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ABSTRACT 

In an effort to develop novel anti-inflammatory agents, a series of novel 2-methyl-3-furamides were synthesized and modified.The 

structures of the obtained compounds were confirmed by 1H NMR spectroscopy and elemental analysis.The synthesized compounds were 

preselected via molecular docking to be tested for their anti-inflammatory activity. Researched substances impact effect on the 

inflammation exudative phase course was studied on the basis of white rats paws inflammatory edema carrageenan model. Anti-

inflammatory activity researches have shown that synthesized compounds have possessed expressed anti-inflammatory properties, and 

some of them, in terms of activity, approach or exceed the comparison drug Ibuprofen. 
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1. INTRODUCTION 

The problem of pharmacological regulation of inflammation is 

relevant for modern medicine. There are a significant number of 

drugs that are used to treat inflammation [1]. Current approaches to 

overcome inflammation include the use of nonsteroidal anti-

inflammatory drugs (NSAIDs), immune selective anti-

inflammatory derivatives, selective glucocorticoid receptor 

agonists, resolvins/protectins and TNF inhibitors [2]. Non-steroidal 

anti-inflammatory drugs, which combine a whole range of 

properties displaying anti-inflammatory, analgesic, antipyretic 

activity are in special demand [3]. However, they all have 

ulcerogenic properties to varying degrees [3]. In order to overcome 

these restrictions worldwide, the development of new effective and 

safe anti-inflammatory drugs is continuing.  

Modern computer molecular techniques simulation is an 

integral part of basic research [4]. The integration of these in silico 

techniques makes it possible to search for new anti-inflammatory 

drugs. In this article which is the part of our researching biologically 

active heterocycles [5-20] we described synthesis, molecular 

docking and anti-inflammatories properties of some novel 2-

methyl-3-furamides. 

It should be noticed that 2-methyl-3-furamides display 

antifungal [21, 22], antileishmanial [23] and anticancer [24] 

activities. They are inhibitors of Carboxylesterase [25], Tyrosyl-

DNA phosphodiesterase 2 (TDP2) [26], succinate dehydrogenase 

[27], HIV-1 reverse transcriptase [28], selective V1A receptor 

antagonists [29, 30] and allosteric glucokinase activators [31].  

Such furancarboxamide as Fenfuram, Furancarbanil and 

Methfuroxam are commercially available fungicides [32]. Thus, the 

development of novel anti-inflammatory agents, among 2-methyl-

3-furamides should be continued. 

2. MATERIALS AND METHODS 

2.1. Materials.  

All chemicals were of analytical grade and commercially 

available. All reagents and solvents were used without further 

purification and drying. Ibuprofen was purchased from the medical 

store. 

2.2. Chemistry.  

All melting points were determined in an open capillary. The 

elemental analysis experimental data on contents of Carbon, 

Hydrogen and Nitrogen were within ±0.3% of the theoretical 

values. 1H NMR spectra of synthesized compounds in dimethyl 

sulfoxide (DMSO)-d6 solutions were recorded on a spectrometer 

Varian Mercury VX-400 [Agilent Technologies, San Francisco, 

USA] (400 MHz) at 298 K. Chemical shifts are reported as δ (ppm) 

relative to tetramethylsilane (TMS) as an internal standard. The 

coupling constant J is expressed in Hz.  

General procedure for synthesis of 5-aryl-2-methyl-3-furoic 

acids (1b, c): To a solution of 0.2 mol of the corresponding acid (2) 

and 2 g of CuCl2 x 2H2O in 80 ml of acetone with stirring was added 

dropwise a solution of areenediazonium chloride (3g, h) obtained 

by diazotation (HCl, NaNO2) of 0.21 mol of the corresponding 

aromatic amine. The temperature was maintained in the range of 

20-30 °C. The reaction was carried out until the evolution of 

Nitrogen ceased. 200 ml of water was added, the reaction product 

was filtered off and recrystallized in a mixture of alcohol DMF. 

