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ABSTRACT 

Ribosome sonification contains total steps of DNA, m-RNA, t-RNA and amino acids consequences that convert the bio-macromolecules 

data derived from biology systems into acousmatic music are a novel approach in a symphony orchestras. NMR data of the 13C are 

particularly well suited data sources for DNA, mRNA and amino acids sonification. One of the important directions in ribosome 

sonification is time-series-sonification data (TSSD), due to auditory imagination is very sensitive to changes in time. Although, their 

resonant frequencies are basically in the MHz range, the resonant frequencies span around kHz.  The ribosome of E. coli is consisting of 

several genes which one of them might be divided into 8 series of codons and anti-codons for eight octaves of notes. During NMR 

calculation with AB-initio methods, these signals are routinely mixed down into the audible frequencies ranges, rendering the need for 

any additional frequencies transpositions unnecessary. The concert pitches vary from ensemble to ensemble and have varied largely 

over music methods. The most general advance tuning standard corresponds to 440 Hz for An above middle C as a sequence note. This 

concept is also applied for distinguishing among the "nominal" (written), and "real" (sounding) notes of a transposing instrument  that 

refers to the sounding pitch on a non-transposing instrument. By this study, E .coli’s gene sequences into musical notes for a revealing 

auditory algorithm has been converted. Estimations of their calculation and optimization of those codons have been done and the total 

frequencies of each nucleotide have been converted to several music notes and distinguishing those using variations of chemical shifts 

including pitch, time duration length of notes and even rhythm have been accomplished. 

Keywords: DNA; mRNA; E .coli; concert pitches; sonification, classical music notes. 

 

1. INTRODUCTION 

 Ribosome is associated with biological macromolecules 

machine, existed within all living biological cells, that acts as 

translation of protein synthesis. Ribosomes make strength of 

jointed amino acids  together based on m-RNA molecules [1]. 

Claude, first observed ribosomes in 1941 and two major 

components are included in ribosome, one is the small ribosomal 

subunits, that read the m-RNA , and the second term is larger 

subunits, which link amino acids for forming 

the polypeptides chains. Each subunit consists of one or 

more ribosomal RNA (r-RNA) molecules and a variety 

of ribosomal proteins . Ribosome works such a factory, therefore, 

is known as ribonucleoprotein factories (RNP) [2]. As ribosome 

can be found in mitochondria and chloroplast, they are called 

organelle within organelle. Brown and Robinson first discovered 

ribosomes in plant cells in 1953 and two years next Palade, 

isolated ribosomes from animal cells and detected RNA in them.  

In 1958 R.B. Roberts coined the term ribosome. In 

contrast mature RBC and sperm, the ribosomes appear in both 

prokaryotic and eukaryotic cells. In prokaryotic, ribosomes are 

found freely scattered in the cytoplasm, but in eukaryotic cells it 

appears free in the cytoplasmic that attached to the outer surfaces 

of the rough endoplasmic reticulum and nuclear envelopes [3]. 

Ribosome appears individually in monosomes, while clusters 

shape in polysomes   and during the protein synthesis 6-8 

ribosomes temporarily join with a mRNA for forming a cluster 

which called poly ribosome (polysome or ergo some ). The 

amount of ribosomes in the cells depends   on protein synthesis. 

The popular ribosomes consist of a somewhat flat, elongate small 

subunit and also a roughly hemispherical large subunit, which 

associate at the initiation step and dissociates upon termination of 

the proteins synthesis. The ribosome helps as a physical scaffold,  

serve to bring together in correct orientations [4]. In addition, the 

mRNA, representing a transcript of the DNA segment to be 

translated (t-RNA), bearing the related amino acids due to 

anticodon for the corresponding m-RNA codon.  

Majority, has catalytic activity which placed in the 

peptidyl-transferase center, which is required for transferring the 

related t-RNA- amino acids to the nascent polypeptides in each 

step of elongation. The small subunit in ribosome exhibits a one 

third/two-thirds distribution of mass into a head and body portion, 

which extends along the interface with the large subunit.  The 

roughly triangular head tapers off into a scythe-shaped extension, 

curved away from the large subunit that is especially pronounced 

in eukaryotes [5]. The large subunits in ribosome are roughly 

hemispherical, and bears three prominent extensions that serve as 

landmarks. The genetic specification in living organisms is saved 

in the genome sequences of their DNA.  

