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Abstract: Several Proteins, receptors, S proteins including s1 and s2 such as 6LU7, 6Q05, 4oW0, 6nur, 6Y84, 

5zVK and 6vW1 were modeled and simulated via docking.  All water molecules were deleted, then the covalently 

bound ligands were unbound from necessary places in those macromolecules including α, β double bond of the 

ligand, that behave as acceptors. The Structure Preparation modules of MOE were used to correct PDB 

inconsistencies and to assign the protonation state at biological ph. It is notable the structural knowledge of the 

CoV-RNA synthesis complexes was a structure of the NSP- RNA polymerase. Its structural gaps are containing 

information regarding the single N-terminal extension of the virus polymerases. CoV is partitioned into alpha, 

beta, gamma and delta categories. Among them the beta group initially consists of A, B, C, and D subunits. 
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1. Introduction 

The infection through the coronavirus (COVID19) emanated in the Wuhan city of 

China’s Hubei Province by the end of 2019. These infections spread out to 195 countries up to 

now. The total numbers of confirmed COVID-19 infections are near one million, plus around 

half of these amount suspect cases, and the numbers of deaths are over one hundred up to now 

[1, 2]. The crystal structures of the COVID-19 protease in complex with the “Peptidomimetic” 

inhibitors were made available recently [3, 4].  Moreover, the Zhang group, developer of the 

popular homology-modelling [5] made available 3 dimensional structural models [6] of the 

COVID’s proteins in the related genome.  

In addition two segregate goals, the COVID-19 (6LU7), were thought-out. It is notable 

receptor model that can be provided using MOE2019 software [7]. Coronavirus consist of a 

genome include of long m-RNA strand and those genomes attack to target like a m-RNA during 

infect the cells, and direct the synthesis of two large polyproteins that the viruses need for 

replicating new viruses [8-10].  

Ten, years after the SARS-corona virus, a new Coronavirus named Middle East 

Respiratory Syndromes (MERS) have infected human with a rate of nearly 50%. Health 

Organization global or WHO cases count for MERS was reported in September 2012. The 

MHV or (Mouse Hepatitis Virus), which is nearly depend to SARS and MERS corona virus, 

have long served as a model for study of both the molecular biology of those members of these 

viral families. These viruses infect   several of human and animal host’s cells, which can be 
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also, carry out their infection and replication. Also, various proteins have a major role in the 

replication mechanism, although those roles are poorly defined.  

In these cases, there is necessary to know the definition of those proteins in terms of 

these mechanisms. The proteins contain a replication/ transcription complexes that make more 

RNA, various structural proteins, and two proteases. These proteases play important roles to 

cut the polyproteins inside all of the functional spices. The major section protease of this virus 

makes most of those cuts. The SARS-CoV-2 (2019-nCoV) which is currently sparking most 

dangers in “Wuhan” is a dimer of the protein folding is the same as to serine proteases such 

as trypsin and also the cysteine amino acids [11, 12]. The dimer has the peptides-like inhibitors 

bound in the active sites. Pair proteases from the SARS virus are the main proteases are similar 

to the Wuhan’s virus, including a few splits at eleven sites in the polyproteins (Figure 1). 

   

 
Figure 1. Wuhan’s virus, including a few splits at several sites in the polyproteins of covid-19. 

 

Coronaviruses have several categories into four conformations with different 

architecture and molecular structures. The proteases of those viruses are different in drug 

designing. Important approach is to try for designing suitable ranges of inhibitors against the 

bat coronavirus, which may then prepare a way to discover specific inhibitors for those type 

viruses. All subunits of CoV-RNA have been provided including several non-structural 

proteins (NSP) which produced viral polyproteins. There were several attempts for 

characterizing the replication complexes of CoVs, which resulted in high-resolution structures 

determination for many of the SARS-CoV-NSPs using X-ray crystallography and NMR [13-

17]. Obviously, the structural shape of the CoV-RNA synthesis complexes were a combination 

of the NSP- RNA polymerase and its structural gaps are including information of the N-

terminal extension from virus polymerases. Covid-19 has been developed with the unique 