5-(2,4-Dichlorophenyl)-2-methyl-3-furoic acid (1b). Yield 

68%, mp 257-258 °C. 1H NMR (400 MHz, DMSO): δ =12.51 (s, 

1Н, СООН), 7.81 (d, J = 8.4 Hz, 1Н, С6Н3), 7.81 (d, J = 8.4 Hz, 1Н, 

С6Н3), 7.56 (s, 1Н, С6Н3), 7.43 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 1Н, 

С6Н3), 7.24 (s, 1Н, furane), 2.63 (s, 3Н, СН3). Anal. Calcd. for 

C12H8Cl2O3: C, 53.17; H, 2.97. Found: C, 53.25; H, 2.94. 

5-(2,5-dichlorophenyl)-2-methyl-3-furoic acid (1c). Yield 

51%, mp 283-284 °C. 1H NMR (400 MHz, DMSO): δ =12,83 (s, 

1H, COOH), 7,83 (s, 1H, C6H3), 7,44 (dd, J1 = 8.4 Hz, J2 = 1.2 Hz, 

1H, C6H3), 7.31 (s, 1Н, furane), 2.62 (s, 3Н, СН3). Anal. Calcd. for 

C12H8Cl2O3: C, 53.17; H, 2.97. Found: C, 53.44; H, 3.01. 
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General procedure for synthesis of 5-R-2-methylfuran-3-

carboxamides (9a-c, 10a-d and 11a-f). To a solution of 0.01 mol 

of corresponding amine (4a-f, 7a-c, 8a,b) and 1 ml of triethylamine 

in 30 ml of anhydrous dioxane we added under stirring 1.59 g (0.01 

mol) of 2,5-dimethyl-3-furoyl chloride (6). The mixture was left to 

stand for 0.5 h and diluted with water, and the precipitate was 

filtered off, washed with water. 

2,5-Dimethyl-N-[3-(trifluoromethyl)phenyl]-3-furamide 

(9a). Yield 85%, mp 105-106 °C. 1H NMR (400 MHz, DMSO): δ 

= 9.69 (s, 1H, NH), 8.16 (s, 1H, C6H4 ), 7.96 (d, J = 8.0 Hz, 1H, 

C6H4), 7.47 (t, J = 8.0 Hz, 1H, C6H4), 7.30 (d, J = 7.6 Hz, 1H, C6H4), 

6.61 (s, 1H, furane), 2.52 (s, 3H, CH3), 2.28 (s, 3H, CH3). Anal. 

Calcd. for C14H12F3NO2: C, 59.37; H, 4.27; N, 4.94. Found: C, 

59.38; H, 4.24; N, 4.85. 

Ethyl 4-[(2,5-dimethyl-3-furoyl)amino]benzoate (9b). Yield 

87%, mp 143-144 °C. 1H NMR (400 MHz, DMSO): δ = 9.69 (s, 

1H, NH), 7.90 (d, J = 8.8 Hz, 2H, C6H4), 7.86 (d, J = 9.0 Hz, 2H, 

C6H4), 6.64 (s, 1H, furane), 4.30 (q, J = 7.1 Hz, 2H, CH2CH3), 2.53 

(s, 3H, CH3), 2.29 (s, 3H, CH3), 1.37 (t, J = 7.1 Hz, 3H, CH2CH3). 

Anal. Calcd. for C16H17NO4: C, 66.89; H, 5.96; N, 4.87. Found: C, 

66.22; H, 6.03; N, 4.80. 

4-[(2,5-Dimethyl-3-furoyl)amino]phenyl thiocyanate (9c). 

Yield 84%, mp 177-178 °C. 1H NMR (400 MHz, DMSO): δ =  9.69 

(s, 1H, NH), 7.91 (d, J = 8.7 Hz, 2H, C6H4), 7.54 (d, J = 8.7 Hz, 2H, 

C6H4), 6.62 (s, 1H, furane), 2.53 (s, 3H, CH3), 2.29 (s, 3H, CH3). 