Most amounts of these sequences encode proteins which 

carry out most of the functional tasks in all extant organisms. The 

DNA information is made available by transcription of the genes 

to mRNAs (messenger ribonucleic acids) that subsequently are 

translated into the various amino acid sequences of all the proteins 

of an organism.  

This is the central dogma of molecular biology in its 

simplest form as; DNA-gene transcription) → mRNA 

(translation) → Protein peptide sequences.  The genetic codes in 

DNA are preserved via replication of the genome accomplished 

via DNA polymerase. In all biological systems, transcription of 
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DNA into mRNA is done through RNA polymerase, and 

translation of mRNA is done via the ribosome. The mRNA 

sequence includes ribonucleotides with either one of four bases 

which are known as adenine, cytosine, guanine and uracil. The 

amino acids are encoded through several codons such as UUU or 

UUC for phenylalanine, and also termination of translation and 

initiation of translation mainly have been recognized via (UAG, 

UAA) and AUG, respectively (encoding the methionine)[3-5]. The 

m-RNA sequences are decoded starting with AUG codons which 

followed via the sequences of codons, specifying the order of 

insertion of amino acids in the nascent proteins that are followed 

through the termination codons, signaling which the proteins are 

ready for dissociation in the ribosome for subsequent folding into 

its functional state. The links among the m-RNA and the peptide 

sequences are t-RNA. In the bacterial cells there are 64 different 

kinds of t-RNA molecules and each one is composed of about 80 

nucleotides. They have a CCA-end, to which an amino acid can be 

linked by an ester bond, and an anticodon, which can read m-RNA 

codon cognates to the amino acid links to the CCA-end of the t-

RNA.  

An enzyme recognizing t-RNAs is assigned for each 

amino acid with an anticodon complementary to the m-RNA 

codon cognates to these amino acids [6]. Consequently, the 

enzyme recognizes the amino acids and its cognates of t-RNA(s) 

and then pairs them together at the expense of ATP hydrolysis to 

the higher standard free energies complexes that called aminoacyl-

t-RNA [4-6] (Fig.1).  

 
Figure 1. DNA-gene transcription) → mRNA (translation) → Protein 

peptide sequences 

 

1.2. Precision of m-RNA translation.  

Precision translations of the genetic codes from 

sequences of related proteins via recognition of aminoacyl-t-RNAs 

cognate to m-RNA codons demonstrated in the A site based on the 

Gipps free energies (∆Go ) among cognates and non-cognates 

codon-anticodon base pairs. These ∆Go -data for the competition 

among cognates and non-cognates t-RNAs at all the 61 amino acid 

encoding codons in m-RNAs, the ribosome can enhance the 

precision and therefore reduce the frequencies of amino acids 

substitution errors in nascent peptides chains via the principle of 

proofreading. Amino-acyl-t-RNAs enter the ribosome in A ternary 

complex consist of EF-Tu and GTP.  

Between these, the cognate ternary complex is selected 

for GTP hydrolysis with high probability, while non-cognate 

ternary complexes dissociate with high probability. In this item, 

the same standard free energies between cognates and non-

cognates- t-RNAs can be applied several times [6,7]. In Fig.2 (A), 

the ratios among cognates and non-cognates peptides have been 

defined for concentrations of cognates and non-cognates ternary 

complexes.  

The genetic codes are redundant; there are 20 canonical 

amino acids but sixty one sense codons, all of which are used in 

mRNA [5,7]. As instance, in E. coli there are 5 ISO-accepting t-

RNAs for leucine. In addition related t-RNA can read several 

codons via accepting mismatches in the third codon position based 

on wobble hypothesis such as, t-RNA (Phenylalanine) (anticodon 

GAA) reads the two phenylalanine codons UUU, UUC, the ISO-

accepting t-RNALeu2 (anticodon GAG) reads the leucine codons 

CUU, CUC and tRNALeu3 (anticodon UAG) reads CUG, CUA 

and CUU [5-7]. The physical and chemical phenomenon occurring 

third codon position wobble has been another unanswered 

question during past years of ribosome research. The treatment of 

codon reading on the ribosome can be tuned up or down by 

mutations in ribosomal RNA and ribosomal proteins. These 

Precision tuning features have also remained mysterious, since 

they often relate to events far from the decoding center (Fig.2).  

