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Abstract: Protein fold prediction is a milestone step towards predicting protein tertiary structure from 

protein sequence. It is considered one of the most researched topics in the area of Computational 

Biology. It has applications in the area of structural biology and medicines. Extracting sensitive features 

for prediction is a key step in protein fold prediction. The actionable features are extracted from 

keywords of sequence header and secondary structure representations of protein sequence. The 

keywords holding species information are used as features after verifying with uniref100 dataset using 

TaxId. Prominent patterns are identified experimentally based on the nature of protein structural class 

and protein fold. Global and native features are extracted capturing the nature of patterns 

experimentally. It is found that keywords based features have positive correlation with protein folds. 

Keywords indicating species are important for observing functional differences which help in guiding 

the prediction process. SCOPe 2.07 and EDD datasets are used. EDD is a benchmark dataset and SCOPe 

2.07 is the latest and largest dataset holding astral protein sequences. The training set of SCOPe 2.07 is 

trained using 93 dimensional features vector using Random forest algorithm. The prediction results of 

SCOPe 2.07 test set reports the accuracy of better than 95%. The accuracy achieved on benchmark 

dataset EDD is better than 93%, which is best reported as per our knowledge.  

Keywords: Evolutionary; Protein Fold; Protein secondary structure; Random Forest; Spatial; 

Structural classification of protein. 
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1. Introduction 

Knowledge of protein folding provides vital insights on structural and functional 

aspects of proteins, in current times. Demystifying the process of protein three dimensional 

structure formations from protein sequence is among the most complex mysteries. Protein fold 

prediction is the intermediate stage in pipeline of protein tertiary structure discovery [1]. 

Essentially, protein folding leads a protein being transformed from its denatured state 

to its biologically and functionally active confirmation [2]. Protein fold prediction is acquiring 

three dimensional protein structures from protein sequences without being concerned of protein 

sequence similarity [3]. 

The protein fold prediction pipeline consists of two main stages. Feature extractions 

from protein sequence and modeling of features using machine learning algorithms [4]. There 

are several types of features that can be extracted from protein sequences like; sequential, 
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physico-chemical, structural, functional and evolutionary [5,6]. Profile-profile sequence 

alignment technique is incorporated for predicting protein folds using concepts of hidden 

markov models [7,8]. This method helps in capturing evolutionary and remote homology 

information of protein sequences. The tri-gram technique, popularly used in natural language 

processing application is used for extracting features from PSSM [9]. Later, SVM is used for 

machine learning based modeling. Local evolutionary and predicted secondary structure based 

features are used with SVM algorithm for predicting protein fold for sequence of low identity 

[10][11]. Spatial separation based features from PSSM are extracted and used with SVM for 

protein fold prediction [12]. It considers amino acids that are not adjacent in the sequence. An 

ensemble classifier coupled with features of secondary structure, evolutionary information, 

functional domain information and physico-chemical properties is combined for protein fold 

recognition [13].  The results from work [14] suggest that structure based features may turnout 

significantly important for protein fold prediction. 

This work is focused on using primary and secondary structure based features for 

protein sequence representation. The feature vector of 93-dimension is used with machine 

learning algorithm Random Forest. SCOPe 2.07 [15] dataset is used for protein folding data 

and EDD [16] is used as benchmark dataset. 

2. Materials and Methods 

2.1. Datasets. 

The latest version of SCOPe [17] dataset SCOPe 2.07 is used for protein folding data. 

Protein sequences of low identity (40%) are considered in this work. As prediction performance 

reported for low identity sequences is yet require further improvements. The EDD dataset is 

used as benchmark dataset as it contains header information we use in this work for extracting 

species based features. The SCOPe 2.07 contains information on 1003 folds while EDD has 

information on 27 folds. This work focuses on the prediction of 27 folds present in both EDD 

and SCOPe 2.07 dataset. The details are shown in Table 1. It is clearly evident from Table 1, 

the data is highly imbalance. 

Table 1. Summary of EDD and SCOPe 2.07 Datasets. 