Anal. Calcd. for C14H12N2O2S: C, 61.75; H, 4.44; N, 10.29. Found: 

C, 61.54; H, 4.28; N, 10.35. 

2,5-Dimethyl-N-1,3-thiazol-2-yl-3-furamide (10a). Yield 

90%, mp 180-181 °C. 1H NMR (400 MHz, DMSO): δ = 11.88 (s, 

1H, NH), 7.41 (d, J = 3.5 Hz, 1H, thiazole), 7.02 (d, J = 3.5 Hz, 1H, 

thiazole), 6.81 (s, 1H, furane), 2.55 (s, 3H, CH3), 2.26 (s, 3H, CH3). 

Anal. Calcd. for C10H10N2O2S: C, 54.04; H, 4.53; N, 12.60. Found: 

C, 53.88; H, 4.45; N, 12.41. 

N-(5-Ethyl-1,3,4-thiadiazol-2-yl)-2,5-dimethyl-3-furamide 

(10b). Yield 85%, mp 196-197 °C. 1H NMR (400 MHz, DMSO): δ 

= 12.19 (s, 1H, NH), 6.84 (s, 1H, furane), 3.01 (q, J = 7.6 Hz, 2H, 

CH2CH3), 2.56 (s, 3H, CH3), 2.28 (s, 3H, CH3), 1.37 (t, J = 7.5 Hz, 

3H, CH2CH3). Anal. Calcd. for C11H13N3O2S: C, 52.57; H, 5.21; N, 

16.72. Found: C, 52.49; H, 5.14; N, 16.80. 

5-(2,4-Dichlorophenyl)-N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-

methyl-3-furamide (10c). Yield 76%, mp 240-241 °C. 1H NMR 

(400 MHz, DMSO): δ = 12.62 (s, 1H, NH), 8.10 (s, 1H, C6H3), 7.84 

(d, J = 8.6 Hz, 1H, C6H3), 7.57 (d, J = 1.9 Hz, 1H, C6H3), 7.47 – 

7.42 (m, 1H, C6H3), 3.03 (q, J = 7.5 Hz, 2H, CH2CH3), 2.72 (s, 3H, 

CH3), 1.39 (t, J = 7.6 Hz, 3H, CH2CH3). Anal. Calcd. for 

C16H13Cl2N3O2S: C, 50.27; H, 3.43; N, 10.99. Found: C, 50.36; H, 

3.48; N, 11.11. 

5-(2,5-dichlorophenyl)-2-methyl-N-1,3-thiazol-2-yl-3-

furamide (10d). Yield 71%, mp 247-248 °C. 1H NMR (400 MHz, 

DMSO): δ =  12.37 (s, 1H, NH), 8.16 (s, 1H, C6H3), 7.82 (d, J = 2.1 

Hz, 1H, thiazole), 7.52 (d, J = 8.6 Hz, 1H, C6H3), 7.47 (d, J = 3.5 

Hz, 1H, thiazole), 7.32 (dd, J = 8.5, 2.0 Hz, 1H, C6H3), 7.10 (d, J = 

3.4 Hz, 1H, C6H3), 2.75 (s, 3H, CH3). Anal. Calcd. for 

C15H10Cl2N2O2S: C, 51.01; H, 2.85; N, 7.93. Found: C, 51.08; H, 

2.79; N, 7.85.  

N-(5-benzyl-1,3-thiazol-2-yl)-2,5-dimethylfuran-3-

carboxamide (11a). Yield 80%, mp 157-158 °C. 1H NMR (400 

MHz, DMSO): δ = 11.90 (s, 1H, NH), 7.38 – 7.25 (m, 5H, C6H4, 

thiazole), 7.22 (t, J = 7.0 Hz, 1H, C6H4), 6.81 (s, 1H, furane), 4.08 

(s, 2H, CH2), 2.49 (s, 3H, CH3), 2.22 (s, 3H, CH3). Anal. Calcd. for 

C17H16N2O2S: C, 65.36; H, 5.16; N, 8.97. Found: C, 65.22; H, 5.09; 

N, 8.88. 