Due to the  30S subunit structures at high resolution in 

complexes with various ligands, the reason “ how the ribosome 

can enhance the ∆Go values for t-RNA”  has cleared in initial 

selection and proofreading, and also how the wobble mechanism 

done or how ribosomal mutation has been answered in a simple 

and coherent manner [8].  

 
Figure 2. (a) the geometry of base pairing between U1 in first codon 

(A36 in the anticodon is examining by A1493). (b) Base pairing between 

U2 in second codon position and A35 in amino-acyl-t-RNA (examine by 

A1492 and G530), (C) the geometry of the base pairing in third codon 

position (U3:G34) 

 

In a summary ribosome has 1-mRNA binding site in 

smaller sub-unit 2- A-site or amino acyl-t-RNA site, 3- P-site or 

peptidyl-t-RNA site and 4- E-site or exit site to which uncharged t-

RNA come before leaving the ribosome (Fig.3). Structurally, 

ribosomal subunits include tightly folded ribosomal RNA, (r-

RNA) and many surrounded proteins. The mole ratio of r-RNA to 

proteins in prokaryotic and eukaryotic cells is sixty/forty and 

fifty/fifty by weight respectively [7-9]. The ribosome’s protein 

may be basic, chemical structural or enzymatic in functions.  
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The bigger subunit contains an important enzyme – 

peptidyl transferase, which brings about the formation of peptide 

bond. Because the r-RNA remains fully covered with proteins 

inside the ribosome, they are therefore, ribonucleoprotein particles 

(RNP)[6-10]. 

 
Figure 3. A ribosome showing different active sites. 

 

1.2. Convert DNA sequence to music.  

 Mc-Millan [11, 12] used the artificial intelligence networks 

to convert the IR spectrum to music via acoustic foundation. Non-

scientist musicians usually do not feel that chemical molecules 

oscillate and play imaginary music under various conditions (due 

to fast vibration of the atoms in macro-molecules which are orders 

of a large magnitude faster than acoustic vibrations).   

 This perspective seems more amazing by the fact that each 

molecule has a specific spectrum in a wide region of music. In any 

simulation of molecular properties towards musical sonification 

any wave might be matched to the melodies, rhythms, pitches or 

duration of acoustics that are the meaning of “Sonification” from 

bio-macro-molecules to music. There are   long and distinguished 

histories, within this field of music, of composers using non-

musical systems as root and sources for any further composition. 

For example some items can be noted, (1): Brazilian composer 

“Heitor Villa-Lobos” compositions his “Symphony No. 6: On the 

Profiles of the Mountains of Brazile” (1945) for the orchestra;(2): 

Famous American composer “John Cage’s Atlas Eclipticalis 

(1960-61) for interesting orchestra; Etudes Borealis (1977) for 

cello and/or piano, which made via tracing star maps onto score 

paper; (3) Charles Dodge’s  another American composer “The 

Earth’s Magnetic Field” (1971) for computer, which mapped 

magnetic field measurements into the basic notes of diatonic 

musical scales; (4) Clark and Dunn’s works, especially their paper 

“Life Music: The Sonification of Proteins” and their several 

collaborative CDs of DNA music   are paradigm for those 

sonification. In each of them, the non-music sources are converted 

to a music that often has quite unfamiliar aspects [12-15].  

 The approach supposed of the "DNA sonification" is based 

on the translation of DNA sequences representations into musical 

notes that not only permits to create a musical instrument but also 

allows exploiting deep neural network models for representing and 

designing in the audio spaces. Sonification, basically focuses on 

creating the spectrum of overlapping vibrations either to mimic the 

waves and sounds of related concepts that do not naturally appear. 

Therefore, have been considered sonification of spider webs and 

whole ribosome structures, consist of [P-site] = violin, E-

site=Piano, A-site= Cello, 5s-site = Saxophone, peptidyl-

transfers= Oboe, m-RNA site= Both violin & Clarinet and whole 

ribose is the orchestra ’leader. By this work, a formulation of 

sonification method by which the nucleotide sequence of DNA 

and amino acids in ribosome, have been applied to produce 

audible sound through the chemical and physical properties of 

those components such as NMR, NBO, QSAR and Normal mode 

analysis [15,16].  

