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Abstract: Triterpene saponins extracted from Hedera helix Algeriensis plants were evaluated in terms 

of surface characteristics and capacity to be utilized as surfactants for the formulation of oil-in water 

emulsions. Surface tension and emulsifying properties were used for the identification of the surfactant 

characters, while emulsions were characterized by rheological methods and their stability was estimated 

by the control of the creaming index. The design of emulsions was conducted by employing a response 

surface method (RSM). The factors affecting the rheological parameters and emulsion stability were 

carefully evaluated by the polynomial models. Triterpene saponins were found as effective 

biosurfactants; they contribute strongly to the stability of emulsions by interacting with other excipients. 

Emulsions exhibited a shear-thinning behavior and low apparent viscosities which depend on the 

amount of xanthan used. They were considered as weak gels with a viscoelastic behavior. In addition, 

it was found that the presence of a sufficient quantity of saponins improves the stability of emulsions.  
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1. Introduction 

Saponins are secondary heterosidic metabolites found in more than 500 plant species 

and some marine organisms [1,2]. The original name of saponin is extracted from the Latin 

word 'sapo' meaning soap for their properties to form foaming solutions [3]. 

Saponins are constituted of two different parts, lipophilic part called ‘genin’ or 

‘aglycone’ and a hydrophilic part ‘osidic’. On the basis of the nature of their genin and the 

number of carbohydrate chains linked to the aglycone they are classified as triterpenic or 

steroidal [4]. 

The saponins present in the leaves of Hedera helix (Hh) plant are triterpenic, their 

properties are determined by the plant origin and extraction procedure [5,6]. They are natural 

products exhibiting significant surface features and interesting biological characteristics, 

including antimicrobial, anti-inflammatory, insecticidal and anti-burn [7,8].  

Strong consumer demands for biocommodity with biological properties have made 

saponins as desirable commercially compounds with broad applications, mainly in the medical, 

food and officinal manufactures [7-10]. 

The emulsifying agents usually employed in the formulation of emulsions are chemical 

products which are expensive, irritant and harmful to both human health and environment, it 

would, therefore, be interesting to substitute them with biodegradable natural surfactants, 
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renewable, available and no toxic [11]. Therefore, extraction, characterization and 

investigation of new emulsifiers became a centre of interest of investigators to respond to the 

increasing need for bio-products. Such natural surfactants include the group of saponins that 

can be extracted from various types of plants.  

Many studies evoked the use of saponins as surfactants in the preparation of oil-in-

water emulsions. According to Mitra et al. [12], the major ingredient capable of forming 

micelles and stabilizing oil/water emulsions is saponin, which was extracted from the Quillaja 

saponaria tree. Other investigations on the emulsifying characteristics of Quillaja saponins 

were reported [13-15]. They were found to form polydispersed emulsions with good particle 

size distributions of droplets.  

Also, Benahmed-Djilali et al. [16] investigated the antibacterial properties of an 

ointment based on saponins extracts of walnut leaves and found that the formulated systems 

are of good sensory, physicochemical and rheological qualities. Chung et al. [17] used the 

mixture of soy lecitin and Quillaja saponin to formulate a food emulsion. Kaur et al. [18] also 

used saponins to stabilize a nanoemulsion and studied its role in protecting damage of quercitin 

beside UV rays. Doodt et al. [19] reported in their work that thymol nanoemulsions were 

produced by using Quillaja saponin as biosurfactants.  

Saponins were also employed in the formulation of drug delivery systems. Cibulski et 

al. [20] utilized saponins of Quillaja Brasiliensis in the preparation of a newly developed 

vaccine. Recently, Yang el al. [21] developed a collagen microspheres-based steroidal saponin 

formulation with high encapsulation efficiency.  

In this work, we investigated the surfactant potential of triterpene saponins extracted 

from Hedera helix (Hh) Algeriensis plant in the formulation of an emulsion (o/w) stabilized by 

xanthan gum. This anionic polysaccharide is considered as a hydrophilic biopolymer of low 

surface activity [22]; it is generally used for its gelling or stabilizing properties [23]. 

The main objective was the evaluation of the surface properties of saponins and their 

capacity to be employed as biosurfactants. A response surface modeling (RSM) was employed 

in order to determine the influence of saponin/xanthan interactions on the rheological 

properties and stability of formulated emulsions. 

2. Materials and Methods 

2.1. Materials.  

Triterpene saponins were extracted by maceration from Hh leaves collected in the 

region of Blida (Algeria). A quantity of 100 g of crushed and defatted dried leaves was 

macerated in ethanol (80%, w/v) with a proportion of 1/7 (m/v). Pure ethanol (99%) was 

supplied by Merck (Germany). Xanthan gum was purchased from Rhodia-Solvay (France). 