2,5-Dimethyl-N-[5-(3-methylbenzyl)-1,3-thiazol-2-yl]furan-

3-carboxamide (11b). Yield 76%, mp 116-117°C. 1H NMR (400 

MHz, DMSO): δ =  11.90 (s, 1H, NH), 7.27 (s, 1H, thiazole), 7.19 

(t, J = 7.4 Hz, 1H, C6H4), 7.12 – 6.99 (m, 3H, C6H4), 6.81 (s, 1H, 

furane), 4.03 (s, 2H, CH2), 2.49 (s, 3H, CH3), 2.27 (s, 3H, CH3), 

2.22 (s, 3H, CH3). Anal. Calcd. for C18H18N2O2S: C, 66.23; H, 5.56; 

N, 8.58. Found: C, 66.06; H, 5.49; N, 8.41. 

2,5-Dimethyl-N-[5-(4-methylbenzyl)-1,3-thiazol-2-yl]furan-

3-carboxamide (11c). Yield 84%, mp 155-156 °C. 1H NMR (400 

MHz, DMSO): δ =  11.89 (s, 1H, NH), 7.25 (s, 1H, thiazole), 7.15 

(d, J = 7.9 Hz, 2H, C6H4), 7.11 (d, J = 7.9 Hz, 2H, C6H4), 6.80 (s, 

1H, furane), 4.02 (s, 2H, CH2), 2.49 (s, 3H, CH3), 2.26 (s, 3H, CH3), 

2.22 (s, 3H, CH3). Anal. Calcd. for C18H18N2O2S: C, 66.23; H, 5.56; 

N, 8.58. Found: C, 66.11; H, 5.48; N, 8.47. 

N-[5-(4-fluorobenzyl)-1,3-thiazol-2-yl]-2,5-dimethylfuran-3-

carboxamide (11d). Yield 91%, mp 146-147°C. 1H NMR (400 

MHz, DMSO): δ =  11.91 (s, 1H, NH), 7.31 (dd, JHH = 8.1, JHF =5.7 

Hz, 2H, C6H4), 7.27 (s, 1H, thiazole), 7.13 (t, J = 8.8 Hz, 2H, C6H4), 

6.81 (s, 1H, furane), 4.08 (s, 2H, CH2), 2.49 (s, 3H, CH3), 2.22 (s, 

3H, CH3). Anal. Calcd. for C17H15FN2O2S: C, 61.80; H, 4.58; N, 

8.48. Found: C, 61.63; H, 4.51; N, 8.37.  

N-[5-(4-Chlorobenzyl)-1,3-thiazol-2-yl]-2,5-dimethylfuran-

3-carboxamide (11e). Yield 93%, mp 140-141°C. 1H NMR (400 

MHz, DMSO): δ = 11.90 (s, 1H, NH), 7.35 д (2H, J = 8.3 Hz, 

ClС6Н4), 7.30-7.25 м (3H, ClС6Н4 + thiazole), 6.81 (s, 1H, furane), 

4.94 с (2H, СН2), 2.49 (s, 3H, CH3), 2.22 (s, 3H, CH3). Anal. Calcd. 

for C17H15FN2O2S: C, 61.73; H, 4.57; N, 8.47. Found: C, 61.60; H, 

4.53; N, 8.35. 

N-[5-(4-methoxybenzyl)-1,3-thiazol-2-yl]-2,5-dimethylfuran-

3-carboxamide (11f): Yield 88%, m.p. 155-156 °C. 1H NMR (400 

MHz, DMSO): δ =  11.88 (s, 1H, NH), 7.24 (s, 1H, thiazole), 7.18 

(d, J = 8.5 Hz, 2H, C6H4), 6.87 (d, J = 8.6 Hz, 2H, C6H4), 6.80 (s, 

1H, furane), 4.00 (s, 2H, CH2), 3.72 (s, 3H, OCH3), 2.49 (s, 3H, 

CH3), 2.22 (s, 3H, CH3). Anal. Calcd. for C18H18N2O3S: C, 63.14; 

H, 5.30; N, 8.18. Found: C, 63.01; H, 5.22; N, 8.19. 