 The supposed sound-based generative algorithms are based 

on the natural vibrational frequencies of nucleotides and amino 

acids. Commonly, the vibrational spectra of those nucleotides can 

be computed via computational chemistry methods such as 

abinitio methods, molecular dynamics (MD) and especially 

QM/MM. A computer system can convert these kind inaudible 

sounds into a range of musical frequencies. By converting these 

waves of the DNA, t-RNA and amino acids, they can then be used 

to express musical sounds that are based on the complex spectrum 

of those vibrations. It is notable that t-RNA, m-RNA and DNA 

play rolling of information processing, mutations and memories in 

the brain. Hereby through artificial intelligence, the structures of 

ribosome components in orchestra space have been modeled via 

the translational approach and then translation back to ribosome 

components. The summarize chart of this work is as follows. (1) 

Analyzing of the translation of the vibrational spectra of each 

ribosome’s components towards audio signals using the concept of 

trans-positional equivalency. (2) Generating known gene 

structures into musical scores by sonification. (3) Finding a model 

of converting 13C-NMR data of nucleotides, di-nucleotide (Bas 

pairs) and three nucleotides (codons) sequences, t-RNA and amino 

acids components to musical notes. (4) Presenting a model for 

overcoming the jump between consecutive notes as a consequence 

of the ribosome components to any range of genes with NMR & 

normal modes data. The main problem is the question of how to 

incorporate rhythm into the sequence of those notes [16].  

1.3. Codes for DNA, t-RNA and amino acids interpreation. 

 The codes for sonification might be linearly converted to 

the musical sounds, in an approach that has an implied cellular 

biology context. Interpretation of DNA and t-RNA and amino 

acids information as musical sounds, which clearly cross the 

divide among sciences and arts fields [17]. For achieving this goal 

and targets, they can connect the Amino acids, t-RNA and DNA 

sequence data to the perceptual specification of sounds [18]. The 

sonification ways and their auditory help analyze the concept of 

related sequences by the musical sounds and it should be useful 

for definition of these codes of DNA, m-RNA and t-RNA 

sequence interpretation during sonification [19].  

 The algorithm permits users to inputting their own DNA 

sequences to produce an auditory display in real time. The major 

action is the reading frame codons (algorithm) that are extracted 

from the genetic code, whereby the codons are mapped to musical 

notes on a scale and also there is no optional handling work for 

reducing the number of notes to make the auditory display more 

musical. The DNA bases can be specified as codons in each of 

three possible reading frames leading to three interlaced streams of 

notes [20]. 

 

2. MATERIALS AND METHODS 

2.1. NMR spectroscopy converting.   

 DNA, m-RNA, t-RNA and amino acids related to codons 

and anticodons specification in ribosome can be turned by 

sonification of NMR spectroscopy directly into musical sound, 

including Infra-red spectroscopies "IR" or nuclear magnetic 

resonance "NMR".  Through IR spectroscopy, it can be measured 



Majid Monajjemi 

Page | 5682  

the vibrational behavior of those components in ribosome has been 

applied for the musical sounds in sonification [19-21].  

 Usually, these kind approaches have to be made during the 

sonification concluding musical’s notes, pitches, melodies, 

Rythms and Chords to be designed in viewpoints of different 

physical and chemicals images. By this study, 13C-NMR 

spectroscopy is used as the novel source for ribosome 

components. NMR is occasionally applied in structure 

illumination and confirmation that are extremely sensitive for 

conformation and changing of those components in ribosome. The 

data of NMR calculation has been yielded from B3LYP/6-31G* 

level of methods for Guanine, Cytosine, Adenine, and Thymine 

which are shown in Figs 4&5.  

The human genes are as follows; group  including; 

ATG,ATC,TGC,GCA,CAT, AGC, TCA,CTG, group group(1) 

ATT,TGG,GCC, CAA, AGG, ,GAA,CTT, (2) ATG,TGC, 

GCA,CAT, AGC, TCA, GAT,CTG , (3) AAT,TTG,GGC,CCA, 

AAG,TTC, GGA,CCT, (4) ATA, TGT, GCG, CAC, TAT, GTG, 

CGC, ACA (5); AGT,TCG,GAC,CTA, AGC , TCA, GAT,CTG, 

(6) AAA,TTT,GGG,CCC,ATG,TGC,GCA,CAT  which are shown 

in Figures 3-5 .  

 

 
Figure 4. NMR data from B3LYP/6-31G**, for G and C base pairs.  

 

 
 

Figure 5. NMR data from B3LYP/6-31G**, for A and T base pairs. 

