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Abstract: This study aims to understand the major effects of Copper oxide nanoparticles on toxic and 

fish pathogens by using a green method. Safer methods like the usage of microorganisms prove to be 

eco-friendly and extremely practical than the regular physical and chemical methods. The characters 

and features of the CuO particles were understood by using analytical techniques like XRD, UV-vis 

spectroscopy, FTIR, SEM-EDX, TEM and AFM. Further analysis showed that the spherical particle 

size was around 100 nm. When prepared in pure water to zebrafish, with a 96 h LC50 concentration of 

67.61 mg/L. The possibility to evaluate hatching time in the 96h acute embryo toxicity test seems to be 

an advantage against that of the 96-hour toxicity since this toxicity was a life stage-dependent.  
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1. Introduction 

The use of nanotechnology has increased due to its ability to modify the characteristics 

of the materials at nano levels. At the nanoscale, the materials exhibit various properties that 

are extremely unique in comparison to the macroscale or the microscale [1]. Due to their 

astonishingly unique properties, it is best to say that nanomaterials are used vastly in many 

fields of research [2]. There has been a sudden demand for the use of nanomaterials due to their 

extremely optimal properties in academics field [3]. Copper Oxide nanoparticles  properties of 

semi conductivity at high temperatures, photovoltaic properties and in general antimicrobial 

properties are said to be of novel use in nanotechnology [4]. CuO nanoparticles additionally 

have different innovation applications, for example, catalysis [5], batteries because of the high 

electrochemical limit [6], and gas sensors [7]. Nanoparticles of Metal-oxide are getting 

consideration in a substantial assortment of biomedical applications like antimicrobials [8], 

antibacterial [9], antitumor activity [10] and anticancer movement [11]. Global demand for 

Copper Oxide Nanoparticles (CuONPs) in comparison to gold and silver is due to the fact that 

they are cost-effective and extremely easy to procure them [12]. CuONPs have aroused a lot of 

researchers to think about the application of such intriguing properties since due to their inert 

nature [13]. They are heterogeneous crystals that exhibit anti-microbial and anti-oxidant 

properties [14]. They are also extremely useful in the biomedical field for imaging and 

conveyance [15]. In contrast to expensive chemical substances, nanomaterials are 

exceptionally compatible with biomolecules and can be used for treating cancer [16].  

Copper Nanoparticles are used to mainly control bacterial infestations [17], antifungal 

[18], and used for cancer treatment [19]. Biological synthesis is viewed as a kind of compound 
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strategy, in spite of the fact that it creates nanoparticles by decreasing metallic particles by 

biomolecules exhibit in plants [20], plant extracts, organic products [21], marine green growth 

[22], microbes [23] and yeast [24]. Zebrafish are widely used in many fields such as 

pharmacology and genetics because it is a promising animal model with high breeding and 

household costs, transparent embryos and high levels of genetic homology with humans [25]. 

Previous studies have reported that the ions released from CuO-NP are toxic, although to the 

best of our knowledge we have few studies to explain that CuO-NP is low toxicity [26]. This 

leads to the use of large quantities of toxic effects, which results in humans being exposed to 

higher levels of CuO-NP [27]. Therefore, it is imperative to check the toxic effects of CuO-NP 

at very low concentrations.  

Although the biosynthesis of copper oxide nanoparticles by Aeromonas hydrophila as 

previously been reported, the potential of microorganisms as biological materials for the 

synthesis of nanoparticles is not yet to be fully explored. The biosynthesized CuONPs have 

been used to find out the biomedicinal properties in zebrafish using embryo toxicity study. Our 

present study aims and focused only on toxicity analysis by green synthesis method and 

embryotoxicity in zebrafish model. 

2. Materials and Methods 

2.1. Culturing of Aeromonas hydrophila.  

 A rod-shaped, gram-negative bacteria- Aeromonas hydrophila causes ailments in fishes 

present in brackish water. These fishes are used the production of bacterial cultures of 

nanoparticles like Copper Sulphate and Calcium Carbonate. A nutrient broth was used to grow 

the bacteria which included essential nutrients like carbohydrates, salts, vitamins, mineral, beef 

extract and yeast extract. For a time period of 24 h at 30℃, the microorganisms were inoculated 

in a shaker. The intracellular process of synthesis was done in which the precursor was added 

followed by centrifugation. Cell harvesting was done by centrifugation at 10000 rpm for 15 

min. 

