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ABSTRACT 

Bruton’s tyrosine kinase (BTK) is well known for its role in  the development, differentiation and proliferation of B-lineage cells. The 

dysregulation of BTK is closely related with the immunological disorders and BTK targeting is commonly studied in the treatment of 

immunological disorders. Here pharmacophore model was developed, and screening against ZINC database retrieved 1337 hit molecules 

of potential BTK inhibitors. Molecular docking was performed for all molecules and analysis on the top docked molecules revealed that 

the ligands interacted well in the binding pocket of BTK. A 100-ns molecular dynamics simulation confirmed the docked pose of ligand, 

while the calculation of binding free energy indicated that the hit molecule has comparable affinity with native ligand of BTK (2V3). 
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1. INTRODUCTION 

 Bruton’s tyrosine kinase (BTK), a key member of the TEC 

family of cytoplasmic non-receptor protein tyrosine kinases, is 

well known for its role in the development, differentiation and 

proliferation of B-lineage cells [1,2]. BTK is widely found in 

hematopoietic cells and not found in natural killer or T cells [3,4]. 

The deregulation of BTK is closely related with the numerous B-

cell-derived malignancies such as non-/hodgkin’s lymphoma 

(NHL), systemic lupus, multiple sclerosis, B-cell lymphomas and 

leukemias [1]. Hence, BTK targeting is commonly studied in the 

treatment of immunological disorders.  

 Since the discovery of BTK in 1990, targeting BTK kinase 

has led to the finding of several BTK inhibitors both reversible 

and covalent irreversible, which were shown to be efficacious in 

the suppression of hematological malignancies. They include 

Ibrutinib, which was approved in 2013 for  treating  Chronic 

Lymphocytic Leukemia (CLL, the commonly found leukimia in 

Western countries), mantle cell lymphoma (MCL), and 

Waldenström’s macroglobulinemia (WM) [3,5,6]. Other BTK 

inhibitors such as ONO-4059, CC-292, and acalabrutinib (Acerta 

Pharma BV,  the Netherlands) are still in clinical tests for  B-cell 

malignancies and autoimmune disorders treatments [7–10]. 

It is well known that the finding of new molecules with improved 

drug efficacy require a large amount of resources of both time and 

cost.  

 The approach of computer-aided drug design is promising 

tools to initiate the search for new lead molecules as it offers time 

and cost efficiency. Trustworthy molecule models can figure out 

the important  characteristics of molecule that may affect  the 

inhibitory activity of protein target [11]. However, in term of BTK 

inhibitor, computer-aided drug design approaches have been less 

applied.  

 The main aim of this study was to perform molecular 

modeling study based on pharmacophore model analysis to 

identify molecular hits of BTK inhibitors. Pharmacophore model 

was applied to screen for a new molecule of potential BTK 

inhibitors. The novel identified molecules were then subjected to 

molecular docking to reveal their binding modes of interaction.  

 

2. MATERIALS AND METHODS 

 The pharmacophore model was generated using  

LigandScout Advanced 4.3 software [12]. The software provides a 

built‐in set of pharmacophore features including hydrogen bond 

donor (HBD), hydrogen bond acceptor (HBD), positive ionizable 

area (PI), positive ionizable area (NI), hydrophobic interaction 

(H), aromatic ring (AR), metal binding location, and excluded 

volume. Structure of BTK complexed with 2V3 was used, taken 

from Protein Data Bank (www.rcsb.org) with the PDB ID 4OTR 

[13]. Screening against 159 actives and 8673 decoys downloaded 

from the Directory of Useful Decoys-Enhanced (DUD-E) [14] was 

conducted for model validation, while screening against ZINC 

database employing Pharmit (http://pharmit.csb.pitt.edu/) web 

server [15] was performed to retrieve potential hit molecules. 

Pharmit setting follows the default values.  

 Further, all hits were subjected to molecular docking 

simulation against BTK protein. Preparation of BTK structure was 

completed using AutoDockTools 1.5.6 [16]. The center for 

docking was plotted following the coordinates of BTK native 

ligand (2V3). Discovery Studio Visualizer 2016 was employed for 

analysis and visualization of docked poses   

 Molecular dynamics (MD) simulation for 100 ns was used 

to check the stability of docked pose of top docked ligand and 

native inhibitor (2V3), each complexed with BTK, employing 

AMBER16 package, the ff14SB force field [17] for protein, GAFF 

force field [18] and AM1-BCC [19] for ligands. The complex was 
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dissolved in a TIP3P water periodic cell with a 10 Å distance from 

the edge of the water box. Counterions were used to neutralize 

each system. 

 Multistage energy-minimization simulations were 

performed to relax sterical hindrance in each complex [20]. 

Further, temperature of system was gradually raised from 0 to 300 

K in three sequential steps over 150 ps. The system was then 

subjected to equilibration at 300 K with a duration of 200 ps. The 

backbone heavy atoms were restrained in the equilibration steps. 

