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Abstract: Mesoporous material has a significant role in medicine, health care, environmental 

monitoring, sensing the hazardous agents, and fighting against viruses and bacteria. Nano-silica sphere 

is an important member of the mesoporous family that noticeably flourished in biology, health care, 

and other industrial applications. Efficient one-pot multicomponent syntheses of 2-amino-3-cyano-4H-

pyran derivatives were carried out over readily available and simply synthesized recyclable Hollow 

Mesoporous Silica Sphere (HMSS). Comparable yields were encountered with better efficiency, lower 

cost, and shorter reaction time. Hence, superior catalytic activity, flexibility, ease of recovery, tuneable 

hole size, and high surface to volume ratio were the major characteristics of the catalyst which 

distinguish this protocol from previously reported ones. The catalyst was characterized by X-ray 

diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

Fourier transform infrared (FT-IR) techniques, and nitrogen absorption and desorption (BET) analyses. 

The results showed that the synthesizing of HMSS catalysts under a mild and green condition in which 

comparable yields were encountered with better efficiency, lower cost, and shorter reaction with other 

major economic advantages. 

Keywords: Hollow Mesoporous Silica Spheres; HMSS; Nano-catalyst; Hydrogen bond catalysis; 2-

amino-3-cyano-4H-pyran. 
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1. Introduction 

Hollow mesoporous silica sphere (HMSS) is considered as a great development in 

nanotechnology [1-5]. HMSS plays an important role in catalysis, drug delivery, imaging, 

biosensors, energy storage, medical and biological applications due to their controlled 

morphology, tuneable particle size, well-defined porous shells, specified capacity, low density, 

high thermal stability and biocompatibility, low toxicity, large surface to volume ratio and easy 

to be functionalized by chemicals [6-10]. The invention of new methods to design more 

convenient HMSS is noticeably attracted an excellent deal of interest, especially as a catalyst 

basis. Therefore various optimized structures of HMSS are investigated so far [11-17]. The 

most representative method to prepare HMSS is called the templating method [18, 19]. Other 

various methods are also investigated [20-23].  
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Templating method applies diverse substrates as a mold followed by a shell coated onto 

the surface of the templates, and then removing the templates generates the hollow spheres [24-

28]. Recently, mesoporous silica nanoparticles (MSNs) have noticeably flourished as a 

sustainable catalyst in many synthetic pathways and various catalytic reactions such as 

Mannich-type [29-31]. To further headway in the catalytic activity of MSNs type catalysts, 

HMSS is developed and employed in diverse catalytic reactions [32-35]. The sol-gel method 

is exerted to the synthesis of non-functionalized HMSS. This process is devoid of harsh and 

toxic reaction conditions and benefits from excellent yield. HMSS utilizes hydrogen bonding 

during the catalytic cycle as a fundamental catalytic role [36-39]. 2-amino-3-cyano-4H-pyran 

derivatives due to a variety of potential applications are a landmark in the history of organic 

synthesis and play a certain role in our life scaffold. Their applications such as photonics and 

optoelectronic, feedstock in the production of dyes, precursors to pesticides, and chelating 

agents [33, 40, 41]. Such far, some works are devoted to the synthesis of 2-amino-3-cyano-4H-

pyran derivatives [42-45]. Herein, the synthesis of 2-amino-3-cyano-4H-pyran derivatives is 

probed by considering the atom, pot, and step economy. The outstanding property of the 

experiment is the increment of catalyst durability, moderating the reaction cost, and reducing 

process time under green conditions [42, 46, 47]. The optimized reaction condition was 

achieved for the synthesis of 2-amino-3-cyano-4H-pyran derivatives catalyzed by HMSS 

(Scheme 1).  In the current study, we aimed to propose a mineral-based Nano-catalyst 

synthesizing approach to manage and applying an organic chemical reaction to optimize pyran 

derivatives synthesis. 

 
Scheme 1. Synthesis of 2-amino-3-cyano-4H-pyran derivatives catalyzed by HMSS. 

2. Materials and Methods 

2.1. Materials. 

All chemical reagents are purchased from commercial suppliers (Aldrich and Merck 

Co.) used in high purity without further purification. 

2.2. Preparation of HMSS. 

The HMSS is prepared through the sol-gel method [48-50]. In the first step of HMSS 

synthesis, 3 ml of tetraethyl orthosilicate (TEOS) is added to a mixture of 37 ml ethanol, 5 ml 

deionized water, and 1.6 ml aqueous ammonia solution (25%). The resultant mixture is stirred 

for 0.5 h at room temperature to give a white colloidal suspension. To separation silica particles, 

https://doi.org/10.33263/BRIAC106.66406651
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC106.66406651   

 https://biointerfaceresearch.com/ 6642 

the suspension is centrifuged then washed with deionized water and ethanol two times. The 

particles are dried under a vacuum. Then 200 mg of obtained solid silica particles (sSiO2) are 

dispersed in 40 mL deionized water and ultra-sonicated for 20 min. The suspension is added to 

a solution of 300 mg cetyltrimethylammonium bromide (CTAB), 60 ml ethanol, 60 ml 

deionized water, and 1.1 ml ammonia solution (25%). After stirring the mixture at room 

temperature for 0.5 h, 0.5 mL of TEOS is quickly added and stirred for 6h and centrifuged to 

yield sSiO2@CTAB/SiO2. These processes followed by redispersion of sSiO2@CTAB/SiO2 

in 40 mL of deionized water and dried under vacuum. For etching reaction, 850 mg of Na2CO3 

is added to the sonicated sSiO2@CTAB/SiO2 while stirring the aqueous suspension. This 

process continues for 12 h under stirring vigorously at 50 °C. Then the product is washed with 

deionized water and ethanol several times and finally dried under vacuum oven. In the final 

step, the CTAB surfactant is removed by heating the nanoparticles in 200 mL of methanol and 