Class Folds Number of 

samples with 

EDD 

Number of 

samples with 

SCOPe 2.07 

α a.1: Globin-like  41 58 

α a.3: Cytochrome c 35 40 

α a.4: DNA/RNA-binding 3-helical bundle 322 408 

α a.24: Four-helical up-and-down bundle 69 76 

α a.26: 4-helical cytokines 30 32 

α a.39: EF Hand-like 59 83 

β b.1: Immunoglobulin-like beta-sandwich 391 539 

β b.6: Cupredoxin-like 47 51 

β b.121:Nucleoplasmin-like/VP (viral coat and capsid proteins) 60 64 

β b.29: Concanavalin A-like lectins/glucanases 57 87 

β b.34: SH3-like barrel 129 173 

β b.40: OB-fold 156 183 

β b.42: beta-Trefoil 45 61 

β b.47: Trypsin-like serine proteases 45 54 

β b.60: Lipocalins 37 49 

α/β c.1: TIM beta/alpha-barrel 336 480 

α/β c.3: FAD/NAD(P)-binding domain 73 27 

α/β c.23: Flavodoxin-like 130 211 

α/β c.2: NAD(P)-binding Rossmann-fold domains 195 302 

α/β c.37: P-loop containing nucleoside triphosphate hydrolases 239 315 
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Class Folds Number of 

samples with 

EDD 

Number of 

samples with 

SCOPe 2.07 

α/β c.47: Thioredoxin fold 111 204 

α/β c.55: Ribonuclease H-like motif 128 163 

α/β c.69: alpha/beta-Hydrolases 83 138 

α/β c.93: Periplasmic binding protein-like 16 92 

α+β d.15: beta-Grasp (ubiquitin-like) 121 148 

α+β d.58: Ferredoxin-like 339 438 

G g.3: Knottins(small inhibitors, toxins, lectins) 124 137 

 

2.2. Data pre-processing. 

It is understood from the work of [14] the feature extraction methods must include 

secondary structure representations. It is as protein folds due to arrangements of its secondary 

structure in space relative to one another. Secondary structure representation can be found from 

various prediction servers and tools [18,19]. Secondary structure representation is obtained 

from DSSP algorithm [20,21]. It uses 8 states ‘G’, ‘H’, ‘I’, ‘E’, ‘T’, ‘B’, ‘S’ and ‘ ’ for 

representing secondary structure. For convenience purpose we use ‘C’ instead of ‘ ’. Data pre-

processing steps are performed as given in [14].  

2.3. Technique of feature extraction.  

Variation in protein structures is less in comparison to protein sequence variation [22]. 

Thus, protein folds are formed around various protein secondary structures’ regularly repetitive 

patterns. Experimentally seven patterns are identified as features. These patterns are based on 

abundance of α compartments, β compartments, parallel β sheets, anti-parallel β sheets, helix 

loop, sheet loop and sandwiched sheet in helix confirmations. The patterns are formed using 

secondary structure 3 states representation. Protein secondary structure 3 states representation 

is obtained by labeling G, H and I states as α for helix, E and B as β for sheet and T, S and C 

as λ for a turn or unknown [23,24]. The conversion is performed to compare performance with 

past works as they have used 3 state representations. The global feature vector is constructed 

using Equation 1. 


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, f  is a  frequency 

function, {X,} indicates occurrences of X or more based on minimum pitch found in respective 

structure, + indicates one or more occurrences, * indicates zero or more occurrences, | denotes 

OR and G, H, I, E, T, B, S and C are 8 states of secondary structure. 

The native (i.e. local) information can assist in distinguishing protein folds. It is noted 

after vigilant inspections of various protein folds structure that certain patterns are repeated in 

certain native spatial arrangements only adhering to functional activity. This native pool of 

information is included by splitting secondary structure representation into approximately four 

equal parts. Equation 1 is applied to each of four parts and shown in Equation 2. 
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, f  is a frequency function 

of pattern, pi indicates ith part of the sequence for 1≤i≤4, {X,} indicates occurrences of X or 

more based on minimum pitch found in respective structure, + indicates one or more 

occurrences, * indicates zero or more occurrences, | denotes OR and G, H, I, E, T, B, S and C 

are 8 states of secondary structure. 

