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Abstract: The present study aimed to compare the micro-tensile bond strength of new and conventional 

glass-ionomers and Z350 flowable composite resin to sound and caries-affected dentin. Eighty extracted 

third molars were selected. Standard Cl I cavities were prepared on occlusal surfaces. Forty teeth were 

assigned to the sound tooth group, and in the remaining 40 teeth, carious lesions were produced using 

a laboratory technique. Then each group (n=40) was subdivided into 5 groups (n=8) in terms of the 

restorative material used (EQUIA® Forte, Ketac Molar, encapsulated and hand-mixed GC Fuji II LC 

glass-ionomers and Z350 flowable composite resin). The cavities were restored. The highest micro-

tensile bond strength was recorded with Z350 flowable composite resin in sound dentin (29.65), and 

the lowest was recorded with GC Fuji II LC (powder, liquid) in affected dentin (7.88). Significant 

differences were detected in the micro-tensile bond strength between the 5 restorative material groups. 

The composite resin bond strength was the maximum and was significantly different from all the other 

groups. The micro-tensile bond strength was affected by the type of dentin; in this context, in all the 

restorative groups, the bond strength in sound dentin was significantly higher than that in affected 

dentin. The most frequent failure mode was adhesive in the sound and affected dentin. 
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1. Introduction 

Composite resins yield strong and esthetic restorations; however, they are very 

technique-sensitive and are very sensitive to moisture. It is very challenging to control moisture 

in an uncooperative child or in a child before the cooperative age. Glass-ionomers are less 

sensitive to moisture [1, 2]. ART (alternative restorative treatment) is applied in very young 

and un-cooperative children or in patients with specific medical needs or when conventional 

cavity preparation or placement of restorative materials is not possible. In this technique, hand 

instruments or low-speed rotary instruments are used to remove caries, and glass-ionomer is 

used as the restorative material of choice [3-6]. 

Glass-ionomer cement (GIC) has been suggested as restorative materials for cervical 

lesions due to their ability to form chemical bonds with the enamel and dentin [4, 7]. 

Conventional glass-ionomers have some clinical limitations such as long setting time, the 

potential for dehydration during the early stages of setting, and surface roughness. To overcome 
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these disadvantages, light-cured resin-modified glass-ionomer has been introduced, which 

have longer working time, faster setting, improved esthetic appearance, and higher 

translucency and initial strength compared to conventional glass-ionomers [8, 9]. High-

viscosity glass-ionomers were developed with the aim to facilitate placement within the cavity 

without sticking to the instrument; these glass-ionomers have shorter setting time and lower 

initial solubility compared to resin-modified glass-ionomer [10-13]. 

Different glass-ionomers are available on the market to have different chemical and 

physical characteristics. The micro-tensile bond strength of these types of cement has a 

significant role in decreasing microleakage and the success of restorations with these materials. 

This is more important in relation to carious deciduous teeth in which minimal invasion is 

considered because the enamel and dentin are thin in these teeth, and aggressive removal of 

caries might negatively affect the bond strength [14, 15]. 

Several studies to date have evaluated conventional types of cement and their bond 

strength to dentin or enamel or carious deciduous teeth. However, little evidence is available 

in relation to glass-ionomer types of cement, especially on the new generation of CIS. The 

present study amid to compare the micro-tensile bond strength of new and conventional glass-

ionomers (EQVIA® Forte, Ketac Molar, encapsulated, and hasnd-mixed Fuji II LC glass-

ionomers) with sound and carious dentin. 

2. Materials and Methods 

2.1. Laboratory approach.  

Eighty-third molar teeth, which had been extracted <3 months previously, were selected 

for the purpose of the present study. The teeth had no caries and visible cracks. The teeth were 

stored in a 0.2% thymol solution for 24 hours after the extraction, followed by cleaning with a 

periodontal curette and irrigation. Subsequently, the teeth were stored in normal saline solution, 

which was replaced on a weekly basis [10, 16, 17]. Standard Cl I cavities were prepared on the 

occlusal surfaces of the teeth, measuring 7 mm mesiodistally, 5 mm buccolingually, and 2 mm 

in depth, using a 0.12 fissure bur (JOTA Switzerland) in a high-speed handpiece under water 

spray by one operator. The burs were replaced by new ones after the preparation of 5 cavities. 

The cavity dimensions were measured with the use of a periodontal probe [10, 14]. 