2.3. Molecular docking. Molecular docking was conducted with 

the OpenEye Scientific Software program [Software, Santa Fe, 

New Mexico, USA] as a computer based approach to the search of 

molecules with affinity to certain biotargets. Other software used 

included MakeReceptor, Vida, Omega 2 and Hybrid programs 

[Software, Santa Fe, New Mexico, USA].  

2.4. Pharmacology.  

Anti-inflammatory activity was evaluated using the 

carrageenan-induced rat paw edema method in Wistar rats (weight 

180–220 g). The experiments were carried out in accordance with 

European requirements of the convention for the protection of 

vertebrate animals used for experimental and other scientific 

purposes. The experimental protocol was approved by the Danylo 

Halytsky Lviv National Medical University ethics committee, 

constituted by the Ministry of Health of Ukraine. 

Animals were divided into 14 groups comprising five rats per 

group. One group was kept as the control and the remaining 13 

groups (test groups) were used to determine the anti-inflammatory 

activity elicited by Ibuprofen and the 12 compounds. Rats were kept 
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in the animal house under standard conditions of light and 

temperature on a standard diet prior to the experiment.  

The standard drug, Ibuprofen (50 mg/kg body weight) and the 

test compounds (50 mg/kg body weight) were dissolved in DMSO 

and administered through an intraperitoneal route. DMSO was 

injected into the control group. At 30 minutes later, 0.1 mL of a 2% 

carrageenan solution in saline was injected in the sub-plantar region 

of the right hind paw of each rat. At 4 h after the carrageenan 

injection, the volume of paw edema (in mL) was measured using a 

water plethysmometer [Orchid Scientific, Mumbai, India] and a 

decrease in paw edema was compared between the control group 

and the test groups. Results of decreased paw edema were expressed 

as the mean ± standard deviation and compared statistically with the 

control group using Student’s t-test. A level of p<0.05 was 

considered to be significant. Inhibition of the inflammatory 

response was expressed as a percentage reduction in paw volume 

and was calculated by the following formula:

% 100   Inhibition %
control

control 
−

=
V

VV

 
where Vcontrol is the increase in paw volume in control group 

animals; 

V is the increase in paw volume in animals injected with the 

test substances. 

3. RESULTS  

3.1. Synthesis of some 2-methyl-3-furamides.  

As started reagents for synthesis of target amides 2,5-

dimethyl-3-furoic 1a and 5-aryl-2-methyl-3-furoic 1b,c acids were 

used. 5-Aryl-2-methyl-3-furoic acids 1b,c were prepared by 

arylation of 2-methyl-3-furoic acid 2 by diazonium salts 3g,h in 

Meerwein condition reaction [33] as described in [34, 35]. 5-R-

benzyl-1,3-thiazol-2-amine 4a-f were also synthesized using 

diazonium salts 3a-f as a started material. Diazonium salts 3a-f 

react with acroleine to form 3-aryl-2-chloropropanales 5a-f [36]. 

These aldehydes were converted with high yields into 5-R-benzyl-

thiazol-2-ylamines 4a-f according to the previously reported 

synthetic protocols [36-38]. To prepare target amides 9–11 2,5-

dimethyl-3-furoic and 5-aryl-2-methyl-3-furoic acids were 

converted into acyl chlorides 6a-c that were used for acylation of 

amines 4a-f, 7a-c and 8a,b. 

 
Scheme 1. Synthesis of some 2-methyl-3-furamides. 