Finally, system was run  for 100 ns in constant temperature and 

pressure ensemble employing pmemd.cuda module. 

 All hydrogen-involving bonds were constrained using 

SHAKE algorithm [21] with a time step of 0.002 ps. The particle-

mesh Ewald algorithm (PME) was used to calculate electrostatics 

interactions [22] of a periodic box with radius cutoff for the 

Lennard-Jones (LJ) was set to 0.9 nm. The Langevin thermostat 

was used to control Langevin thermostat with a collision rate of 

1.0 ps-1. The snapshots  were collected  at an interval of 1 ps. The 

RMSD and RMSF were analyzed by CPPTRAJ module of 

AMBER16 [23], while visualization was conducted using the 

Visual Molecular Dynamics software [24]. Binding affinities were 

calculated for 15000 last frames of MD by following our previous 

work [25]. 

3. RESULTS  

 The model of pharmacophore was built using 2V3 

structure. Molecular features involving hydrophobic interactions, 

hbond acceptor, and hbond donors were selected while generating 

the pharmacophore model. Figure 1 shows the features of 

pharmacophore BTK-2V3 interaction. 

 

 

 
 

Figure 1. The features of pharmacophore. 

 

 Interaction of 2V3 with BTK consisted of four 

hydrophobics, seven hbond acceptors, and four hbond donors. 

Hypotheses were then built by combining those features, which 

gave 5 good models as indicated by their AUC100% values and 

Goodness of hit (GH) scores. Table 1 shows five models of 

pharmacophore.  

 Among the five model above, four models, i.e. 2V3-1, 

2V3-2, 2V3-3, and 2V3-4, had Goodness of hit-list (GH) score 

less than 7. GH score is a criterion to evaluate the ability of model 

to differentiate actives from decoys which account for both true 

actives and true inactives. GH score was evaluated according to 

Braga and Andrade (2013) [26], i.e.: 

   (
 

 
   

 

 
  )    

 In which, YA is yield of actives, Se is Sensitivity, and Sp is 

Specifity. GH score 0.7 or higher is widely considered as indicator 

that a model of pharmacophore is valid. Therefore, model 2V3-5 

was acceptable. Table 2 shows the GH score calculation. 

 In addition, evaluation of the model was also based on the 

Area Under Curve (AUC) of ROC curve. ROC curve was plot 

between true positive versus false positive. On the other words, 

ROC curve report Sensitivity (Se) as function of Specifity (1-Sp). 

In ROC curve, a higher AUC value represents better model of 

pharmacophore, and the threshold of AUC value was considered 

to be 0.5. Therefore, model 2V3-5 was valid according to both GH 

score and AUC value. Figure 2 displays the pharmacophore model 

of 2V3-5 and ROC curve. 

 
Figure 2. Best model of pharmacophore which consisted of three 

hydrogen bond acceptors (red dotted lines), three hydrogen bond donors 

(green dotted lines), and one hydrophobic (yellow sphere) features (left). 

The AUC of Receiver Operating Characteristic (ROC) curve (right). 

 

 
Figure 3. The superimposed 2V3 conformations of both experimental 

(grey) and docked (green) experiments. 

 

 Furthermore, screening for hit molecules against ZINC 

database retrieved 1337 hits. Molecular docking of all the 1337 

hits gave binding energies with the values ranging from −4.13 to 

−10.90 kcal/mol. The binding energies were slightly higher than 

that of 2V3 (−12.68 kcal/mol). The docked pose of 2V3 with BTK 

was corroborated by hydrogen bonds (Hbonds) with Lys430 and 

Met477, while Asp539 was involved in C-hbond. Those residues 

were also observed in the x-ray pose of the ligand. Figure 3 shows 

both experimental and docked poses of 2V3. 

 Further analysis on the docked ligands resulted in four best 

docked hit molecules. They were Lig65/ZINC25044394 

(E=−10.90 kcal/mol), Lig263/ZINC19583202 (E=−10.58 

kcal/mol), Lig436/ZINC1704300257 (E=−10.38 kcal/mol), and 
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Lig380/ZINC257300426 (E=−10.15 kcal/mol). Figure 4 shows the 2D structures of four best docked hit molecules. 

 

Table 1. Five good models of pharmacophore generated. 