Paraffin oil of pharmaceutical grade was provided graciously by Isopharm (Algeria). 

2.2. Methods. 

2.2.1. Surface tension measurements. 

The critical micelle concentration (CMC) was determined by tensiometry. For each test, 

three measurements of the surface tension were realized at 20 °C using a Wilhelmy blade 

tensiometer (Gibertini TSD, Italia).  
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2.2.2. Determination of emulsifying properties. 

The capacity of emulsification after 24 h was determined according to the method 

described by Burgoz-Diaz et al. [24]. The emulsions were elaborated by stirring a volume of 

paraffin oil (2.5 mL) with an equivalent volume of the aqueous phase containing different 

amounts of saponins (0.05, 0.5, 1 and 2%) for about 3 min. The mixtures were stirred and left 

standing for 1 h.  The capacity of emulsification (CE24) and the stability of emulsion (SE) are 

calculated according to Eq.1 and Eq.2: 

CE24 = (HE/HT).100                                                                 (1) 

SE = (CE24/CE0).100                                                               (2) 

where HE is the height of emulsion, HT is the total height of solution, CE0 is the ratio (HE/HT) 

after 1 h and CE24 is the ratio (HE/HT) after 24 h. 

2.2.3. Preliminary formation of emulsions. 

To determine the efficiency and the appropriate aqueous phase/oil phase ratio to form 

emulsions, solutions of saponins were elaborated at different concentrations in the interval of 

0.05 to 1%; then the aqueous phases were stirred at 1400 rpm for 2 min with different ratios of 

paraffin oil (80/20, 50/50 and 20/80). After a whole day, the emulsion height formed in each 

tube was measured. For the formulation of emulsions, first, the aqueous phases were prepared 

by dissolving during 24 h an appropriate amount of xanthan and saponin extract in milli Q 

using a magnetic agitator, and then the appropriate amounts of paraffin oil were added. 

Emulsification was realized by using a specific homogenizer (IKA, Germany) for 10 min at 

24,000 rpm. The constituents of emulsions and their intervals of variation are grouped in Table 

1.  

Table 1. Emulsion composition 

Constituents 
Concentration (%, 

w/w) 
Function 

Triterpene saponin 

Xanthan gum 

Parafin oil 

0.05-0.25 

0.2 - 0.8 

10 - 20 

Biosurfactant 

Thickening 

Organic phase 

2.2.4. Microscopic analysis and droplet size distribution. 

Morphology of freshly prepared emulsions was examined using a Zeiss optical 

microscope (B3 Professional Series), which allows magnification up to 100 times. The size of 

droplets was evaluated by the treatment of images using the ImageJ.Ink software.  

2.2.5. Determination of the index of creaming.  

The index of creaming (I-C) is a distinctive parameter to evaluate the stability. Just after 

the preparation of emulsions, they were placed in test tubes and the heights of the separated 

phases were measured. I-C was then deduced using Eq.3: 

I-C= (Haq/HT).100                                                                   (3) 

where Haq is the height of the aqueous phase (lower phase) and, HT is the total height of the 

emulsion. 

2.2.6. Rheological characterization. 

Measurements of the rheological parameters were realized by using an Anton Paar 

oscillating rheometer (MCR 302, Germany), using a parallel-plate geometry (diameter of 25 
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mm and gape of 1 mm). The rheometer was controlled by a microcomputer for the control and 

data processing using Rheoplus US200 software.  

The flow test was achieved at 20 °C under a deformation rate ranging between 10-3 and 103 s-

1. The flow curves representing the apparent viscosity in terms of the shear rate were adjusted 

by the model of Carreau [25]:  
𝜂−𝜂 ∞

𝜂0−𝜂 ∞
=

1

(1+(Kγ̇ )^2 )^𝑛
                                                             (4) 

where η is the solution viscosity, η0 is the zero shear viscosity,  is the infinite shear viscosity,   

𝛾̇ is the shear rate, K is characteristic of the relaxation time and, n is the exponent of the Cross 

model.   

The viscoelastic properties were determined in dynamic mode using oscillatory tests. 

The deformation was varied from 0.001 to 100% at a frequency of 1 Hz. Then, the evolution 

of the conservation modulus (G') and loss modulus (G") was recorded as a function of the 

deformation. . 

2.3. Design of experiments. 

The adopted approach is based on the method of the design of experiments; this method 

is utilized to obtain according to the formulation factors the predictive models of the responses. 