Half of the samples (n=40) underwent a cariogenic process in the dentin. First all, the 

tooth surfaces were covered with two layers of acid-resistant nail varnish except for the internal 

walls of the cavities. Then the teeth were immersed in 15 mL of a demineralizing solution (15 

mM CaCl2, 0.9 mM KH2PO4, 50 mM acetic acid, 0.02% NaN3) with pH=4.5 at 37°C for 60 

hours. Then the samples were stored in distilled water at 4°C [18]. Then both groups (n=40) 

were subdivided into 5 groups (n=8) in terms of the restorative material used. The cavities were 

restored according to the manufacturers’ instructions. 

The teeth were sectioned buccolingually and mesiodistally with the use of a diamond 

disk at a low speed using a cutting machine (Isomet, Buehler, Inc., Lake Bluff, IL, USA) at a 

right angle to the tooth surface to achieve cylinders with an approximate surface area of 1 mm2. 

The surface area of each sample was determined with the use of a digital Vernier to achieve an 

identical surface area at the interface. Then each sample was investigated under a 

stereomicroscope at ×40. Samples with any defects were excluded from the study. Four 

complete and intact samples were achieved from each tooth. There were 32 sections in each 

subgroup, which were evaluated in relation to the micro-tensile bond strength [14, 19-22]. Each 
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sample was connected to the special jig of the testing device (Shimadzu, Model AGS‑X5 kN, 

Shimadzu Corporation, Kyoto, Japan) and underwent tension at a strain rate of 1 mm/min until 

failure occurred. The force required to detach the restoration was reported in Newton (N) by 

the device, and the micro-tensile bond strength was calculated in MPa by dividing the necessary 

force to detach the restoration by the adhesion surface area in mm2 [14].  

2.2. Statistical analysis. 

All the samples were evaluated for failure modes under a stereomicroscope at ×40. Data 

were analyzed with SPSS 22. Independent t-test, one-way ANOVA and two-way ANOVA 

were used to compare micro-tensile bond strengths between the groups. Tukey tests were used 

for two-by-two comparisons. Statistical significance was set at P<0.05. 

 

3. Results and Discussion 

This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation as well as the experimental 

conclusions that can be drawn. 

Table 1 presents the means and standard deviations of micro-tensile bond strengths of 

the restorative materials to sound and affected dentin in MPa. The results showed that the dentin 

type affected micro-tensile bond strength, i.e., in all the restorative groups, the bond strength 

in sound dentin was significantly higher than that in affected dentin. 

 

Table 1. The means and standard deviations of micro-tensile bond strength of restorative materials to sound and 

affected dentin. 

Dentin type Restorative material 

EQUIA® Forte Encapsulated 

Fuji II LC 

Hand-mixed Fuji 

II 

Ketac Molar Filtek Z350 

Sound dentin 23.69±2.43 21.83±2.15 14.75±3.60 19.7±2.56 29.65 ± 3.06 

Affected 

dentin 

13.63±2.57 11.76±2.98 7.86±3.08 10.41±3.12 22.02 ± 2.96 

P-value 0.00 0.00 0.00 0.00 0.00 

 

The highest and lowest micro-tensile bond strength was were recorded with Z350 

composite resin in sound dentin and hand-mixed GC Fuji II LC glass-ionomer in affected 

dentin. Significant differences were detected in bond strength between the 5 restorative 

materials (in both sound and affected dentin). Composite resin exhibited the highest micro-

tensile bond strength in both the sound and affected dentin, with a significant difference from 

all the glass-ionomers. The micro-tensile bond strength of encapsulated glass-ionomer (in both 

sound and affected dentin) was considerably higher than that of hand-mixed glass-ionomer. In 

the encapsulated glass-ionomers (in both sound and affected dentin), the micro-tensile bond 

strength was as follows: EQUIA® Forte<Encapsulated Fuji II LC<Ketac Molar. 

Table 2 presents the failure modes in the samples. The most frequent failure mode in 

the sound and affected dentin was adhesive. The highest frequency of cohesive failure was 

recorded with hand-mixed GC Fuji II LC glass-ionomer. 

 

Table 2. Frequency distributions of failure modes. 
Restorative material Dentin type Failure mode 

Adhesive Mixed Cohesive 

EQUIA® Forte Sound dentin 17 10 5 

Affected dentin 20 9 3 

Encapsulated Fuji II LC Sound dentin 18 10 4 
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Restorative material Dentin type Failure mode 

Adhesive Mixed Cohesive 

Affected dentin 21 6 5 

Hand-mixed Fuji II Sound dentin 18 6 8 

Affected dentin 15 7 10 

Ketac Molar Sound dentin 18 9 5 

Affected dentin 20 7 5 

Filtek Z350 Sound dentin 19 10 3 

Affected dentin 20 11 1 

 

In the present in vitro study, the micro-tensile bond strength of EQUIA® Forte 

encapsulated Fuji II LC, hand-mixed Fuji II LC, and Ketac Molar glass-ionomers was 

compared with that of Z350 flowable composite rein to sound and affected dentin. The results 

showed that the micro-tensile bond strength of different restorative materials was affected by 

the dentin substrate. In this context, the micro-tensile bond strength in all the restorative groups 

in sound dentin was higher than that in affected dentin, and the difference was statistically 

significant, consistent with the results of previous studies [14, 23, 24]. In the present study, 

instead of natural dentin caries, artificial caries was induced in dentin (demineralization of 

dentin with the use of acidic chemical solutions, which is similar to affected dentin).  