RNA-stranded   that is associated with a few natural hosts. 𝛼- CoVs are categorized feline F-

CoV, Feline Enteric Coronavirus (FECV) and Feline Infectious Peritonitis Virus (FIPV), the 

porcine TGEV (or Transmissible-Gastro-Enteritis-Virus), Porcine PEDV (or Epidemic-

Diarrhea-Virus), Porcine Respiratory Coronavirus (PR-CoV) and the canine C-CoV. 𝛼- CoVs 

also agreement with human CoVs such as H-CoV-229E and H-CoVNL63, but various bat 

Coronaviruses. β-CoV also infects a wide range of mammalians, with various types such as 

mice, human with SARS-CoV, HCoV-OC43, HCoV-HKU1, and MERS-CoV, Murine 

coronavirus (MHV) and Bovine Coronavirus (B-CoV). 𝛾 − CoVs are specific of birds, with 

one exception of a beluga whale Coronavirus. 𝛿 − CoVs were discovered in 2012 with several 

subunits (HKU11, HKU12, HKU13) Coronavirus from mammals to birds [18]. Among them, 

the beta group initially consists of A, B, C, and D subunits (scheme 1.)  
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Scheme 1. Schematic trees created with the H-CoVs from all four gen- groups. H-CoVs   are denoted in red 

rectangular frame. 

 

These six H-CoVs are including (1)-HCoV-229E (229E) and (2)-HCoV-NL63 (NL63) 

in the alpha group, (3)-HCoV-OC43 (OC43) , (4)-HCoV-HKU1 (HKU1) in beta subgroup A, 

(5)-(SARS-CoV) (severe acute respiratory syndrome)CoV in beta subgroup B, and finally (6)- 

MERS-CoV (Middle East respiratory syndrome CoV) in beta  subgroup C [9-13]. Recently, 

SARS-CoV and MERS-CoV have been emerged in the human population and caused severe 

pulmonary disease with alarmingly high case-fatality rates. SARS-CoV infections firstly 

emerged at China in 2002 which spread rapidly as a global epidemic. MERS-CoV emerged in 

Saudi Arabia in 2012 and spread via the Middle East and also in 2015 another type of MERS-

CoV appeared in South Korea. By the way, the other common viruses including 229E, OC43, 

and NL63, generally infect the human upper respiratory tract. In addition they also are 

responsible for severe and even fatal diseases in children, old people, and 

immunocompromised patients [18-23]. In the range of those H-CoVs, that are quickly 

evolving, OC43 isolates with new genomes are being continuously identified [21-23]. 

The SARS-like-CoV and MERS-like-CoV are   great threats to human health. Recent 

works discovered several types of SL-CoV, as same as SL-WIV1-CoV and SL-SHC014-CoV 

that can be applying the same SARS-CoV receptor straightly enter 

permissive human cells without the need for adaptation [24 ]. SARS- became pandemic, behind 

disappeared during the quarantine precautions were taken as well as the ML-CoVs, are bat 

CoV-HKU4, were exhibited for recognizing the MERS-CoVs receptors CD-26 and infect 

human cells, after mutations  of S746R with N762A) into its S protein [25 ]. 
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1.1. Genome structure of coronavirus.  

Coronavirus   encode 5 proteins in their genomes which are known as Spike (S), 

Membrane (M), Envelope (E) glycoproteins, Hemagglutinin Esterase (HE) and Nucleon-

capsid (N) protein, (Figure 2). It is thought the virus particles are huddled together owing to 

interaction between those proteins [26, 27] 

 
Figure 2. Structure details of covid-19. 

 

S-Glycoproteins are placed in external layer of virus and give a typical shape and also 

form homo-trimers that allow the model of sun-like morphology due to the name of 

Coronavirus   [28, 29]. S proteins bind to the membrane through C-terminal area interact to M 

proteins where can be bound to the specific surfaces receptors inside the plasma of the host cell 

by the N-terminus of that S protein [30]. M Glycoprotein has 3 transmembrane sections and is 

glycosylated in the Golgi apparatus. The modifications of the M proteins are crucial for the 

virus to fuse inside the cell for making protein antigenic [31]. The M protein is an important 

key for regenerating virions in the cells. N protein makes a complex via binding to genomics’ 

RNA but M protein triggers the formation of related interacting virions in those endoplasmic 

reticulum-Golgi apparatus intermediate compartment (ERGIC) with this complex. E 

Glycoprotein is small protein which is composed of around 75 to 110 amino acids. About 35 

amino acids in the N-terminus of the E proteins allow attachment to the membrane of viruses. 