The most appropriate experimental strategy is based on the application of a response surface 

method (RSM) to account all the interactions between factors by a second-order model. The 

design that meets our objectives is a central composite face-centered (CCF) design. The 

selected responses represent the index of creaming (I-C) and the rheological parameters. The 

retained factors (X1, X2 and X3) are between -1 and 1, and are associated with concentrations 

of triterpenic saponin (0.05-0.25%), xanthan (0.2- 0.8%) and oil (10-20%). The matrix of 

experiments that meets these objectives contains 14 tests.  

The quality of the statistical results obtained from the adjustments is conditioned by the 

coefficient explaining the variance (R2), which indicates how the model is of good quality. In 

addition, the statistical significance of the models was checked by using the analysis of variance 

(software Modde, version 6, Umetrics AB, Umeå, Sweden). 

3. Results and Discussion 

3.1. Surface and emulsifying properties of saponins.  

Figure 1 illustrates the variation of the surface tension versus the triterpenic saponin 

concentration. It decreases up for a value of about 0.05% of saponin; from this concentration, 

the molecules of surfactant saturate the surface and the surface tension is stabilized at a 

minimum value which is in the order of 40 N/m. At this value (0.05%, in wt.), the surfactant 

molecules start to form micelles; this concentration represents the critical micelle concentration 

(CMC). These results agree well with those obtained by Mitra et al. [12] which determined the 

CMC of triterpenic saponins from different extract sources; they found that the CMC values 

vary between 0.013 and 0.074%. Moreover, Mironenko et al. [26] also found that the CMC of 

saponins from sugar beetroot extracts is between 0.06 and 0.08%. Stanimirova et al. [27] have 

shown that the CMC of saponin solutions from quillaja root extracts is approximately equal to 

0.025%. According to these results, we note that the CMC of saponins is variable and depends 

on the source and extraction methods. 
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Figure 1. Variation in surface tension as a function of saponin concentration. 

For the best characterization of surface properties, emulsification capacity and emulsion 

stability are two important parameters to demonstrate the possibility to use extracted saponins 

as emulsifying agents. Table 2 illustrates the variation of CE24 (capacity of emulsification) and 

SE (stability of emulsion) depending on saponin concentration. The results showed that CE24 

and SE raise with saponin concentration increasing. This demonstrates that extracted triterpenic 

saponins are effective bioemulsifiers for forming oil-in-water emulsions.  

Table 2. Emulsification capacity and stability of emulsions. 

Saponin concentration 

(%, in wt.) 

Emulsification capacity                         

CE0 (%) 

Emulsification capacity after 24 h 

CE24 (%) 

Emulsion stability 

SE (%) 

0.05 56.66 6.67 11.75 

0.50 60.06 7.87 12.98 

1.00 22.86 17.14 74.97 

2.00 28.57 22.85 80.00 

3.2. Properties and morphology of emulsions. 

The prepared emulsions are easily diluted in milli Q so the nature of the prepared 

emulsions is oil-in-water. These observations were confirmed by the measurement of the 

conductivity at 20 °C which was found to be greater than distilled water. The microscopic 

analysis results (Figure 2) of the freshly emulsions showed the presence of improved dispersion 

of oily droplets in the aqueous phase. This demonstrates the emulsification capacity of 

extracted saponins.  
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Figure 2. Microscopic image and distribution of mean diameter of droplets. 

In Figure 2, the distribution of the mean diameter of a model of prepared emulsions 

(Test 3) is also presented. It was observed that the profile of distribution is characterized by 

two populations, large and small droplets. The mean diameter varies between 0.1 and 0.7 μm. 

So, the profile of this distribution seems to be of bimodal type, with the first mode around 0.2 
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μm and a second around 0.45 µm. However, it seems that 50% of the population has a diameter 

greater than 0.5 µm, which infers that the grade of this system is micronized but not colloidal. 

3.3. Rheological characterization of emulsions. 

Associated rheogrammes for prepared emulsions are characterized by the appearance 

of two regions, a first Newtonian region in the interval of weak shearing (< 0.01 s-1) and a 

second region presenting a shear-thinning behaviour (Figure 3).   

The flow curves of all samples were adjusted by the Carreau model (Eq.4) using 

Statistica software (version 8.0, StatSoftInc, France), which offers a multitude of nonlinear 

optimization methods based on an iterative calculation. For all emulsions, the coefficient R2 

was found greater than 0.97, which confirms the adequacy of this rheological model.  

