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Abstract: In this study, heat oil conversion experiments using steam and formic acid as a hydrogen 

carrier be carried out in a batch reactor at T = 380 degrees of Celsius and P = 165 bar. Material balance 

and product distribution were calculated after the process. Properties of crude oil before and after 

thermal conversion, including viscosity, API gravity, SARA measurement, and elemental analysis, were 

analyzed. It has been presented that the use of formic acid as a hydrogen carrier solvent reduces the 

formation of coke and gaseous products and enhances the performance of liquid products. Also, the 

viscosity of the refined oil decreased by 23.2% due to the addition of formic acid compared to the 

thermal conversion without hydrogen solvent. And also, a synthesis process is being implemented to 

provide the formic acid demand of the refining process sustainably. This process uses the carbon capture 

to contain CO2 for the direct green formic acid synthesis in the plant. Thus the oil produced by this 

process can be called green petroleum.  

Keywords: formic acid; solar fuel; heavy oil; solar-petrochemical refining; green petroleum; heavy 

oil refinery; green petroleum refinery. 
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1. Introduction 

Today climate change has become one of the main issues and concerns on the 

international scale. And these concerns led to a carbon emission reduction approach in all the 

industrial and residential sectors of the society. It has been found that fossil fuels contribute to 

a significant portion of greenhouse gas emissions (GHGE). Iran holds significant oil, gas, and 

power industries, which caused the country to become the home to the world’s 7th most 

pollutant industry sector in 2017 [1]. However, more than 93% of the Iranian electricity is 

generated in the gas-fired power plants, and although the natural gas contains the least GHGE 

among the fossil fuel portfolio, still there is an excellent GHGE capture potential in the country 

which means more than 600 million tons of CO2 capture potential in the country [2]. 

Fig 1 shows that the GHGE in Iran rapidly increased in the past four decades. And the 

diagram in figure 2 illustrates that the Power sector and the industrial sector are playing the 

most crucial role in this rapid incremental trend [3]. The industrial sector, with 31.3 %, the 

power industry with 24.1%, the residential area with 23.4%, and Transportation with 21.2% 

are the most contaminant sectors of the society. The emission of residential and the transport 

sections because of their scattered nature is costly and difficult to be captured, but the power 
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and industry can be easily used during the carbon capture process. Thus, the recoverable 

potential of carbon dioxide in Iran is a share of 55.4% of the total carbon emissions [4]. 

 
Figure 1 . Iran CO2 emissions by year (tons); Conducted by the authors and Data source is 

worldometers.info. 

 
Figure 2. CO2 emissions by sector in 2016; Conducted by the authors and Data source is 

worldometers.info 

A study over the different carbon capture technologies is being implemented by 

Mattison et al. (2019). This research states that most of the standard carbon capture 

technologies (CCTs) consume a significant amount of energy during the process [5]. Adanez 

et al. (2013) introduce a novel chemical looping combustion method (CLC), which reduces 

energy consumption. Extensive researches on the CLC process is being conducted on gaseous 

fuels [6]. 

Cristian Cormos (2014) studied various carbon capture processes in the industries and 

power plants [6]. And in some of the cases, they have proposed that the Carbon dioxide + 

hydrogen to formic acid synthesis process be implemented on the unit.  

Zeng et al. (2012) developed a kinetic and thermodynamic limitation based reactor for 

the CDU process. Zeng (2012) analyzed air, steam, and gas reactors. The process results shown 

that the CLC method has the potential to have efficiency more than 90% CO2 for the capture 

process. In the Carbon capture process, post-combustion methods involve the treatment of the 

flue gas produced by the burning of the fuel [7].  

The flue gas has consisted of nitrogen (about 78%) along with water vapor and carbon 

dioxide, which their concentration depends on the fuel used during the combustion process. the 

other consisting of the flue gas such as mercury and heavy metals, Sulfur oxides and nitrogen 
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oxides, particulate matters, and others are being removed in the stacks to meet the combustion 

standards [8]. The main problem and limitation of the carbon capture process is the low 

pressure of the flue gas in the stacks and post-combustion stages, and also the vast flow rate of 

the flue gas is the other issue of the capture process [9]. The Carbon concentration in the flue 

gas is 4% in the Bryton cycle, 15% for coal-fired periods, and 20-30% in the cement and steel 

production units [10].  

In this paper, the chemical absorption in an aqueous solution of an amine-based organic, 

such as mono- or diethanolamine (MEA, DEA), is being used [11]. The efficiency of this 

process is 85-90%, and its cost is highly defined by the amine Solvent. Alternative technologies 

for this technology with the high efficiency of the carbon recovery (90%), not yet industrially 

used, are using the adsorption CO2 conversion, chemical looping, and membrane separation 

[12].  