Moreover, coronavirus   E protein causes a critical function in the assembly and morphogenesis 

of virions within the cell. In a research exhibited that the coronavirus E and M proteins were 

expressed together via mammalian expression for forming virus-like structures within the cell 

[32]. N protein is phosphoproteins which are capable of binding to a helix structure of viral 

genomic RNA and   plays   important role in virion structure, replication and transcription of 

covid-19, due to localization in replication/ transcriptional area of the covid-19 and the ERGIC 

area. 

1.2. Mechanism of replication and translation corona-virus into the cell. 

The replication appears in host cell cytoplasm which during this process the virus 

initially binds to the receptor on the cell surfaces through the spike (S) protein. When S proteins 

are attached to those receptors, the conformational structures appear in the structure and the 

process of entry into the virus cell begins. The process with endocytosis is dependent on pH 

via the receptor [33-36]. During entering virus in the cytoplasm, the component of virus 

releases the RNA genome which is a single-stranded, non-segmented RNA virus with the 

largest known RNA genome (gRNA) (Scheme2&3) [33-36]. 
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Scheme 2. Schematic linear representation of the coronavirus S protein 

with relevant domains/sites indicated: signal peptide (SP), two proteolytic cleavage sites (S1/S2 and S’2), two 

proposed fusion peptides (FP1 and FP2), two heptad repeat regions (HR1 and HR2), transmembrane domain 

(TD), and cytoplasmic tail (CT). 

 

 
Scheme 3. Schematic representation of MHV spike protein sequence, the S1 domains A, B, C, and D, are 

colored in green, red, blue and yellow respectively, and the linker region connecting domains A and B in 

turquoise, the S2 region is colored in violet. 

 

Their genome contains of 7 genes which are organized into 5’non-structural protein 

coding area (gene 1) and also are two-thirds of the genome, and 3’ structural (Fig.1) and non-

fundamental proteins coding comprising the gene [37]. The replicas gene 1 product is encoded 

the large frames. After synthesizes of those proteins, contain 16 units, non-structural protein 

where these 16 proteins form Double-Membrane Vesicles (DMV). As well as simultaneity, 

these DMV are virus Replication and Transcription Complex (RTC) [38, 39]. Genes 2 to 7 are 

translated via sub-genomic m-RNA and Sub-genomics RNAs encode the main viral structural 

proteins-S, Envelope protein-E, membrane protein-M, Nucleon-capsid protein-N   and the 

accessory proteins, which are essential for virus-cell-receptor binding. The newly structural 

synthesized protein is released into the endoplasmic reticulum. All of these proteins, along with 

the N-protein, are linked to the viral genomic RNA and localized in the ERGIC area [40] 

(Figure 3). Although, N proteins are known for coronavirus replication, the specific plays that 

these proteins act in these processes remain unknown. But, many researchers predicate that N 

protein interaction with nsp3 plays a critical role in the virus replication early in infection. 

Therefore, the next section yields detail information about determination of structure N and 

interaction mechanism of N protein and nsp3 proteins. 

Therefore, it is needed for determining structure of N for understanding the replication 

and transcription mechanisms. Therefore, these sections yield some information about the 

structure and function of MHV-N proteins. The MHV-N proteins include two structurally 

separated RNA binding domains that are called N-terminal domain or NTD and C-terminal or 

CTD dimerization domain linked. The NTD domain is known as it plays an important role in 

CoV, both in viral replication and transcription [41]. 

As an instance, NMR chemical shifts perturbation approaches [42] reveal that the 

regions of the SR-rich and NTD in MHV N protein interact with MHV nsp3 as well as there 

were suitable correlations among the N-nsp3 interaction and their abilities of N protein for 

stimulate the infectivity of MHV gRNA.  