The frequency of global and local patterns exposes compositional, distributional and 

transitional information present within data. That serves its purpose in discriminating protein 

folds. Although, secondary structure based features have their own downside, when many 

patterns are part of a single sample. That happens frequently with classes α+β and α/β. These 

kinds of situations may lead to misclassification or correct classification with limited 

confidence. This is not enough for making machine learning algorithms robust. 

To counter this problem, features based on primary structures are also included. Header 

information is part of SCOPe 2.07 and EDD datasets. Species information is included in 

headers of dataset. Uniref100 dataset also contains species information for respective protein 

sequences. The protein three dimensional structures are manifestation of protein function. The 

functional differences are observed in species. The difference in species information also leads 

to the difference in physico-chemical features like amino acid profile, surface charge, 

etc[25][26]. Thus, species are bound to have positive connection with protein folds. The species 

represent knowledge of evolutionary history of a protein sequence. The evolutionary 

knowledge strengthens the prediction of protein folds for sequence of low identity. The 

similarity of species information likely to observe in proteins categorized to similar fold (i.e. 

structure) and function in the future. This keywords based features when coupled with 

secondary structure based features provides a distinct way of distinguishing protein folds [14]. 

Steps to find importantly applicable and no repetitive keywords from header information of 

EDD and SCOPe 2.07 dataset are shown below in Algorithm 1 given in Table 2. 

Table 2. Steps to find important keywords from header of dataset. 

Algorithm 1: Protein sequence keyword extraction from protein sequences 

of EDD, SCOPe 2.07 

1.  For s = 1 to S 

 1.1.  Extract header from each record s 

 1.2.  Assign s to respective protein fold label l (i.e. l = 1 to L, where 

L=27) 

2.  For l = 1 to L 

 2.1.  Create a dictionary: DictOl(keyword, frequency) 

 2.2.  Sort dictionary DictOl in ascending order of frequency 

 2.3.  Remove (keyword, frequency) pair from the head (top 10%) and 

tail (bottom 10%) of DictOl 

3.  Merge DictOl for l=1 to 27 into DictF after removing redundant 

keywords. 

 

There are many keywords extracted using Algorithm 1. The keywords playing pivotal 

role are identified using Random forest algorithm for protein fold recognition. The gist of 
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keyword is calculated based on their purity in given base classifier in comparison to other base 

classifiers built. Impurity calculation in python’s scikit-learn is done using Gini importance 

[27][28]. The dictionary DictF has total 292 keywords for representing 27 protein folds. For 

reducing the sparseness of features, a set of 58 keywords are identified from 292 keywords 

with 85% support for representing 27 protein folds. Equation 3 shows feature vector based 

upon header information of the primary structure of protein. 

The final feature set is of 93D. It is displayed in Equation 4. Equation 4 is used to create 

feature vector from protein sequences of low identity for predicting protein folds. 
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
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Where, b is a Boolean function determining the presence of keyword K in input sequence’s 

header information for 1≤i≤58. 

( )3,2,1  =f  
(4)                                           

 
Figure 1. Steps for Constructing Feature Vector from Protein Primary and Secondary Structure. 

Figure 1 highlights the steps followed to construct feature vector of 93D using 

representation of primary and secondary protein structure. 

2.4. Machine learning algorithm. 

Protein fold prediction is targeted using various machine learning algorithms like SVM, 

ANN, tree classifiers, K-NN classifier, RF, Logistics tree, etc [5]. Recently, deep learning 

based methods are gaining popularity [29,30]. The current work selects RF [31] for model 

training and validation. The algorithm highlighting workings of RF is shown in Algorithm 2 

provided in Table 3. 

The RF is believed to be one among the robust ensemble algorithm [32]. As a first step 

bagging algorithm is used with original training data for creating training data with the notion 

of re-sampling. Then, the decision tree algorithm is used on bootstrapped data and arbitrarily 

selected features with aim of creating classifier of decision tree. Repeat this process for B times 

and create a collection of B decision trees. Sum up all the B decision trees and create concluding 
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predictions based on averaging or majority voting mechanism. This divide and conquer 

principle of Random Forest algorithm is very effective in problems with large feature spaces 

as it focus on creating less correlated trees [33]. With the use of bagging in RF, it helps to create 

training data with diverse data. Even, not many hyper parameters to tune and computation 

complexity are of less degree in comparison to ANN and SVM. These all are advantageous in 

reducing overfitting during model training and creating a model more robust. 