2.2. Biosynthesis of copper oxide nanoparticles. 

 CuONPs are biosynthesised using bacteria Aeromonas hydrophila. The cells after 

harvesting, the precursor was added to the cell-free supernatant, where Copper Sulphate is the 

precursor. 0.024g of Copper Sulphate (molecular weight of 159.6 g/mol) was added.  

 
Figure 1. Biosynthesis of copper oxide nanoparticles. 

In figure 1, we can observe a colour change from yellow to green after the addition of 

precursor to the supernatant which indicates the reduction of Cu (II) to Cu Np (Copper Nano 

Particles) by using the enzymes present in the bacteria. The culture was assessed once every 2 

hours. The culture was then again incubated for a time period of 24 hours in a shaker after 

adding a precursor again. This was followed by centrifugation at 10000 rpm for 15 mins where 

the pellets where collected contains nanoparticles. The pellets collected where kept in a hot air 
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oven on a watch glass to make it dry. After the sample was powdered and dried, the sample 

was studied by techniques like XRD, FTIR, AFM, SEM and TEM to understand its 

characteristics. The characters observed were proven to induce antimicrobial activity. 

2.3. Experimental methods. 

 Using power X-ray diffraction in a D8 advance Bruker diffractometer using Ckuα 

radiation, the credentials of the crystal structures were observed where the diffraction angle 

was verified in the 2θ ranged among 38˚- 80˚.  Using Debye Scherrer formula, the crystallite 

size was found and using FEI quanta 200F instrument and the elemental analysis. By using 

energy dispersive X-ray analysis with a spectrometer, the chemical conformation of the sample 

was identified. UV-vis absorption spectroscopy model no: 2450 with wavelength range among 

200-800 nm, the optical property of the samples were identified along with the optical bandgap. 

 2.4. Zebrafish embryotoxicity (mortality and hatchability rate).  

 Slight alterations of exposures were conducted in accordance with the OECD guideline 

[28, 29].  For a short time, viable zebrafish embryos (< 6 hpf) were used, and well-fertilized 

embryos at a comparable developmental stage stayed collected for exposures. Embryos that 

were white and cloudy are unfertilized which are undesirable here and were cast off  [30]. This 

followed by transferring carefully the embryos to wells of U-bottom 9-well plates and 

incubation of these embryos in 5ml solution for 96 h. The tested concentrations for each of the 

two CuO forms were 10, 20, 40, 60 and 80 µg/L CuONPs. The hatching and mortality of the 

embryos were assessed keenly during the periods of careful and precise exposure. Regular 

intervals of incubation of time periods like 24, 48, 72 and 96 h were used to verify the mortality 

of embryos. The percentage of dead embryos at each point of the incubation was stated as 

death. Hatching success was articulated as the percentage of hatched embryos after 97 h. The 

examination was carried out with their repeats; each consisting of 8 exposed embryos or 16 for 

controls. 

3. Results and Discussion 

3.1. Powdered X-ray diffraction. 

Figure 2 represents the altered form of copper sulphate crystals in the powdered X-ray 

diffraction form, which was produced by biosynthesis. The obtained copper sulphate samples 

could be indexed to the cubic structure with the space group. The fine crystalline phase that 

exists in the nanoparticles were revealed through the intense peaks from the XRD patterns also 

the standard JCPDS data card no: 05-0667 matches with this [31,32]. The purity of the 

monophasic Nanocrystalline compounds from the XRD pattern confirms that no extra peaks 

were identified. 

The standard particle dimensions calculated from the Debye-Scherrer formula, 

D =
0.9λ

βcosθ
 

where λ is the X-ray wavelength, β is the full width half maximum intensity value and 

θ is the Bragg's angle.    
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The average particle size calculated as 31nm. Using the XRD data the lattice parameter 

and various mechanical parameters such as crystallite size, disruption density, and lattice strain, 

the surface area also were calculated which shown in Table 1. 

 
Figure 2. Powder XRD patterns of Copper oxide. 