2.0 mL of concentrated HCl solution under stirring with a magnetic stirrer for 2 h. The HMSS 

material is collected and washed with methanol then dried in vacuum [13, 29, 33, 42]. 

2.3. General procedure for the synthesis of 2-amino-3-cyano-4H-pyrans. 

10 mg HMSS catalyst is added to the mixture of malononitrile (1) (1 mmol), 

benzaldehyde (2) (1 mmol), and dimedone (3) (1 mmol), and refluxed in the water at 80 ᵒC to 

give Twelve of 2-amino-3-cyano-4H-pyrans derivatives (4). The same procedure is conducted 

to synthesize the other derivatives, except using 1 mmol of ethyl acetoacetate (5) instead of 3 

to yield other eight 2-amino-3-cyano-4H-pyrans derivatives (6) (Scheme 1). 

2.4. Spectral data. 

The structure and purity of the products are confirmed by spectroscopy or comparing 

their melting points with the authentic samples reported in the literature. 

3. Results and Discussion 

The catalyst (HMSS) is prepared and identified by XRD, SEM, FT-IR, and BET 

analyses (Scheme 2, Figures 1-5). 

 
Scheme 2. Preparation of HMSS. 

3.1. XRD. 

The XRD pattern appears compatible with the HMSS structure (Figure 1). XRD pattern 

of HMSS shows the silica structure with two main peaks, one sharp small-angle XRD peak in 

the 2𝜃= 2.0-2.3 and a weak peak in the 2𝜃= 3.8-4.6  (Figure 1) [51].  

3.2. SEM. 

The topography of the catalyst surface is displayed by the SEM image (Figure 2). 

HMSS particles appeared with uniform spherical morphology. Particle sizes are estimated 

between 190-220 nm. SEM images are taken on a Mira3 Tescan instrument. 

 

https://doi.org/10.33263/BRIAC106.66406651
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC106.66406651   

 https://biointerfaceresearch.com/ 6643 

 
Figure 1. XRD pattern of HMSS. 

 
Figure 2. SEM image of HMSS. 

 
Figure 3. TEM image of HMSS. 
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3.3. TEM. 

The TEM image of HMSS shows the uniform size distribution of particles (Figure 3). 

According to the TEM image, the core-shell structure can be distinguished, and the average 

size of HMSS is about 200 nm. The thickness of the shell is estimated at 50 nm. 

3.4. FT-IR. 

The FT-IR spectra are recorded at room temperature. It appeared consistent with HMSS 

(Fig. 4). Specifically, asymmetric and symmetric Si–O–Si stretching vibrations of HMSS is 

seen at 1084 cm−1 and 800 cm−1, respectively. The broadband located around 3442 cm−1 

belongs to the surface of silanols and probably adsorbed water molecules. The peak at 1634 

cm−1 is assigned to the H–O–H bending vibrations of the free or adsorbed water molecules. 

After calcination, C–H stretch (2855 cm−1 and 2925 cm−1) peaks from the CTAB template 

disappears, indicating the loss of CTAB [52, 53].  

 

 
Figure 4. FT-IR spectra of HMSS, before calcination (a) after calcination (b). 

3.5. BET. 

The N2 adsorption and desorption measurements are applied to identify the physical 

characteristics of HMSS pores.  The Brunauer-Emmett-Teller (BET) isotherm displays typical 

IV isotherm in the range of relative pressure (p/PO = 0.98) (Fig. 5). The total surface area, total 

pore volume, and average pore diameter are 835.82 m2/g, 0.89 cm3/g, and 4.25 nm, 

respectively. Barrett-Joyner-Halenda (BJH) shows average pore width with 2.74 nm and 3.24 

nm for adsorption and desorption, respectively. The results verify that HMSS has uniform pores 

[54, 55]. 

3.6. Application of the catalyst. 

Upon verification of the HMSS structure, it is utilized as a catalyst in one-pot 

multicomponent condensation of two sets of reactions. First, the three-component reactions of 

1, 2, and 3 are conducted for the synthesis of 4 (Scheme 3). To optimize the conditions, 

reactions are carried out over various amounts of the catalyst, reactants, and solvents at 

different temperatures and reaction times. The results reveal no significant improvement by 

applying more than 10 mg of the catalyst and show that water acts by far as the best solvent. 
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To the reaction time and yield, the optimum reaction conditions need to use 10 mg of the 

catalyst, 1 mmol of each starting material (1-3), and 5 ml water at 80 ᵒC for 15 min (Table 1). 