Merkel et al. using the MTR membrane Polaris (permeance 1000 GPU, CO2/N2 

selectivity a=50), and in their studies, they have found an optimal option (two-step 

counterflow/sweep membrane process).  

Though the amine-based solution process costs about 60$/ton, the later and alternative 

processes cast less than 20$/ton, which presents a very prominent future for the membrane two-

stage process in the carbon capture industry [13]. And about the energy penalty, recent 

researches state that for capturing 90% of the CO2 from coal-fired system’s flue gas (containing 

12-14% of Carbon dioxide) is about 3.5% of the energy input of the system. However, the best 

commercial option increases this penalty to over 16%. The most prominent semi-industrial 

technology reduces this penalty to 6% and overall CO2 capture cost to the 20$/ton [14]. This 

cost per ton of CO2 capture is stated as the feasible point of the CO2 captured technologies. 

However, this viable point is highly dependent on the environmental policies implemented by 

the governments and international policymakers [15].  

Conventional methods to produce hydrogen rely on the use of fossil fuels and 

electricity, which is not desirable because of its excellent carbon emission amount. Steam 

methane reforming (SMR) is one of the leading traditional hydrogen production methods [16]. 

Because although the process needs an external heat source but doesn’t need pure oxygen [17].  

Coal gasification (CG) is one of the traditional methods of hydrogen production and is 

more complicated compared to the SMR [18]. This 2 stage process causes the feedback costs 

to be decreased compared to the SMR while its capital cost is higher. In this method, the coal 

converted through steam/oxygen gasification or oxidation at a very high temperature and 

pressure to CO2-rich syngas, which is containing hydrogen contents enhanced during the water-

gas shift (WGS) reaction [19].  

Another method is the plasma arc decomposition (PAD), in which the high-temperature 

pyrolysis of the methane produces solid carbon and pure hydrogen. The overall hydrogen 

production cost in the SMR is 750 $/ton and 920 $/ton for the CG process [20]. 

One of the methods suitable for the large scale hydrogen production is the alkaline 

water electrolyzed (WE) [21]. The costs of this process are higher due to its catalyst used as an 

electrode for the required purification of the water before the electrolysis and due to the price 

of the electricity [22]. The commercially available systems produce hydrogen around 2000-

3000 $/ton at a 0.05-0.06 $/kWh electricity fee. In this case, the electricity can be easily 

provided by the solar photovoltaic systems (PV) to reduce the electricity generation emissions 

out of the table. There are many other alternative methods such as polymer electrolyte 
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membranes (PEM), solid oxide electrolyzer (SOEC), and the carbon assisted water electrolysis 

(CAWE), which are not in the commercial status [23]. 

Carbon dioxide utilization (CDU) considers CO2 as raw material to synthesize carbon‐

based marketable products. Among them, formic acid (HCOOH, synthesized from CO2 + H2) 

is considered as an efficient H2 carrier that improves H2 storage as a non‐toxic, liquid, and easy‐

to‐store chemical [24]. This paper will be involved in the development of a reversible and fully 

renewable process of using captured Carbon dioxide and water Electrolyzed hydrogen in the 

conversion and synthesis of the FA using a Chem-thermal method. In turn, decomposition of 

formic acid (HCOOH => CO2 + H2) provides the needed H2 to power the fuel cell operation 

(electricity generation) or using the FA directly in the Heavy oil refining process. Thus, the 

method first transforms H2 into formic acid and then does the reverse reaction to restore H2, 

making the CO2 again available to be reused or directly used in the petrochemical refineries 

[25].  

In recent decades, research has been conducted extensively on the development of new 

technologies for the production of heavy hydrocarbons, such as heavy and non-heavy oils, 

bitumen, petroleum sands [26]. This is due to a decrease in light oil production and an annual 

increase in the amount of heavy crude oil in recovery processes. Heavy oils contain large 

amounts of resin, asphaltene, and other heteroatomic compounds [27].  

Many studies have been devoted to the use of unconventional methods that can ensure 

the production of lighter, so-called synthetic oils from heavy raw materials, which can be 

processed using existing designs without making significant changes to refinery processes. One 

of the promising ways to produce synthetic oil is to heat the heavy hydrocarbon raw materials 

in the presence of water as steam or critical or supercritical conditions [28]. It has been reported 

that the use of heated steam in the process of cyclic steam stimulation is provided for the 

recovery of thermally enhanced oils, including heavy oils and oil sands such as Athabasca oil 

sand and Orinoco heavy oil [29].  