3.2. Morphology and elemental composition analysis. 

Figure 3 a, b shows the surface morphology of the prepared samples; also, it shows the 

SEM images of copper sulphate synthesized by Aeromonas hydrophila crystalline powders at 

a different magnification at 2 μm and 200 nm respectively. It visibly shows that the particles 

are minor and practically spherical which is free from the cluster.  

Figure 3c shows the chemical structure of biosynthesized the EDX spectrum revealed 

CuO NPs. Since the spectrum, strong peaks detected and small peak observed from O elements.  

Copper oxide nanoparticles aggregated rapidly, and much of the mass of added copper oxide 

was present as agglomerates greater than 0.5 µm in diameter Figure 3 d,e. However, many 

particles with a diameter of less than 100 nm were present in a spherical shape [33]. 

Figure 4a shows progress of biosynthesis of Copper oxide NPs as a function of time. 

The UV-vis spectra indicate the broth when added in the CuSO4 aqueous solution initiated the 

synthesize Copper oxide NPs till 4h as is evident from the peaks obtained at different time 

intervals at 298 nm. The spectrum of pure copper oxide nanoparticles shows the band edge-

absorption peak which originates from being at 323 nm represented in Figure 4b. In UV-Vis, 

to promote electrons to higher energy orbitals high-energy electromagnetic radiation in the 

wavelength range of 200-600 nm is utilized. The essential absorption, which matches to 

electron excitation from the valence band to the conduction band, can be used to fix the value 

of the visual bandgap. The association between the absorption coefficients α and the incident 

photon energy hυ can write as  

(αh𝜗) = A (h𝜗-Eg)n 

Where A is a constant and Eg the bandgap in electron volt (eV). The equation using, 

the calculated value of the bandgap energy for the synthesized CuO nanoparticle is 2.0 eV 

represented in Figure 4c. The bandgap increases with the decrease in the particle size, which is 

reported in previous literature [34,35]. The formation of nanoparticles monitored. Primarily 

there was a colour change when the precursor added to the cell-free supernatant. This sample 
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indicates that there are some changes in the size and synthesis of nanoparticle has occurred. 

When the copper sulphate added to the broth, which was centrifuged to get cell-free broth 

changes from yellow to green due to the synthesis of Cu nanoparticles. Wavelength took from 

250-500 nm at the one-hour interval. The peak absorbance was at 298nm, which implies that 

at that particular peak copper was synthesized in high amount. There is a shift of peak due to 

the addition of broth in copper nanoparticles. The detected increasing bandgap could be 

credited to the presence of intra gap states and quantum imprisonment effect. 

 
Figure 3. (A, B) SEM images copper nanoparticle synthesized by Aeromonas hydrophila EDX spectrum (C) for 

copper oxide nanoparticle and (D, E) HRTEM images of CuO morphologies. 

 

 
Figure 4. (a) UV-visible spectra of copper oxide nanoparticles synthesized from Aeromonas hydrophila, (b) 

spectra of pure copper oxide nanoparticles, (c) band gap of copper oxide nanoparticles. 
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3.3. Fourier transform infrared analysis. 

The FTIR spectra of the bio-integrated CuO nanoparticles are shown in Figure 5. FTIR 

is used to identify the functional groups of biomasses and the biomolecules bound to the surface 

of copper oxide nanoparticles. In addition, it shows precisely that a specific ceiling [36,37] . 

The peak at 3271cm-1 is due to the O-H bond stretching of alcohols and phenols [38]. The peak 

at 1234.44 cm-1, 1444.68 cm-1 and 1384.89 cm-1 are attributed due to C-H out of smooth 

deformation and C-H stretching vibration allocated due to the peak at 2960.73 cm-1 and 

2827.74 cm-1. The height at 513 cm-1 indicates the formation of CuO nanostructure [39]. The 

absorption band at 1635.64 is due to H-O-H bending [40]. The aromatic ring 1535 cm-1 peak 

is present. Aliphatic amine group also present at 1063.13 cm-1 correlate with C-N stretch [41].  

 
Figure 5. FTIR spectra for Copper oxide nanoparticle. 

 
Figure 6. AFM image of synthesized copper nanoparticle (a) 2D and (b) 3D forms at different scan size. 