 
Figure 5. Nitrogen adsorption and desorption isotherms of HMSS. 

 

 
Scheme 3. HMSS catalyzed synthesis of 4 through the one-pot three-component reaction of 1, 2, and 3.a,b 
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Reaction conditions: 1 (1 mmol), 2 (1 mmol), and 3 (1 mmol), over HMSS (10 mg) are 

refluxed in water for 15 min. b  Isolated yields Found melting points [55].d Reported melting 

points [55]. 

Secondly, one-pot three-component synthesis is carried out involving 1 (1 mmol), 2 (1 

mmol), and 5 (1 mmol), giving 6 under the solvent-free condition. The percentage yields of 6 

ranges from good to moderate (Scheme 4). 

 
  

 
Scheme 4. HMSS catalyzed synthesis of 6 through the one-pot three-component reaction of 1, 2, and 5.a,b 

a Reaction conditions: 1 (1 mmol), 2 (1 mmol), and 5 (1 mmol), over HMSS (10 mg) 

are stirred at 60 ℃ for 10 min.  

b Isolated yields.c Found melting points [55].d Reported melting points [55]. 

Table 1. Optimization of reaction conditions 

Entry Catalyst Solvent Amount of catalyst (mg) Temp. (°C) Time (min) Yield (%) 

1 — H2O — r.t. 180 — 

2 — H2O — 90 120 22 

3 — — — 60 120 25 

4 HMSS — 5 60 10 87 

5 HMSS — 10 60 10 89 

6 HMSS — 15 60 10 94 

7 HMSS — 20 60 10 94 

8 HMSS — 25 60 10 90 
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Entry Catalyst Solvent Amount of catalyst (mg) Temp. (°C) Time (min) Yield (%) 

9 HMSS MeOH 15 60 10 90 

10 HMSS EtOH 15 60 10 70 

11 HMSS Toluene 15 105 15 18 

12 HMSS THF 15 60 20 15 

13 HMSS H2O 15 60 15 91 

We suggest a possible mechanism for catalytic synthesis of 4 (Scheme 5). The catalyst 

renders the aldehyde more electrophilic hence, facilitating the nucleophilic attack of 1 led to 

intermediate І. After condensation, the activated 1 is prone to undergo Micheal addition to give 

the intermediate ІІ. Then, deprotonation, ring closure via O-attack, and proton abstraction occur 

subsequently followed by proton transfer to afford the final product ІІІ. 

 

 
Scheme 5. The suggested reaction mechanism for the one-pot three-component reaction of 1, 2, and 3 via 

HMSS. 

Our catalyst performance in the synthesis of 4 and 6 are compared and contrasted to 

those reported (Table 2). HMSS appears as the catalyst of choice for its high catalytic reactivity 

in terms of economic factors, especially using water instead of organic solvents and also 

solvent-free conditions, high yields, mild reaction conditions, and short reaction time. 

Table 2. Comparison of HMSS with other reported catalysts used in the synthesis of 2-amino-3-cyano-4H-pyran 

derivatives. 

Product 

 

Entry Cat./Condition Time 

(Min.) 

Yield 

(%) 

Ref. 

 

 

 

 

       4 

1 SiO2 NPs, EtOH, rt 20 98 [34] 

2 [ch][OH]a, H2O, 80 ᵒC 120 96 [35] 

3 CsF, EtOH, rt 5 95 [37] 

4 Urea, EtOH/H2O, rt 6 91 [40] 

5 HMSS 

 H2O, Reflux 

15 95 This 

work 

 

 

6 

6 NH3, EtOH, rt 4 98 [44] 

7 NH4OH, IR, rt 10 98 [45] 

 

9 

HMSS 

Solvent Free, 60 oC 

10 

 

94 This 

work 

a Choline hydroxide (ionic liquid) 
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Recyclability of HMSS is probed under optimal conditions. The catalyst is recycled 

five times, and its efficiency is changed from 95% to 80% for 4 and 6 (Figure 6). Specifically, 

the catalyst is easily removed from the reaction mixture via centrifuge, then dried at 80 °C to 

be prepared for further reactions. The recovered catalyst could be reused without any obvious 

alteration in its structure and decrement of the yields and used five times in the reactions to 

synthesize 4 and 6 (Figure 6). 

The comparison of the FT-IR spectra to that of the fresh and recovered catalyst after 

five runs shows no obvious change in the structure and demonstrated high stability of the 

catalyst (Figure 7). 

 
Figure 6. Recyclability of HMSS in the reaction to synthesize 4 and 6. 

 
Figure 7. FT-IR spectra of fresh (a) and reused (b). 

4. Conclusions 

An efficient method was reached for the synthesis of 2-amino-3-cyano-4H-pyran 

derivatives through one-pot multicomponent reactions over the HMSS catalyst under mild 

condition. One of the major advantages of this approach was the role of water as green and 

ecofriendly solvent, encountered high yields, short reaction time, catalyst recyclability, high 

surface to volume ratio without any further functionalization of catalyst, and facile isolation of 

the products, low cost and atom, pot and step economy. 
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