  

  It is complicates to explain the phenomenon of NMR 

mechanisms for analyzing data without introducing a wide 

concept of scientific subjects.  Therefore, scientifically, in these 

spectroscopies, each of molecules has various atomic resonances 

which are split to a few resonances by somewhat differences in the 

values of frequencies if there are other magnetic nuclei nearby. 

The resonances are estimated via locating a sample in powerful 

magnetic fields, then using the pulse of radio frequencies. 

Basically, the biomolecules can be defined with tiny bells that are 

made audible through being hit with the radio frequencies hammer 

[22].  

 The conversions of those spectrums to the audible sounds 

are known as NMR sonification that has been used for a few gens 

with this work (Figs. 6 & 7) . 

 
Figure 6. Optimized G-C nucleic acid base pairs through B3LYP/6-

31G**, including 3 hydrogen bonds. 

 
Figure 7. Optimized A-T nucleic acid base pairs through B3LYP/6-

31G**, including 3 hydrogen bonds. 

 

 The optimized structures and energies data due to particular 

methods and basis sets are used in a model, in other words data 

during optimization of molecules and codons are not equal with 

difference of basis sets or methods. So, the conversion of 

sonification based on musical frequencies related to the notes may 

be different for each codon in table 1. Pitch, is one of the major 

components of the music’s notes in the symphonies that pivotal 

section of acoustics is dependent on it. In abinitio quantum 

chemistry each basis sets and methods including DFT, MPn, RHF, 

UHF, ROHF and even semi empirical methods are related to the 

type of pitches. 

2.2. Concert pitch. 

Pitch refers to that group of musical instruments that are 

tuned to the performance. The concert pitches vary 

from ensemble to ensemble, and have varied largely over music 

methods. The most general advance tuning standard corresponds 

to 440 Hz for An above middle C as a sequence note. This concept 

is also applied for distinguishing among the "nominal" (written), 

and "real" (sounding) notes of a transposing instrument  that refers 

to the sounding pitch on a non-transposing instrument. Music to 

transpose tools is transposed via different keys from that of non-

transposing tools, such as, playing a written C on a “B♭

” clarinet or trumpet produces a non-transposing instrument's “B

♭” that  referred to as "concert B before 20th century, there was 

no coordinated effort for standardizing musical pitches, and the 

https://en.wikipedia.org/wiki/Pitch_(music)
https://en.wikipedia.org/wiki/Musical_instrument
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levels across Europe varied widely. The term normally applied for 

the unit of pitch, cycle per second (CPS) were renamed 

the hertz (Hz) in the 20th century in honor of Heinrich.  

A = 440 Hz is the most official standard which is used 

widely in the world and many orchestras comported to this 

standard as concert pitch but some orchestras such as the New 

York Philharmonic, use A = 442 Hz. The latter is seldom used as 

the tuning frequencies in European countries,  especially in Italy, 

Norway and France.  Nearly all modern symphony orchestras in 

Germany, Austria, Russia, Sweden and Spain tune to A = 443 Hz. 

Some orchestras tune applying the electronic tone generators 

and when playing with fixed-pitch tools such as the piano, the 

orchestra will basically tuned to the orchestra's normal pitches. In 

other words it is thought that the normal trend since the middle of 

the 20th century has been for standard pitches to rise, though they 

have been rising far more andante than they have in the past.  

Many advanced ensembles that specialize in the 

efficiency of Baroque music have agreed with the standard of 

A = 415 Hz.  An exact equal-tempered semitone lower than 

440 Hz would be 415.30 Hz. Basically, it permits to play with 

fixed-pitch tools if their transposed down a semitone. Although 

general efficiency practice, especially in the German Baroque 

idiom, for tuning certain works to Chorton, a semitone higher than 

440 Hz (460–470 Hz) such as Pre-Leipzig period cantatas of 

Bach). Orchestras in Cuba basically use A436 as the pitch so 

which strings, that are complicated for obtaining, last longer. 

Treble clef symbol indicates that the second line from the bottom 

is "G". On any staff, the notes are always arranged so that the next 

letter is always on the next higher line or space. The last note 

letter, G, is always followed by another A (Fig.8). 