 
Figure 3. Flow Curve of formulated sample (Test 5). 

Figure 4 represents the evolution of the conservation modulus G' and that of loss 

modulus G'' as a function of the deformation for the test 5 (chosen as model). G' represents the 

elastic behavior corresponding to the deformation energy stored in the sample during shear, 

while G"  represents the viscous behavior.  

From the curves of  viscoelasticity obtained, it was noticed  that G' is greater than G". 

This indicates  that the emulsions behave like a viscoelastic solid where the elastic behavior 

dominates the viscous one. This measurement made it possible to deduce the values of G'0, and 

G''0, in the linear viscoelastic range (Figure 4). 
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Figure 4. Viscoelasticity curve of formulated sample. 

3.4. CCF modeling. 

In order to select the dependent responses used in the experimental design (Table 3), 

we explored the correlations between all the responses. Thus, a strong link was observed 
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between G'0, G''0 and η0. It is, therefore, unnecessary to keep the three responses and, we 

propose to maintain only G'0 and K as rheological responses. 

Table 3. Experimental matrix of the CCF design. 

Test X1 (%) X2 (%) X3 (%) K η0 (Pa.s) G’0 (Pa) G’’0 (Pa) I-C (%) 

9 0.25 0.2 10 1.51 0.68 0.82 0.93 90 

5 0.05 0.8 10 41.73 187.35 16.3 6.28 10 

12 0.25 0.8 10 41.63 161.35 14.78 6.28 0 

14 0.05 0.2 20 623.6 9.62 1.49 1.18 90 

2 0.05 0.8 20 69.54 256.61 21.80 8.78 64 

10 0.25 0.8 20 52.89 178.93 16.92 7.05 0 

7 0.05 0.5 15 5.25 6.39 4.47 3.18 70 

3 0.25 0.5 15 36.01 73.35 8.50 3.42 60 

1 0.15 0.8 15 36.36 82.64 13.30 7.15 0 

6 0.15 0.5 10 44.41 152.97 13.00 5.50 4 

8 0.15 0.5 20 34.52 37.37 7.15 3.67 70 

4 0.15 0.5 15 17.90 21.59 5.40 2.80 80 

13 0.15 0.5 15 17.01 21.06 4.95 2.83 80 

11 0.15 0.5 15 17.50 20.76 5.00 2.80 80 

Based on the values of the coefficients of regression (0.931, 0.940 and 0.889 for K, G'0 

and I-C, respectively), in terms of fit and prediction the quality of the models is considered 

satisfactory.  

The polynomial models expressing the responses (K, G'0 and I-C) as functions of 

formulation factors are respectively given by the following equations (Eq.6, Eq.7 and Eq.8): 

K  = 22.31– 67.35X1 – 127.57X2 + 61.78X3 +10.68X1
2 + 134.35X2

2 + 13.51X3
2 + 79.81X1X2 – 

4.11X1X3 – 68.72X2X3                                    (6) 

G'0 = 5.52 – 0.33X1 + 7.64X2 – 0.58X3 + 0.66X1
2 – 0.47X2

2 + 4.25X3
2 – 0.68X1X2 – 0.84X1X3 

+ 1.90X2X3                                                  (7) 

I-C = 65.76 + 3.80X1 – 31.66X2 + 24.20X3 – 9.90X1
2 – 12.75X2

2 – 18.09X3
2 – 24.50X1X2  – 

13.50X1X3 – 8.50X2X3                                        (8) 

The ratio F deduced from the test of variance (ANOVA) was utilized to define the 

statistical significance of the responses; it is a proportion of two independent estimates of the 

experimental error. In addition the probability (p) quantifying the risk of error was also 

employed. The obtained results revealed that the three models are statistically significant based 

on the values of F for K, G'0 and I-C (6.0082, 6.9443 and 3.5617) and the low values of p (< 

0.05) for K and G'0. Nevertheless, the value of p for I-C is relatively high (> 0.05), which 

explains that the values of I-C are statistically insignificant considering the value of p (0.117). 

This can be interpreted by the fact that I-C is rather a qualitative response.  

3.5. Effects of factors on the rheological properties. 

From Figure 5, it was shown that xanthan has a strong effect on G'0 (Elastic modulus) 

irrespective of the used quantities of oil or saponins. Indeed, the polysaccharide with an 

important molecular weight behaves as a thickener, forming a polymeric network within the 

emulsion that enhances the cohesion of the structure. The increase in xanthan concentration 

increases the rigidity by raising the number of macromolecules.  