3.4. Surface topography analysis. 

The size of the CuO nanoparticles was measured by atomic force microscopy (AFM) 

in connection mode with silicon beams with energy constant 0.03–0.76 Nm-1, Tip 10–15 𝜇m 

height.  It also displays the image in 2-Dimension and 3-Dimension Figure 6 Show the copper 
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nanoparticles with different scan size. Three-dimensional images in the particles were 

approximately spherical. 2D and 3D forms at different scan size and its surface area are given 

in Table 2. Also, it is demonstrated that exclusive restricted Nanostructures were estimated in 

AFM, the molecule measure is not an agent as that from dynamic light dispersing strategy and 

AFM is primarily utilized for morphology perception. The nanoparticles were steady in water 

and air did not change over into some additionally related mixes. Consequently, it occurs as 

profoundly scattered nanoparticles [42]. The AFM picture uncovers the high symmetric size of 

atoms with a fewer grouping of copper oxide nanoparticles. Particle shapes demonstrate the 

powerless accumulation of particles as a smooth line shape. The copper oxide nanoparticle 

shows an astounding propensity to frame uniform measured and formed agglomerates at less 

fixation. 

3.5. Toxicology study of the copper oxide nanoparticle using Zebrafish. 

The hatching rate of zebrafish embryos at 96 hpf is exposed in Figure 7 a, b Altogether 

the embryos hatched effectively in the control group.  

 
Figure 7. (A)Zebrafish embryo hatching rate after 24 h exposure to CuONPs at five different concentrations. 

(B)Hatchable presented as mean ± SD based on three replicates. 

The embryos hatched partially in the treated groups, and the hatching rate reduced with 

the increasing concentrations of CuONPs, the values of LC50 calculated from increasing 

hatching rates from 12 to 96 hpf. The results show that CuONPs treatment led to a significant 

increase in LC50, except 67.61 mg/L CuONPs, LC50 was not calculated because of the hatching 

rate of lower than 50%. The minimum level of mortality of zebrafish embryo by exposed to 

CuONPs at 40 hpf. A substantial increase in death resulted in embryo exposed to CuONPs at 

96 hpf, compared to the control [43]. Death of embryo exposed to CuONPs at these 

concentrations was also knowingly higher than for embryo exposed to CuONPs Figure 8a 

LC50 was approximately 67.61 mg/L for the CuONPs action, which equals ≈2 mg Cu L-1. 

Then mortality was low (< 10 %) for the embryo in the CuO treatment Figure 8b. 
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Figure 8. Zebrafish embryo cumulative percentage of mortality calculated after 72 h exposure to CuONPs at 

five different concentrations. (A)  Mortality identified as mean ± SD based on three replicates, (B) LC50 of CuO 

NPs for 96 h exposure. 

Table 1. Structural Parameters of Copper oxide. 
 

Sample 

Lattice  

parameter 

Volume 

(m3) 

Particle 

size(D) 

(nm) 

Lattice Strain 

(𝜺)  

(10-3) 

Dislocation 

density (𝜹) 

(lines/cm2) 

(1015) 

Surface area 

(S) 

m2/g 

Copper oxide 4.2016 74.1705 31.08 1.10 1.2635 54.045 

 

Table 2. AFM parameters at different scan size, surface area and surface roughness. 
Sample name Scan size Setpoint force Surface area 

roughness (Sa) 

Surface area 

roughness (sq) 

Area Roughness 

 

       CuO 

2 µm 20 nN 14.897 nm 20.196 nm 4.047 pm2 

10 µm  20 nN 52.004 nm 64.65 nm 100 pm2 

25 µm 20 nN 58.061 nm 75.063 nm 629.9 pm2 

800 nm 20 nN 4.8605 nm 6.9281 nm 642.5 pm2 

 

4. Conclusions 

 Synthesis of Copper oxide nanoparticles using microbes has been published in several 

papers. The need for commercially viable, financial and environment-friendly rote is still 

present to find the volume of a natural reducing constituent to form copper oxide nanoparticles. 

The CuONP that were bacterial-synthesised were found to be more stable with less ion release, 

this proved a new way to synthesize more environmentally friendly nanoparticles for various 

applications. Further research is needed to determine the cause of CuONP toxicity to action 

potential hazards to the biomedical and environment. 
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