Further research by Li et al. suggests that heavy heat oil is injected into the oil tank 

when the steam is heated [30]. Also, Sung et al. Has proposed a new thermal conversion project 

for conventional heavy oils with excessively hot steam. The authors observed [31] that the 

reaction reaches a uniformity after a confirmation time and is not sensitive to the reaction time. 

Katritzky et al. It has been shown that water in the form of heated steam as a catalyst, shedding 

agent, and a suitable hydrogen donor solvent participates in the reaction of hydrocarbon 

compounds with heated steam [32].  

Under these conditions, water has the properties of a non-polar donor protonating 

solvent. Also, the physical properties of water under these conditions, such as density, dielectric 

constant, hydrocarbon solubility, and ion separation constants, which can accelerate the rate of 

thermal conversion, have been significantly increased [33]. As a result, the efficiency of 

thermal processes can be increased to eliminate heavy oil raw materials and to obtain 

"synthetic" oils with low content of high molecular weight heteroatomic compounds and high 

content of small boiling fractions [34]. 

The major disadvantage for the thermal conversion of dense hydrocarbon sources in the 

presence of excess steam is the significant formation of coke and gaseous products [35], which 

results in the loss of the desired components of liquid products (synthetic oil). However, this 

can be solved by using some additives such as hydrogen-solubilizing solvents or any other 

useful material, which prevents the formation of coke and gas [36]. 
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Also, the thermal conversion of heavy oils using hydrogen-solubilizing solvents with 

excessively hot steam results in an increase in the ratio of hydrogen and carbon, thereby 

transferring additional hydrogen from the hydrogen-solubilizing solvents, which in 

hydrogenation reactions ( Prevent recombinant formed radicals) [37]. It should be noted, many 

studies and work have shown that the use of additives such as hydrogen donor solvents or even 

various steam catalysts increases the efficiency of refining and converting heavy oils and 

reducing coke and gas formations [39].  

Fan et al. Stated that by adding hydrogen donors and catalysts, coke and gas formation 

were reduced [40]. This technology has been successfully applied in this field with excellent 

results. For the super heavy oil (Shengli oil field, China), the viscosity reduction rate with the 

addition of a hydrogen donor was about 70% after the thermal catalytic refine [41]. 

In the Khuzestan region, Iran, there are many substantial and super-heavy oil fields 

developed using the Steam-Based Method for Advanced Oil Recovery (SAGD) [42]. Using 

hydrogenated solvents as an additive can help improve extraction efficiency and in situ 

refining. In this paper formic acid is used as hydrogen soluble with overheated steam, to reduce 

the formation of coke and gaseous products and to prevent recombinant reactions during the 

heating oil conversion process (the figure 3 shows that 38% of the oil reservoirs are heavy oil 

quality type and utilization of the solar-petrochemical plants and the green petroleum 

conversion helps to extract the remaining ultra-heavy oil reservoirs) [43]. 

 
Figure 3. Shows the share of each oil quality in the oil reservoirs in Iran. 

2. Materials and Methods 

In this paper, an Electrochemical Carbon utilization plant is being implemented for the 

green Formic acid production. The electrochemical reduction process plant is illustrated in 

figure 4 [45].  

 
Figure. 4. Electrochemical reduction plant of formic acid. 
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 Figure 4 shows the electrochemical reduction plant for the FA production process, and 

in this plant, a set of membranes is  

The chemical reaction of the process is being addressed in the equations below: 

Cathodic reaction 

𝐶𝑂2  +  𝐻2𝑂 +  2𝑒−  →  𝐻𝐶𝑂𝑂−  +  𝑂𝐻− (1) 

2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (2) 

Anodic reaction 

𝐻2𝑂 → 2𝐻 +  +2𝑒−  +
1

2
 𝑂2 (3) 

Overall reaction 

𝐶𝑂2 + 2𝐻2𝑂 → 𝐻𝐶𝑂𝑂𝐻 + 𝑂2 + 𝐻2 (4) 

 

 The energy needed in the carbon capture and carbon dioxide utilization processes is 

generated by solar energy using photovoltaic or solar concentration technologies. This fact 

indicates that the Formic acid is fully supported by renewable energy [50]. The overall utility 

is being designed and illustrated in figure 5 below [51]. 

 
Figure. 5. The solar Formic acid production plant. 

 

This paper uses the heavy oil of the Khuzestan region, Iran, for the case study. The 

main specifications of the oil are shown in Table 1 [53]. 