Table 3. Working of Random Forest algorithm. 

Algorithm 2: RF  Algorithm 

1.  For b = 1 to B 

 1.1.  Draw a bootstrap sample Z* from training data of 

size N 

 1.2.  Grow a random-forest tree Tb to the bootstrapped 

data, by recursively repeating following steps for 

each terminal node of each tree, until the minimum 

node size nmin is reached or any other termination 

criterion is reached.  

  1.1.1.  Select m features at random from p features 

  1.1.2.  Select the feature with best split point 

  1.1.3.  Split the nodes into children nodes 

2 Output the ensemble trees  

The scikit-learn library [27] is used for protein fold recognition. Bootstrap sampling is 

used in creating training datasets for each tree classifier in the forest. This bootstrap sampling 

may contain few samples more than once and few samples may not be included at all from 

original training set. Arbitrarily chosen features and class labels from training set 

corresponding to a classifier tree are used for model construction using Random Forest 

algorithm. The quality of split during tree construction is checked using criterion of Gini index. 

It follows three steps. It starts with checking impurity at node j using Equation 5. Afterwards, 

each attribute from arbitrarily chosen set is assessed for each of its value with the aim of 

reducing entropy after a split at node j using Equation 6. Then, impurity reduction after a split 

based on the chosen attribute is assessed using Equation 7. The attribute that gives maximum 

drop in entropy after split with Equation 7 is at last chosen for split at node j. 


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Where f is a feature from random feature subset at node j , D  indicates samples before 

node split, 1D  and 2D  samples created due to split. 
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Figure 2. Machine Learning Pipeline for Training and Validating Protein Folds using RF Algorithm. 
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Figure 2 shows machine learning pipeline followed for training and validation of 

protein folding prediction. It initiates at protein sequences. As mentioned earlier data-

preprocessing and feature extraction are performed. Dataset of features and class labels is 

partitioned into training data and testing data arbitrarily. Training data and testing data are 

consisting of 70% and 30% of original records respectively. Thresholds for building trained 

model are found based on trained classifier. Features from test data are used for predicting 

protein folds from the trained model and compared with an actual class for performance 

evaluation. 

3. Results and Discussion 

The results of the proposed approach are obtained with two datasets EDD and SCOPe 

2.07. The significance of species based feature is highlighted by measuring performance of 

classifier supported with secondary structure based feature vectors.  

 
Figure 3. Performance Comparison for Protein Fold Recognition with Different Features and Sampling 

technique. 

Figure 3 shows the performance with secondary structure based features and all features 

combined. It is observed with the inclusion of species based features accuracy goes up 

approximately 8-10%. Imbalance data problem is handled by using sampling technique 

SMOTE [34,35]. The SMOTE technique cares for imbalance data by over sampling minority 

labels and under sampling the majority labels. The impact due to usage of SMOTE in 

performance is also depicted in Figure 3. It is observed, EDD and SCOPe perform better with 

SMOTE sampling and all features used together.  This shows the strength of the model has 

enhanced with the consideration of species based features. 

Table 4 shows performance in terms of accuracy, precision and recall for each fold of 

EDD and SCOPe 2.07 datasets. Accuracy is just the ratio of correctly predicted samples to all 

available samples. Accuracy, informs us about training efficiency of the model and how it may 

score for future samples. It is alone inappropriate to use when you have highly imbalance data, 

like in this work. Precision and recall are much necessary for assessing the performance of 

imbalance data. Precision is the ratio of truly predicted positive samples to all predicted true 

samples. Precision helps counter costs associated with false positives. Recall is the ratio of 

truly predicted positive samples to all samples belonging in actual class. Recall guide us in 

handling costs attached to false negatives. 