 

Figure 8.  Calculations of  Treble Clef Symbol of 8 codons  

 

2.3. Basic music theory.   

 In the standard notations, musical sound can be written as 

the series of notes. The major item in the pieces of music needs to 

clear about a note in the pitches, or, what is its duration among the 

notes (time scale) or how long it lasts or stops. 

 
Figure 9. Time scales and note Lengths of AUG codon based on 

distances between chemical shifts, each 10 ppm is one unite. 

 

Table 1. Normal modes (B3LYP/6-31G*) analysis based on Music’s note  

Base Maximum 

frequency (HZ) 

of  Normal modes 

Intensity degeneracy Music’s 

note 

Adenine 3701  556  1 A#
7/B

b
7 

Cytosine 1899 1531  1  A#
6/B

b
6 

Guanine 2826 491  1 F7 

Thymine 3494 438 1 A7 

Bas Pairs 

G-C 6005 6501 1 G#
8/A

b
8 

A-T  7400 2333 1 A#
8/B

b
8 

   

 

  
Figure 10. Multiple rhythm, Rests, Signature, Meter and Measure marks 

in the notes. 

 

 
Figure 11. Optimized of group (1) , Helix form is B form and sugar form 

is 2`and Caps are from 3` to 5`.  

 

 For definition the pitches, must be looked at the clef and 

the key signature, and then look to the line which the notes are 

located on or between the lines. In the NMR figures the distances 

among chemical shifts explain the time scale among those notes 

(Fig .9).  

 The dots which are some places other than next to the head 

of the note do not affect the rhythm. Other dots are articulation 

marks. They may affect the actual length of the note (the amount 

of time it sounds), but do not affect the amount of time it must be 

given (Figs 9-11).   

 In table 1 chemical and musical reaction are listed  

Chemical reaction: Adenine +Thymine → Adenine- Thymine 

(Bas pairs) Musical reaction: (A#
7/B

b
7) + (A7) → (A#

8/B
b
8) 

Chemical reaction: Guanine +Cytosine → Guanine-Cytosine (Bas 

pairs) & Musical reaction is: (F7) + (A#
6/B

b
6) → (G#

8/A
b
8)  

 The note lengths are defined based on how long the notes 

last compared to the whole notes. A note which lasts half as long 

as a whole note is a half note. The note that lasts a quarter 

compare to whole notes are a quarter notes. The pattern continues 

with eighth notes, sixteenth notes, thirty-second notes, sixty-fourth 

notes, and so on, each type of note is half the length of the 

previous type (Fig.10-a). 

 When the rhythms are complex, this is necessary to make 

the rhythm in each part clear (Fig.10-b). The time signatures are 

the mark that is written at the beginning of the pieces of music, but 

https://en.wikipedia.org/wiki/Cycle_per_second
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Heinrich_Hertz
https://en.wikipedia.org/wiki/New_York_Philharmonic
https://en.wikipedia.org/wiki/New_York_Philharmonic
https://en.wikipedia.org/wiki/Baroque_music
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the meter of a pieces is the sequence of its rhythms in a repetitive 

pattern of strong and weak beats. 

 Meters can be classified via counting the number of beats 

from the strongest beat to the next one. The meter of a piece of 

music is their foundation rhythm; the time signature is a symbol 

that tells you the meter of each piece (Fig.10-c). At the ends of the 

music, a measure should be interrupted via a double bar were 

located the pickup notes in the correct place and assures that 

repeats have the correct number of the beats. When this occurs, the 

bar lines would be still appearing at the end of the completed 

measure (Fig.10-d). The whole calculations and theoretical 

approaches and experimental methods have been done based on 

our previous works [23-78]  in viewpoints of theory an 

mathematical conversion ofrelated  physical chemistry properties 

to those biological systems to conversion museical notes.

3. RESULTS  

3.1. The oboe charachteristic on leading the orchestra in 

tuning.  

The sound of the oboe stands out from the orchestra, so 

it’s easy for all the musicians for hearing. The oboes have stable 

pitches and the others pitches are unstable. The only way of 

altering the pitch of an oboe is to adjust the breadth or length of 

the reeds; it is nearly impossible to make any sudden changes on 

the day of the efficiency. Nearly all musical tools have usually 

been unstable in subjects of pitch due to the differences in heat, 

humidity, and the like. Generally, the musical tools have such as 

mechanism which allows efficiency for tuning them. However, 

due to its structure, the oboe's pitches might only be changed via 

removing and inserting reeds[79,80]. They are not possible for 

changing how high-pitched the tones are the way that can be done 

by removing a clarinet's barrel or altering the tension of a violin's 

strings[80-83].  