Table. 1. Characteristics of the studied oil. 

Parameter Value Parameter Value 

API Gravity 14.1 Elemental analysis (wt. %) 

Viscosity, @25C 2073 Carbon 83.68 

Saturates, %mass. 28.79 Hydrocarbon 11.44 

Aromatics, %mass. 44.32 Sulfur 4.52 

Resin, %mass. 20.98 Nitrogen 0.36 

Asphaltenes, %mass. 5.91   

 

Refining experiments were carried out in a 350 ml stainless steel Parr reactor equipped 

with a heating device and a temperature controller [54]. In a typical experiment, the reactor 

was loaded with crude oil and water at a weight ratio of 2: 1, respectively. The reactor was 

heated to 5 ° C / min to 380 ° C and with a final pressure of approximately 164 bars for 6 hours 

(initial 2 bar pressure of N2). Heat conversion experiments were performed using a steam 

solvent and a hydrogen donor (2 %mas. Formic acid) under the same conditions without a 

hydrogen solvent experiment [55]. 

Physical-chemical properties such as viscosity, API gravity, and SARA analysis of the 

oil before and after the thermal process in the presence and absence of formic acid were 
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investigated [56]. The viscosity and weight of API oil were measured using an SVM-3000 

Stabinger viscometer [57]. The initial composition of the oil was determined before and after 

conversion by a Perkin Elmer 2400 Series II analyzer. SARA analysis was performed 

according to ASTM D 4124 [58]. 

3. Results and Discussion 

3.1. Formic acid production. 

 The results of the implementation of the Carbon utilization process on a solar-

petrochemical plant which is illustrated in table 2, shows that the anodic material and anolyte 

of the electrochemical reduction reaction importance in the overall result of the process and 

because of the importance the best possible option for the green petroleum production is being 

implemented and used to design the formic acid production [59]. 

3.2 Heavy oil  to green petroleum conversion. 

The mass equilibrium (Table 3) of the three kinds of products, namely liquids, gas, and 

coke, was calculated for the two experiments as %mass. of feed oil in the reactor using Eq. (1) 

and (2) [60]: 

𝑌𝑖𝑒𝑙𝑑 (𝑤𝑡. %) =
𝑊𝑖

𝑊𝐹
×  100    (5) 

𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑔𝑎𝑠 (𝑤𝑡. %) =
𝑊𝐹 −  𝑊𝐴

𝑊𝐹
 × 100  (6)   

Table. 2. The implementation of the scenarios on the solar-petrochemical plant. 

parameter unit IrO2 anolyte 

Formic acid production Kg/s 79.70 

carbon capture Kg/s 75.20 

power penalty kWh/s 376.38 

Total efficiency % 0.44 

investment cost M$ 7.2 

Exergy rate cost $/kWh exergy 0.21 

Flow stream cost $/s*(10-3) 22.80 

 

Table. 3. Material balance for thermal conversion of crude oil at 380 °C. 
Scenarios Temperature, °С  Liquid yield (wt, %)  Coke yield (wt, %)  Gas yields (wt, %) 

Scenario 1  380 74.3 16.81 7.41 

Scenario 2  380 81.2 13.94 5.98 

  

Table. 4. Viscosity, API gravity and SARA composition of oil before and after thermal conversion. 

Reaction system viscosity at 

25°C,mPa·s 

0API, 

gravity 

mass content,% 

Saturates Aromatics Resins Asphaltenes 

Base 2073 14.1  28.79  44.32  20.98  5.91  

Scenario 1 16.21 21.5 55.2 29.8 12.5 2.5 

Scenario 2 11.96 22.98 58 31 9.7 1.3 

 

Where the weight is the weight of the components i and wf, the weight of feed oil 

(heavy oil loaded in the reactor), and the WA is the amount of coke and liquid phase weight in 

the autoclave after testing. Two scenarios in this paper have been studied. The first is a classic 

thermal conversion of the heavy oil, and the other is the formic acid thermal conversion [61]. 

From Table 3, it can be shown that due to the polymerization and high density of high 

molecular weight components, the high performance of coke and gas after heat updraft with 
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steam is indicated. Conversely, adding formic acid to the reaction system reduces the 

performance of coke and gases and increases the liquid phase content. 

The results of studies on crude oil properties (viscosity, API gravity, and SARA 

analysis) are presented before and after refining in steam-heated conditions in Table 4. 