These data confirm the critical situation of N and nsp3 interaction and prepare any 

further help to its proposed function in initiation of coronavirus infection. Nicolas, et al. [43] 

exhibited 3D structure of NTD-MHV-N protein via applying X-ray method. This matter 

consists of only NTD domain but unfortunately, N-nsp3 interaction in the virus replication acts 

an important function in 3D structure of the SR-rich area. 
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Figure 3. Details and mechanism of coronavirus in cell. 

1.3. Structure of the coronavirus S protein and S1, S2 subunits. 

“S” protein is a viral fusion proteins [44] similar influenza [45-47] that same as other 

class-I proteins could be fold with a meta-stable pre-fusion towards its translation. S protein 

varies among corona viruses in the area between 1150 - 1650 residues, around 225 kilo Dalton. 

Trimers of the “S” protein include of 17–24-nm length, club-shaped spike which design the 

membrane surfaces of the coronaviruses. This protein is also the main target for neutralizing 

antibody evoked via the immune sections of the infected hosts [48] and can be divided into two 

functionally distinct units. “S1 “subunit contains of receptor recognition, while the S2 unit 

simplifies the membrane fusion for controlling the S protein into the viral membrane (Figure 

4).   

S1, S2 subunits can be separated through cleavage splits which are known through 

Furin-like proteases when “S” protein bio-genesis in the infected cell.  Structures of the spike   

subunits of two 𝛽-corona-viruses including MHV and HCoV-HKU1 has provided novel 

insights into the architecture of the S trimer in its pre-fusion state [49, 50]. 

1.3.1. Structure of S1. 

S1 protein plays a multi architecture which structurally formed to a few (4) 

distinguished subunits including A, B, C and D (Fig.5). That A and B might serve as a RBD. 

The core section of subunit “A” plays a galectin-like β- folding, while section B consist of a 

structurally conserved section unit of non-parallel β-sheets [51, 52]. Unit B is also structured 

by an extra loop on the viral membrane direction that might place considerably in range among 

virus of the   β-coronavirus genus dependent on hyper-variable ranges. Oligomerization of the 

“S” proteins yields in a nearest trimer cluster of the B subunits of the spike over top of the S2, 

and also “A” s unit can be ordered distally of the central section. Unlike to subunits  “A” and 
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“B: the S1 C-terminal units  “C” and “D” make up of dis-continuous units of those  protein 

sequences contain several  β-sheet  configurations. Contrast to the S2 unit, S1 subunit shown a 

small level of conversation between various of CoVs generation. Moreover, S1 domain differs 

tightly in sequences spectrum from 545 (S of bronchitis viruses) to 945 residues, in other words 

a variety in architecture of the spikes in CoVs generation. Structural understanding of the spikes 

𝛾 𝑎𝑛𝑑 𝛿 CoVs are currently lacking. Unique folding subunits have been assigned in the S1 

subunit of 𝛼- CoVs spikes which potentially can interact with host molecules. Structural data 

are available for the S1 C-terminal of two α-coronaviruses and S proteins which differ 

considerably from which of β-CoVs. 𝛼- CoVs exhibits a β-sandwich core conformation, while 

a β-sheet core structures are seen for β-CoVs [53]. 

 

 
Figure 4. Tectonic conformational changes of a coronavirus spike. 

1.3.2. Structure of S2. 

The S2 unit contains key protein sections that simplify virus-cell fusion and also consist 

of fusion peptides with two heptad repeat ranges (HR1 and HR2). In the MHV and HKU1 S 

proteins, the S2 unit consists of multiple α-helical configuration and non-parallel beta-sheets 

at the viral membrane proximal end. 

75 angstrom of length central helical configuration of the HR1 zoon stretches over the 

entire length of the S2 trimer. The HR1 folding in the length of the S2 domains, this long alpha-

helix structure through this region in post-fusion structures [54-56].  55 angstrom of long 

helical S20 cleavage site runs parallel to central helix with hydrophobic interactions. The fusion 

peptide configuration of a small helix segments is buried in the interfaces via the other elements 

of S2. In contrast classes, one (I) fusion proteins, those conserved fusion peptides (FP1) are not 

straightly upstream of HR1 because of residues up-stream of this spectrum. Recently a report 

showed the experimental confirmation for the existence of another fusion peptide (FP2) of the 

HR1 region [57]. This HR2 placed near the C-terminal end of the S unit, therefore, their pre-

fusion configurations remain unknown yet.  