This character is explained by the entanglement of rigid xanthan rods forming a network 

by ionic and hydrogen interactions imposing a high stiffness of the medium. Also, we note that 

saponins have no effect on the rigidity until a concentration of about 0.15%; above this 

concentration, it seems that saponins have a relatively significant effect depending on the 

quantity of the involved oil. In fact, for an oil concentration of 10%, the increase in saponins 
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beyond 0.15% decreases G'0 while for oil concentrations of 15 or 20%, G'0 increases beyond 

this critical concentration of saponins. 

 
Figure 5. Effects of factors on the conservation modulus (G'0). 

According to Holmoberg [28], surfactants beyond a certain concentration form large 

micelles that become entangled in the appearance of polymers and make it possible to viscosify 

the middle and increase the rigidity of the emulsion. This result is in accord with those of 

Wojciechowski [29] who found that the hydrophobic phase has a remarkable effect on the 

rheological properties. Thus, the increase in G'0 may be caused by the entrapment of the oil 

droplets within the polymeric xanthan network thus preventing the droplets from flocculating.  

Otherwise, xanthan seems to reduce K (relaxation time) as shown in Figure 6. In 

addition, K which characterizes the interval of the Newtonian region decreases with the 

increase of xanthan concentration; indeed, when the quantity of xanthan increases the 

hydrophobic interactions set up between the entangled chains. Below the effect of shearing, 

there are reorganisations of the liaisons to form intra-chains hydrophobic ones that explain the 

shear-thinning phenomenon.  

 
Figure 6. Influence of factors on the consistency index (K). 

This behavior is typical for polymers observed particularly for the semi flexible 

polysaccharides [30]. This result is in agreement with those achieved by Rodd et al. [31] which 

indicate that xanthan is a polysaccharide with strong shear-thinning properties. 

With regard to the action of surfactant, according to the iso-responses of Figure 6, it is 

clear that saponins exhibit a negative impact on the relaxation time; so the shear velocity 

decreases with increasing of its concentration. This result indicates that saponins have also a 

robust shear-thinning capacity. However, dilute emulsions show Newtonian flow behavior. 

Effectively, increasing the particles concentration of dispersed constituents (surfactant, 

polymer, and other constituents), modifies the rheological parameters of the system due to the 

increasing potential interactions within the dispersed emulsion particles [32]. 
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3.6. Effects of factors on the stability of emulsions. 

The stability of emulsions was evaluated through the creaming index (I-C). Figure 7 

represents the iso-IC responses which reveal that xanthan significantly decreases I-C in all 

cases. This polysaccharide ameliorates the stability of the emulsion by acting as a thickener by 

preventing the droplets from flocculating. This result is in accordance with those published by 

other authors who have used this biopolymer for the stabilization of emulsions [22,33]. 

However, the extracted saponins have an undesirable impact on I-C for concentrations of oil 

about 10%. At this concentration, the quantity of unabsorbed saponins is important, thus free 

molecules of surfactant interact negatively by segregation with xanthan which in turn decreases 

the homogeneity of emulsion by flocculating the oil droplets. In addition, for an oil fraction of 

20%, and for xanthan concentrations below 0.35%, saponins have no influence because the 

quantity of xanthan is insufficient to interact negatively with the little amounts of unsuitable 

saponins. Beyond this concentration, their effect becomes positive because the surfactants 

occupy the entire oily interface thus preventing the flocculation of the oily droplets and 

ameliorate the emulsion stability; the most relevant influence is recorded for a maximum 

concentration of oil and saponins.  

 
Figure 7. Influence of factors on the index of creaming (I-C). 

4. Conclusions 

 A detailed investigation was conducted on the evaluation of emulsion formation and 

surface properties of triterpenic saponins. The physicochemical characterization showed that 

these bioemulsifiers, extracted from Hedera helix Algeriensis plan extracts, possess a good 

surface activity and are effective to form oil-in-water emulsions with low concentrations for an 

oil/water volume proportion of 80/20. A CCF design was used for better organization of tests 

and, for determination of the factor effects on the rheological properties and emulsion stability 

by means of mathematical simulation. It was shown that these natural molecules do not have a 

specific effect on emulsion's rheological properties, but contribute strongly to their stability by 

interacting with other excipients of the mixture. Also, it was noted that the hydrophobic phase 

has a notable impact on the rheological properties. Emulsions containing saponins exhibited 

shear-thinning and viscoelastic behaviors. Also, saponins improved the emulsion stability for 

a maximum concentration of oil and surfactant. This study provides useful information about 

the exploitation of triterpenic saponins as biodegradable and renewable surfactants. 
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