From Table 2, we can observe an increase in the content of the saturation fraction and 

a decrease in the amount of resin due to the thermal conversion of heavy oil with and without 

formic acid as a hydrogen carrier solvent. However, the degree of conversion is higher in the 

presence of formic acid. The use of hydrogen donor contributes to the degradation of high 

molecular weight components (resin and Asphaltenes) of heavy oil [10, 11]. Compared to the 

initial oil, the saturation content is significantly increased, and the amount of resin and 

Asphaltenes is significantly increased. The same conditions are heated by steam and reduced 

by formic acid. These changes are reflected by increasing API gravity from 21.5 to 22.98 by 

adding hydrogen donor solvent and reducing the viscosity from 2073 to 16.21 without formic 

acid and 11.96 with it. 

As shown in Table 5, a preliminary analysis of oil before and after heat conversion, we 

can observe a significant decrease in heteroatoms, especially the sulfur content from 4.52 for 

primary oil to 2.96 with overheated steam and 2.77. Heated by steam and formic acid. At the 

same time, we can reduce the percentage of carbon and hydrogen due to their conversion to 

coke and gas after the polymerization and condensation process. It should be noted that the 

addition of formic acid as a hydrogen donor solvent increases the percentage of hydrogen 

compared to the refine without formic acid. 

Table. 5. Elemental analysis of crude oil before and after thermal conversion. 

 content, wt.% 

C H N S 

Base 83.68 83.68 83.68 83.68 

Scenario 1 83.65 83.65 83.65 83.65 

Scenario 2 83.01 83.01 83.01 83.01 

 

Heat conversion of heavy crude oil using overheated steam combined with formic acid 

as a hydrogen solvent gave promising results [62]. The content of high molecular weight 

heteroatomic materials such as resin and Asphaltenes has been reduced, unlike thermal 

treatment using steam-only heating [63].  

The viscosity of the heavy oil improved with the addition of formic acid, compared to 

the thermal conversion without the donor hydrogen solvent (viscosity reduction was 23.2) [64]. 

Also, the use of formic acid as a hydrogen soluble reduces the yield of coke and gaseous 

products, increasing the number of liquid products (refined oil).  

Also, a decrease in sulfur content was observed due to the addition of formic acid as a 

proton donor for the thermal conversion process [65]. 

4. Conclusions 

 Global warming caused by greenhouse gas accumulation in the atmosphere is one of 

the major threats to the environment [66]. Via concerns spread, increase research to convert 

carbon dioxide to the valuable ingredient. In the number of scientific agreements in recent 

decades, for capturing, fixation, and technologies to drive carbon dioxide content [67].  

 Carbon dioxide as the most important greenhouse gases has adverse effects on the 

environment Due to the reduction of fossil fuels, carbon dioxide consumption also needs to be 

formulated and applied [68]. New publications of CO2 reduction catalysts show remarkable 
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action to improve catalyst activity [69]. Such endeavors get a profit from basic mechanistic 

studies and simulation of classes of the catalytic material. Another opportunity for activity 

improvement is fin- tuning electrolyte composition for a specified catalyst [55].  

 The best opportunity for enhancing performance is optimizing electrode structure and 

composition of the subatomic layer than similar electrodes in the same cell, and more try should 

focus on the physical properties of gas diffusion [56]. These items improve the performance of 

the system and convert CO2 reduction to valuable chemical materials [43]. 

 Recent publications of CO2 reduction catalysts show remarkable action to improve 

catalyst activity. Such endeavors get a profit from basic mechanistic studies and simulation of 

classes of the catalytic material [66]. Another opportunity for activity improvement is fin- 

tuning electrolyte composition for a specified catalyst [62].   

 The best opportunity for enhancing performance is optimizing electrode structure and 

composition of the subatomic layer than similar electrodes in the same cell, and more try should 

focus on the physical properties of gas diffusion [68]. These items improve the performance of 

the system and convert CO2 reduction to valuable chemical materials[21]. 

 Based on the formic acid solar fuel studies, it is obvious that the CDU processes can be 

implemented and is a feasible option for the carbon abatement processes [11, 69]. The 

utilization of this method means lesser fuel consumption and negative net emission, which 

helps to manage the emissions throughout the plant [23]. But this research indicates that there 

is a need for R&D study over the electrolyzers, which helps this industry become more mature 

and economically feasible [15].    

Although the CDU-photovoltaic hybrid is feasible, it has very high risk right now and 

needs more uncertainty and risk study over the matter [55]. But the combination of the CDU 

processes with the renewable energy systems highly reduces the risk of the investment [30]. 

And the R and D studies and the developments support the process to become a more feasible, 

thus lesser risk in the investment [31, 70]. 
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