 

The structure of synthesized compounds was confirmed by 1H 

NMR spectroscopy and by microanalyses. All these new 

compounds gave spectroscopic data in accordance with the 

proposed structures. 

In 1H NMR spectra signals for the protons of all the structural 

units were observed in their characteristic ranges. In compounds 

11a-f the protons of thiazole and furan rings were recorded as 

singlets at δ 7.24–7.38 ppm and 6.80–6.81 ppm appropriately, 

methylene groups at 4.00–4.94 ppm. H–N amide protons in these 

compounds appeared as a singlet at δ 11.88–11.91 ppm and two 

other singlets in compounds 9a-c and 11a-f at δ 2.22–2.29 and 

2.49–2.56 ppm indicated methyl groups of furan rings. 

3.2. Molecular docking.  

Chrystallographic models of COX-1 and COX-2 (1PGG and 

4PH9 correspondingly) were obtained from Protein Data Bank 

(www.rcsb.org). As research objects: 2-methyl-3-furamides 

derivatives, common NSAIDs (aspirin, mefenamic acid, diclofenac, 

ibuprofen, indomethacin, ketoprofen, ketorolac, others) and well-

known selective COX-2 inhibitors, such as parecoxib, lumiracoxib, 

etoricoxib and others, were chosen. To estimate in silico COX-2-

compound and COX-1-compound binding scoring function values 

were calculated. Chemgauss 4 scoring function ranking allowed us 

to select compounds, which could prospectively be selective COX-

2 inhibitors. Make Receptor program allows to extract the active 

sites (biotarget) of COX-2 and COX-1 from crystallographic 

models for molecular docking.  

Molecular docking studies included generation of R-, S- and 

cys-trans isomers of ligands and them conformers using program 

were generated via Omega 2 with Flipper parameter. Next up is the 

Hybrid program, which uses ligand design elements to increase 

productivity. Typically, the structure of a protein is determined by 

X-ray crystallography in the presence of a known binding ligand (or 

bound ligand). Еo increase the efficiency of docking, this program 

uses information that is present both in the structure of the protein 

and the bound ligand.The values of the scoring function 

(Chemgauss 4) were obtained as a result. Ranking property of the 

scoring function allowed to analyze the results easily (table 1). 

Ranking and analysis of the molecular docking results were 

obtained using the selected compounds and crystallographic model 

of COX-2 and COX-1 with scoring function (Chemgauss 4). 

Results allowed us to select compounds, which could prospectively 

be COX inhibitors at the level of Diclofenac and Ibuprofen for 

future (in-depth) pharmacological studies for further evaluation of 

in vitro anti-inflammatory activity. The interactions between COX-

1 and COX-2 active site and the most active compound 11a in 

comparison with inhibitors of COX-1 (Flurbiprofen) and COX-2 

(Ibuprofen) are shown in Figure 1. Moreover, it should be noted that 

results predicted via docking correlate quite well with that obtained 

in the in vitro assay. The selected “lead” compound 11a based on 

the in vitro screening results was also predicted to be the most active 

in the docking studies. 

3.3. Evaluation of the anti-inflammatory activity in vivo.  

The one of the most widely used methods used to investigate anti-

inflammatory activity is carrageenan-induced edema paws of rats. 

The influence of the synthesized substances on the inflammation 

exudative phase course study was performed on the basis of white 

rats legs inflammatory edema carrageenan model [39]. The NSAID 
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drug Ibuprofen in its effective therapeutic dose was tested 

simultaneously as an activity reference. The protection against 

inflammation percentage was calculated as % inhibition by 

comparison between DMSO injected control group and drug-tested 

groups. The results of the anti-inflammatоry activity Ibuprоfen and 

of the novel cоmpounds  are given in  table 2The synthesized 

compounds possess anti-inflammatory activity variety - from its 

almost complete absence to a distinct anti-inflammatory effect. The 

compared with the control group for some compounds (9a-c, 10b-

d, 11f) showed no significant decrease in carrageenan-induced rat 

paw edema as their inhibition rates were only 16.5-33.7%.. The 

anti-inflammatory effect for compounds 11a-c is approximately 

equivalent to that of the reference drug. However, some substances 

(11e, d) activity exceeds Ibuprofen. The anti-inflammatory effect 

for these compounds resulted in inhibition rates of 43.4-45.9%, 

which gives reason to consider this scaffold as a promising 

molecular framework for the design of potential anti-inflammatory 

agents. 

