent azodyes degradation potential at optimum conditions.

5. REFERENCES
22. Ali, I.; Peng, C.; Lin, D.; Naz, I. Green synthesis of the innovative super paramagnetic nanoparticles from the leaves extract of Fraxinus chinensis Roxb and their application for the

6. ACKNOWLEDGEMENTS

The authors would like to thank all the technicians of the center of atomic science and physics department (CASP) at the Government College University (GCU), Lahore, Pakistan for providing SEM, XRD, FTIR facilities.

© 2020 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Effective adsorptive removal of azodyes on synthesized copper oxide nanoparticles