ID Model of 

pharmacophore 

Features Goodness of hit 

(GH) score 

AUC100% 

 

 

 

 

 

2V3-1 

 

 

 

 

2 hydrophobics,3 

hbond acceptors, 1 

hbond donor 

   

 

 

 

 

0.25 

  

 

 

 

 

 

0.52 

 

 

 

 

 

2V3-2 

 

 

 

 

 

 

1 hydrophobic, 4 

hbond acceptors, 2 

hbond donors  

 

 

 

 

 

0.12 

 

 

 

 

 

0.50 

 

 

 

 

 

 

2V3-3 

  

 

2 hydrophobics, 5 

hbond acceptors, 2 

hbond donors 

 

 

 

 

 

0.18 

 

 

 

 

 

 

0.50 

 

 

 

 

 

 

2V3-4 

  

 

1 hydrophobic, 4 

hbond acceptors, 2 

hbond donors 

 

 

 

 

 

0.50 

 

 

 

 

 

0.50 
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2V3-5 

  

 

 

1 hydrophobic, 3 

hbond acceptors, 4 

hbond donors 

 

 

 

 

 

 

0.75 

 

 

 

 

 

 

0.50 

 

Table 2. The GH score calculation. 

Parameter Value 

Molecules in database (D) 8826 

Active in database (A) 159 

Obtained hits (Ht) 1 

Active hits (Ha) 1 

% actives [(Ha/Hit)*100] 100 

% actives comparison [(Ha/A)*100] 0.628 

Enrichment factor (E) 

[(Ha*D)/(Hit*A)] 

55.509 

False positives [Ht-Ha] 0 

Goodness of Hit Score (GH)* 0.75 

 

Table 3. Binding energies as predicted by MM-PBSA method. 

Ligand ΔEELE 

 (kcal/mol) 

ΔEVDW 

 (kcal/mol) 

ΔEPBCAL 

(kcal/mol) 

ΔEPBSUR 

(kcal/mol) 

ΔEPBTOT 

(kcal/mol) 

2V3 −46.15±8.44 −67.87±3.75 86.99±6.20 −6.04±0.19 −33.07±7.99 

Lig65/ZINC2504

4394 

−0.68±1.92 −29.75±2.16 11.09±2.20 −2.61±0.12 −21.96±2.12 

 

 

 
Figure 4. The structures of Lig65/ZINC25044394, 

Lig263/ZINC19583202, Lig436/ZINC1704300257, and 

Lig380/ZINC257300426. 

 

 Lig263/ZINC19583202 formed Hbond interactions with 

Lys430 through oxygen atoms of pyrimidine ring. 

Lig436/ZINC1704300257 also formed hbond with Lys430 

through oxygen atoms of pyrimidine ring.  

 Lig380/ZINC257300426 also formed hbond with Lys430 

through oxygen atoms of phenyl ring.  Lig65/ZINC25044394 

form van der Waals interaction with Asp539, which is involved in 

the hbond interaction of native ligand of x-ray pose. Figure 5 

displays the binding modes of each hit molecules into the active 

site of BTK. 

 In order to investigate the stabilities of docked complexes, 

molecular dynamics simulation was conducted for 100 ns. The 

root-mean square deviation (RMSD) for heavy atoms of protein 

was plotted as depicted in figure 6 (left). It is evident from Figure 

6 (left) that both complexes were very stable during 100 ns. The 

RMSD for Lig65 complex was slightly higher as compared with 

that of 2V3, however, the values of both were under 2Å, which 

indicated their stabilities. On the other hand, protein residue 

flexibility was analyzed by the root mean square fluctuation 

(RMSF) values as depicted in figure 6 (right). It is shown that the 

protein residues were stable enough in both complexes. Higher 

values of RMSFs were observed in loop regions of protein, 

however, they are still acceptable considering their fluctuation was 

under 4 Å. 

 Further, in order to evaluate the affinities of docked 

ligands, binding energies were computed according to MM-PBSA 

method, which is considered more accurate in binding energy 

prediction as compared to docking method. 

  

 
Figure 5. The docked poses of Lig65/ZINC25044394, 

Lig263/ZINC19583202, Lig436/ZINC1704300257, and 

Lig380/ZINC257300426, each in the active pocket of BTK. 
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 As shown in Table 3, binding energy of 2V3 (−33.07±7.99 

kcal/mol) was lower than that of Lig65 (−21.96±2.12). Binding 

interactions were supported by advantageous electrostatic (ΔEELE), 

van der Waals (ΔEVDW), and non-polar energies of desolvation 

(ΔEPBSUR). While that of polar energy of desolvation (ΔEPBCAL) 

opposed the interaction in both complexes. 

 

 
Figure 6. Plots representing RMSD profile of heavy atoms of protein 

(left) and RMSF profile of BTK (right), in which 2V3 and Lig65 were 

colored as red and blue, respectively. 

 

4. CONCLUSIONS 

 In summary, a reliable structure-based pharmacophore 

model was generated  based on the interaction of 2V3 with BTK. 

Using the pharmacophore model, 1337 molecules were identified 

as potential BTK inhibitors. The identified molecules were docked 

to BTK to reveal their mode of interaction. Four top docked 

ligands were revealed to interacted with BTK in the active site, 

which was further confirmed by the RMSD and RMSF plots of 

100 MD simulation to afford one best hit.  The binding affinity of 

the hit molecule was comparable with that of 2V3, which 

suggested the need for further experimental verification. 
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