The distal tip of the S2 trimer connects through a hydrophobic interaction with domain 

B and consists of the C-terminal region of HR1 [58, 59]. Interactions among these spectrums 

of the S2 trimer and unit B might therefore prevent premature structural change due to the 

conversion of the initial fusion “S” protein towards the stable past fusion configurations. Also, 
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subunits C and D of the β-CoVs S1 domain and connect to subunits A and B via surfaces of 

the adjacent S2. Domain A seems to play in this respect due to its interaction with the S2 trimer. 

 

2. Materials and Methods 

 The interaction of several inhibitors has been accomplished via docking and modeling 

simulation.  In docking the Vina [60], those receptors were processed via Auto dock software, 

while the number of water molecules has been deleted and polarity of hydrogens and charges 

have been added in the simulation. A few amino acids same as His have been protonated in the 

neutral structure compared with crystal data. This model was chosen for testing the binding 

affinities of several natural products on beta-CoVs (SARS-CoV) and alpha (MERS-CoV) that 

are a fundamental virus with an initial mutation of COVID-19. Sars-Cov2 (COVID-19) has 

several basic proteins for making its infection and growth in host cells, such as protease and 

spike glycoproteins. The RBD of spike (RBD-S) could be bind to the ACE2 at PD of the host 

cells (Figure 4), leading to the viral infections. In this study, COVID-19 sub molecules have 

been compared to SARS-CoV-2 theoretically and experimentally. Computational calculations 

have been used both by Linux and Windows 10 operating systems. 2019-nCoV receptor-

binding domain complexed have been modeled with its receptor of human ACE2 of PDB ID 

6VW1 and COVID-19 main protease with un-landed active site (2019-nCoV, coronavirus 

disease 2019, SARS-CoV2) of PDB 6Y84 [61] (Figure 5). 

5ZVK Crystal Structure of the human Coronavirus MERS HR1 motif in complex with 

pan-CoVs inhibitor EK1 [62] .The PDB ID 6VW1 was used as the model of PD-ACE2 in 

complexes with RBD of covid-19. The structure of all chemical components was extracted 

from drawn in Chem-draw, Chem-office and Hyper-chem software. Conformational search and 

energy minimization in Charmm with OPLS force fields have also been used.  

2.1. Docking simulation. 

The docking simulation arranging is also applied triangle matcher as the score function 

of setting methods. Several force fields same as Amber, MM+ and BIO+ were applied to OPLS 

for refining the docking results. Data of docking explained the affinity represented and binding 

interaction of each compound on the protein goals.  

ACE2 in human is enzymes which have an effect on blood pressure. In COVID-19 

families, ACE2 are receptors, an entranceway, in the airways, alveolus and in blood vessel 

linings. ACE2 families are also receptors for β-CoV and NL63-CoV. Obviously, MERS-CoV 

(α- CoVs) show a different receptor compared to other viruses. Method for developing vaccines 

and treatment is a 3-D structure of the parts of the virus that contact human cells. SARS and 

NL63-CoV attached to a helical section of ACE2 and bind with cell membranes through 

tunnels and bridges to comprise a “hot spot” for viruses. 

The viral hot spot where beckons both SARS and COVID-19 are   shared drug and 

vaccine target and so all the work on developing the SARS vaccines are currently in the 

spotlight. Scientist from the S1 parts of the viral spikes hugs the ACE2 receptor at the area of 

five amino acids to blocks the proteins synthesize. Even though 5 or 4 amino acids differ in 

COVID-19, they are the same as in size and charges to their counterparts in SARS. It is notable 

which S1 attaches SARS to the ACE2 receptors with docking. 
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Figure 5. ACE2 of PDB ID 6VW1and COVID-19 main protease of PDB 6Y84 and 5zvk. 

 

 
Figure 6. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors and X-ray structural 

and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like 

proteases. 