Table 4 includes performance information with SMOTE sampling. Following 

observations are made form Table 4. 
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• Irrespective of protein structural classes α, β, α+β and α/β most of the folds has good results 

with all three performances measurement. 

• Performance for SCOPe 2.07 dataset is comparably higher than EDD dataset is largely due 

to availability of more observations as shown in Table 1. 

• Misclassifications do occur but it is intra class, not inter class that suggest the strength of 

model being trained. 

• Performance is approximately similar for folds belonging to respective protein structural 

classes, shows that model is not overfitting. 

Figure 4 compares performance achieved by current work with major past works for 

protein fold prediction using EDD datasets. It is concluded from Figure 4 with benchmark 

datasets EDD current proposed approach achieves better results in comparison to recently 

published works in the area of protein fold prediction. 

 
Figure. 4. Performance Comparison for Benchmark dataset EDD between Past works and Current work. 

Table 4. Fold-wise performance comparison for EDD and SCOPe datasets. 

 EDD-SMOTE SCOPe 2.07-SMOTE 

Fold Accuracy Precision Recall Accuracy Precision Recall 

a.1 100.00 100.00 100.00 100.00 100.00 100.00 

a.3 100.00 100.00 100.00 100.00 100.00 100.00 

a.4 100.00 94.92 100.00 96.88 100.00 96.88 

a.24 100.00 100.00 100.00 100.00 83.33 100.00 

a.26 100.00 88.89 100.00 66.67 100.00 66.67 

a.39 89.47 100.00 89.47 100.00 100.00 100.00 

b.1 93.90 91.67 93.90 98.21 96.49 98.21 

b.6 53.85 100.00 53.85 40.00 100.00 40.00 

b.121 90.91 90.91 90.91 87.50 100.00 87.50 

b.29 92.86 76.47 92.86 100.00 71.43 100.00 

b.34 85.71 85.71 85.71 95.45 100.00 95.45 

b.40 90.24 94.87 90.24 100.00 84.62 100.00 

b.42 100.00 100.00 100.00 100.00 85.71 100.00 

b.47 100.00 100.00 100.00 100.00 100.00 100.00 

b.60 100.00 88.90 100.00 100.00 100.00 100.00 

c.1 96.55 98.25 96.55 96.43 96.43 96.43 

c.3 93.33 93.33 93.33 100.00 95.00 100.00 

c.23 100.00 75.00 100.00 100.00 100.00 100.00 

c.2 100.00 100.00 100.00 71.43 100.00 71.43 

c.37 97.37 90.24 97.37 100.00 94.12 100.00 

c.47 87.50 87.50 87.50 100.00 90.00 100.00 

c.55 86.36 86.36 86.36 100.00 100.00 100.00 

c.69 95.83 92.00 95.83 100.00 90.91 100.00 

c.93 100.00 100.00 100.00 100.00 100.00 100.00 

d.15 100.00 95.65 100.00 100.00 100.00 100.00 

d.58 88.89 96.55 88.89 96.55 93.33 96.55 

g.3 96.77 100.00 96.77 84.62 100.00 84.62 
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4. Conclusions 

 In this work a Random forest based prediction model is build to predict 27 protein folds. 

Prediction model relies on 93 dimensional sound features vector. Features vector comprising 

of spatial and evolutionary information. Spatial information is taken from secondary structure 

representation and evolutionary information is captured from species details available in header 

of protein sequences. The structural representation highlights compositional, distributional, 

transitional, spatial aspects of sequence globally and locally. The species shows the functional 

aspects of sequence. Together they help build a good prediction model. The classifier achieves 

accuracy better than 95% with SCOPe 2.07 dataset. The classifier also reports accuracy better 

than 93% for benchmark dataset, which is best as per our knowledge. The current research 

work can be extended to predict protein folds from SCOPe 2.07 which are not included in this 

work. Even, protein structural class prediction results can be included as a feature while 

predicting protein fold, this will give an edge for improving prediction results further. 

Prediction algorithm can be modified to predict multiple possible folds for a protein sequence. 

Protein teriary structure modeling is possible with the knowledge of protein folds. 
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