The only techniques of altering the pitches of the oboes 

are to adjust the breadth or length of the reeds; it is nearly 

impossible for making any suddenly changing. It is complicated to 

adjust the pitches of the oboes[84,85]. So, it would appear which 

the other musical tools must be made to match, and that is the 

explanation of why the oboes are the standard for tuning. Its pitch 

is also steadier than strings, so it’s a more reliable tuning source. 

This was especially true when all violin strings were made from 

gut[86]. Longevities also have more and more for doing with it: 

over time flutes, bassoons, French horns and clarinets drifted in 

and out of the orchestra; but oboe was nearly always written into 

orchestral scores. So they became the standard instrument for 

tuning[87-89]. As same as any other musical tools, oboes might be 

tuned sharp or flat. But most oboists use an electronic tuner for 

making sure their ‘A’ is on point. Theoretically, the whole 

orchestra must use the electronic tuner for tuning which probably 

yields a more consistently accurate note than an oboe, as well. 

Some part notes in the ribosome symphony are exhibited in 

Figs.12& 13 [90-94]. 

3.2. The structure of E. coli ribosome.  

In the 1960s, regulation of ribosome synthesis yields a 

simple linear relationship among growth rates and cellular 

concentrations of ribosomes. In past decades, microbiologists had 

been interested in various items that influence growth. Bacterial 

physiological scientist was interested in the subject of what really 

determines growth rates. Consequently, the main question of 

regulation of its synthesis, growth rate-dependent control, is based 

on definition of how bacterial cells adjust ribosome synthesis in 

relation to synthesis of other cellular component so that the 

optimize growth rates are attained under middle to fast growth 

situations[95-98]. 

 
Fig.12. the violin notes which are imaginaries related to p-site of 

E.coli ribosome cell  

 
Figure 13. The violin notes which are imaginaries related to mRNA of 

E.coli ribosome cell. 

  

The other basic events dependent on this study of 

regulation of ribosome synthesis is the discovery of stringent 

control which has a musical behavior by itself. Although the 

cessation of stable RNA including both r-RNAs and t-RNAs in 

auxotrophic bacteria starved for a required amino acid had been 

known for some time, they were a discovery of the rela gene by 

Gunther Stent and Sydney Brenner.  This important finding 

stimulated the scientist to study the mechanism involved in this 

regulatory phenomenon[99-101].  

Measurements of synthesis rates of r-RNAs, r-protein 

mRNAs, and r-proteins under several nutritional situations were 

accomplished through using these isolated genes and more 

improved techniques via various groups. So, it became clear that 

under medium to fast growth conditions, the synthesis rates of all 

r-proteins reflect their accumulation rates. Furthermore, the 

synthesis rates of r-RNAs also approximately reflect their 

accumulation rates under these situations. As will be mentioned 

below, this supposition turned out to be incorrect and eukaryotic 

cells were found to apply the third possibility mentioned above, 

i.e., separate and direct regulation of both r-RNA and r-protein 

syntheses in E. coli ribosome. Based on some previous works           

we have simulated a part of E. coli ribosome for a sonification and 

a partial playing of this mashie yields a simple music as instance 

can be seen in Figs 12 & 13. 
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4. CONCLUSIONS 

 The ribosome of the E. coli being analyzed related to the 

features present by the NMR analysis for musical sonification. In 

addition, it might be to select ribosome components based on 

structural features in order to create acoustic music notes. By this 

study, using the sonification methodology presented to create an 

acoustic music combination based exclusively on publicly 

accessible normal modes and NMR data. In addition, it can be 

useful for applying the sonification of other important DNA motifs 

such as mutation, transcription, restriction and duplication to 

unique sounds for highlighting their occurrence. The imaging of 

codons in t-RNA and anti-codons in m-RNA for writing the 

related musical notes are instructive and can also be useful for 

mapping the output of more complex approaches of sequence 

analyses to an auditory display. DNA sequences can be identified 

via sonification for providing an impetus for the inclusion of 

auditory displays within the toolkit of DNA sequences, as an 

adjunct to existing visual and analytical tools for ribosome.  These 

approaches are strong tools for any further controlling human 

diseases such as Cancer, Alzheimer, Parkinson and diabetes. 
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