 

  Obviously the new virus “poses a significant public health risk for human transmission 

through the S-protein-ACE2 binding pathway.” The CoVs covering has been accomplished via 

(E) proteins that are small, integrals protein including several aspects of the viruses’ life cycles, 

such as assembling, enveloping, and formation. Although E proteins are the smallest of the 

main structural proteins, the most important and enigmatic in view point of any reaction details. 

During the replication cycle, E is translated much more numerous inside the infected cell. 

6NUR is a protein data bank related to the SARS-Coronavirus NSP12 bound to NSP7 and 

NSP8 co-factors [63] and X-Ray Structural and Biological Evaluation of a Series of Potent and 

Highly Selective Inhibitors of Human Coronavirus Papain-Like Proteases (Figures 6 &7) [64]. 

 Based on our previous methods and experience of biology information and macro 

molecular systems we simulated our model theoretically [65-120]. In this work, Auto dock 

Tools and also iGEMDOCK software has been used and via this method, the suitable receptors 
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can be selected for the binding site in whole COVID-19 protein structures. The protein 

macromolecules are worked by a ligand, and iGEMDOCK can help rapidly define the 

appropriate binding sites. The following items have been done in docking simulation :( a), 

Preparing Binding Sites  on the Protein Ligands. (b) Browsing and selecting the protein files. 

(c) Defining the binding sites kind as the bounded ligands. (d)   Designing a center for the 

binding sites through selected ligands. (e) Setting arranging the size of the binding sites by the 

extended radiuses from the selected ligands.   

 

 
Figure 7. Crystal structure of bovine coronavirus hemagglutinin-esterase and MERS-CoV S structure in 

complex with Sialyl- Lewis X https://doi.org/10.2210/pdb3CL4/pdb;  https://doi.org/10.2210/pdb6Q05/pdb;  

 

IGEMDOCK produces and predicts the analysis surrounding  by visualized tool and 

post analysis tool for researcher  that can visualize the docked states, and categories through 

the protein-ligand interactions. Obviously, the prediction and scores of ligands can be saved in 

the output path. The minimum energies pose of each ligand will be outputted into the location 

of “best: Pose”. These analysis tools are premeditated based on the analysis of those poses. 

Trough looking for the bounded structures of some ligands, they could be select via the check 

box of ligand. If the co-crystallized substrate ligands are reflexed on the binding site structures, 

it will be predicted poses. Clusters situation and also their analyzing are the partitioning of the 

data sets into sub-sets. These data in each ideally sub-set would share some general trait. 

Interactions data are extracted from the protein-ligand binding and atomic compositions are 

also accounted for atomic types in different functional groups. You are able to specify the 

number of clusters for these data or adjust the number by the preliminary clustered results. 

Cluster estimation is the analysis of a data ranges into subsets and the information in each 

subset can be sharing some general properties. These are based on interaction and atomic 

combination aspects. Interaction aspects are extracted from the protein-ligand couples and 

atomic combinations are calculated atomic types in several functional groups. In the past five 

years, molecular modeling on the corona viruses of “S” have been simulated both N-terminal 

and C-terminal area. S1 potentially, can bind to host receptors as RBDs [122-124]. β- CoVs 

can be to attach proteinaceous receptor exclusively. The alpha structure 229-E, serotype II 

feline CoV “F-CoV”, and porcine respiratory CoVs apply the human amino-peptidase of its 

host as receptor [123,124]. The alpha form and also β-CoV or SARS-CoV both apply “ACE2” 

(Angiotensin converting enzyme 2) as a functional receptor [124], while the beta form and 

MERS-corona virus recruit “DPP4” (dipeptidyl peptidase-4) as a receptor [125, 126]. RBMs 
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mean “receptor-binding motifs” which in the S1 CTRs of 𝛼- CoVs and β-CoV spikes are 

demonstrated over a few loops from β-sheets structures [103, 104]. 𝛼- CoVs and β- CoV 

determines receptor specificity that might be varying extensively due to a similar core structure 

and common evolutionary origin. The identical positions are appearing for the CTRs of beta-

CoVs SARS-CoV and alpha or MERS-CoV which bind ACE2 and DPP4, respectively [125-

127]. In other hand, the CTRs of the alpha-Corona virus and H-CoV-NL-63 and beta-Corona 

virus SARS-CoV all recognize ACE2, through distinct molecular interactions [128-133]. 