Table 1. Values of the Chemgauss 4 score of 2-methyl-3-furamides derivatives and reference compounds. 

Compound ID 

or reference 

compound 

Chemgauss 4 score Compound ID 

or reference 

compound 

Chemgauss 4 score 

1PGG 

(COX-1) 

4PH9 

(COX-2) 

1PGG 

(COX-1) 

4PH9 

(COX-2) 

9a -7.524521 -10.729573 Aspirin -8.055377 -8.950326 

9b -10.206500 -10.960499 Diclofenac -8.471702 -10.132541 

9c -8.606261 -11.746645 Etoricoxib 0.866820 -7.237532 

10b -8.093850 -12.120781 Flurbiprofen -11.647477 -13.220425 

10c -7.721201 -11.946198 Ibuprofen -12.359507 -10.210879 

10d -9.970696 -12.011646 Indomethacin -9.386655 -11.982500 

11a -10.788911 -12.260530 Isoxicam -8.652688 -11.823118 

11b -6.586852 -10.738570 Ketoprofen -12.274237 -12.527678 

11c -6.418277 -11.572229 Ketorolac -12.641514 -12.760300 

11d -8.486995 -11.564221 Lumiracoxib -9.720785 -12.322708 

11e -10.106500 -10.960499 Meloxicam -8.498905 -12.353498 

11f -10.662773 -12.548939 Parecoxib -8.727989 -10.550035 

 

a)    b)  

c)                 d)  

Figure 1. Compound 11a docked in the active site of COX-1 (a) and COX-2 (b) in comparison with inhibitors Flurbiprofen (c) and Ibuprofen (d) 

docked in the active site of COX-1 and COX-2 correspondingly. 

 

Table 2. Anti-inflammatory effect of 2-methyl-3-furamides on carrageenan-induced rat paw edema (ml) in vivo evaluation, % protection from 

inflammation 

Compound ID Paw edema volume  

(mL) ± SEM* 

% Inhibition Activity relative to Ibuprofen, 

% 

Control 2.20 ± 0.050 -  

9a 1.62± 0.040 26.6 66.2 

9b 1.70 ± 0.045 22.9 57.0 

9c 1.84 ± 0.045 16.5 41.1 

10b 1.79 ± 0.045 18.5 46.0 
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Compound ID Paw edema volume  

(mL) ± SEM* 

% Inhibition Activity relative to Ibuprofen, 

% 

10c 1.60 ± 0.040 27.4 68.2 

10d 1.71± 0.045 22.5 55.6 

11a 1.41± 0.035 36.2 90.1 

11b 1.33± 0.035 39.5 98.3 

11c 1.40± 0.035 36.5 90.8 

11d 1.25± 0.020 43.4 108.0 

11e 1.19 ± 0.020 45.9 114.2 

11f 1.46 ± 0.035 33.7 83.8 

Ibuprofen 1.32 ± 0.035 40.2 100 

*SEM denotes standard error of mean. 

4. CONCLUSIONS 

In our present work, we presented an efficient synthesis, 

molecular docking and anti-inflammatory activity evaluation of 

some 2-methyl-3-furamides. We have shown that the proposed 

approaches provide the possibility to design furamides diversity 

with a considerable chemical novelty. The synthesized compounds 

were preselected via molecular docking to be tested for their anti-

inflammatory activity in vitro. Evaluation of novel compounds over 

the carageenin induced rat paw edema revealed strong anti-

inflammatory action of some compounds even exceeding the 

standard – Ibuprofen. 
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