 

3. Results and Discussion 

Several Proteins, receptors, S proteins including s1 and s2 such as 6LU7, 6Q05, 4oW0, 

6nur, 6Y84, 5zVK and 6vW1 were modeled and simulated via docking.  All water molecules 

were deleted, then the covalently bound ligands were unbound from necessary places in those 

macromolecules including α, β double bond of the ligand, that behave as an acceptor. The 

Structure Preparation modules of MOE were used to correct PDB inconsistencies and to assign 

the protonation state at biological pH.  

 The default Charmm and Amber10EHT force-fields, coupled to the Born solvation 

model were assigned into of these systems. These ligands were then minimized, keeping the 

receptors constrained. After this step, receptors were optimized via applying backbones and 

keeping the ligands constrained. In the end, the complexes were minimized in two divided 

steps, (1) through keeping backbone restraints, (2) through removing all restraints. These 

receptors and those ligands were then saved for future use. The crystal structures of SARS-

CoV proteinase, which are a close homologue of COVID-19 proteinase, in complexes with 

Carboxyl-amide inhibitors were also used as reference. These systems were prepared for 

calculation as follows. (1) The PDB was corrected and protonated at biological pH using MOE 

as stated above. (2) The ligands were minimized, keeping the receptors constrained, using the 

MMFF94x force fields coupled with the Born solvation model.  

 The receptors were then optimized, keeping the ligand constrained, using 

Amber10EHT+Born. In the end, the complexes were minimized in two steps; the resulting 

structure was used for docking. The core CoV S Proteins structures of the CTRs in both 𝛼- 

CoVs and β-CoV prepare a scaffold from an extended loop(s), that might accommodate the 

receptor switching via exchange of the RBMs. The “NTR” of the alpha corona virus and 

gamma corona virus S proteins bind to sialic acids, while the NTR of β-CoV concluding B-

CoV and H-CoVOC43 were exhibited for binding to O-acetylated sialic acids [106,107]. Only 

the NTR of subunit A is known for interacting with the protein receptors, being mCEACAM1a, 

while lacking any detectable sialic acid binding activity [108].  

 The NTR (MHV) exhibits a β-sandwich folding with the family of sugar-binding 

proteins that probably have evolved from sugar-binding domains. The RBDs in different 

subunits of the S proteins which can bind either proteinaceous or glycan receptors illustrates 

functional modularity of these glycoproteins at different subunits that might fulfill the role of 

binding to cellular attachment. The coronavirus S proteins are thought to have evolved from 

the basic structure receptor recognition which was confined to the CTR within S1. The 

observed deletions of the NTR in some CoV species in nature are indicative of a less stringent 

requirement and integration of this domain with other regions of the spike trimer compared to 

the more C-terminally located domains of S1 and supports a scenario in which the NTR has 
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been acquired at a later time point in CoV evolutionary history. Acquisition of glycan-binding 

domains and fusion thereof to the ancestral S protein may have resulted in a great extension of 

CoV host range and may have caused an increase in CoV diversity. 

4. Conclusions 

 The most efficient of the NTR and CTR for binding to glycan or protein receptors might 

be related to their arrangement in the S protein trimer. In contrast to the CTR, which is located 

in the center of the S trimer, the NTR is more distally oriented. Although protein–glycan 

interactions usually have low affinity, the more distal orientation of subunit A might be 

permitted multivalent receptors interactions, thereby increasing avidity. Interestingly, some 

corona viruses have been seen as the dual receptors which can bind via their NTR and CTR to 

glycan and protein receptors, respectively. The RBDs in different subunits of the S proteins 

which can bind either proteinaceous or glycan receptors illustrates functional modularity of 

these glycoproteins at different subunits that might fulfill the role of binding to cellular 

attachment. The coronavirus S proteins are thought to have evolved from the basic structure 

receptor recognition which was confined to the CTR within S1. 
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