Such a procedure is useful because the bonding surface is always smooth, and the 

severity of demineralization is standardized [14, 23, 25, 26].The chemical bond of glass-

ionomer types of cement is mediated through ionic and polar bonds between hydroxyapatite 

and polycarboxylate radicals, and the resultant complex replaces calcium and phosphate ions. 

Since calcium ions are lost during demineralization in affected dentin, the odds of creation of 

bonds between the calcium ions of hydroxyapatite and the carboxyl groups polyalkenoic acid 

decreases compared to sound dentin [14, 19]. 

Costa et al. (2017) reported lower bond strength to composite resin in affected dentin 

despite the use of the etch-and-rinse system, compared to sound dentin, which was attributed 

to the weaker structure of demineralized affected dentin. This limits the penetration of the 

adhesive due to the obstruction of dentinal tubules with acid-resistant mineral deposits, creating 

an atypical hybrid layer (thinner than the hydride layer created in sound dentin [19]. In the 

present study, the highest micro-tensile bond strength was recorded with flowable composite 

resin (Filtek Z350 XT), which was significantly different from the resin-modified glass-

ionomer groups, consistent with the results of previous studies [27, 28]. Papacchini et al. (2004) 

reported a lower bond strength of glass-ionomers compared to resin-based materials [28]. In 

addition, Xie et al. (2008) reported a higher bond strength for composite resin restorations 

compared to glass-ionomer restorations. They showed that the reason for this higher bond 

strength was the intimate adaptation of the restorative interface with dentin due to the formation 

of a hybrid layer in the intertubular dentin in the composite resin group [27]. 

In the present study, the micro-tensile bod strength of encapsulated glass-ionomer (in 

both sound and affected dentin) was signifi8cantly higher than that of hand-mixed Fuji II LC 

glass-ionomer. No study to date has compared the micro-tensile bond strength of encapsulated 

glass-ionomers and the hand-mixed varieties. However, Dowling et al. (2008) showed that 

encapsulated restorative glass-ionomer exhibited better mechanical properties compared to the 

hand-mixed varieties [29]. 

Tooth cavities are restored with encapsulated glass-ionomers using a special applier 

and special injection syringe. However, hand instruments are used for the restoration of cavities 

with hand-mixed glass-ionomer types, which might result in gaps at restoration–dentin 

interface due to the absence of intimate adaptation between the restorative material and the 
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cavity walls because the restorative material might stick to hand instruments. In addition, in 

the encapsulated varieties, mixing is carried out in an amalgamator without manual 

intervention, while mixing in powder-and-liquid glass-ionomers is carried out manually, which 

might result in voids within the glass-ionomer bulk. Voids serve as stress points and increase 

the odds of cohesive failure with the glass-ionomer [30-32]. In the different encapsulated glass-

ionomers (in both sound and affected dentin), the micro-tensile strength was as follows: Ketac 

Molar<Encapsulated Fuji II LC<EQUIA® Forte. 

Poggio et al. (2014) evaluated the effects of several cavity conditioners (GC cavity 

conditioner, 37% phosphoric acid and Cleafil SE Bond) on the shear bond strength of a 

conventional encapsulated glass-ionomer (Fuji IX GP Xtra) and an RMGI (Encapsulated Fuji 

II LC) to dentin. In all the conditioning techniques, the bond strength of Fuji IILC was 

significantly higher. An increase in the efficacy of the bond due to the use of a conditioner with 

Fuji II LC is due to the elimination of debris and relative demineralization, which increases the 

contact area, creation of microporosity and reaction with hydroxyapatite. They reported that 

preparation of the surface with polycarboxylic acid before restoration with Fuji II LC resulted 

in the formation of dentin resin tags at cement–dentin interface and formation of a hybrid-like 

layer. The hybrid layer increases the surface energy and formation of an interdiffusion zone 

between dentin and glass, finally creating micromechanical retention in association with a 

chemical bond to dentin. In the present study, a cavity conditioner was used in all the glass-

ionomer groups. They also reported that Fuji II LC contains HEMA, which is a hydrophilic 

primer and results in the penetration of the monomers of the adhesive agent into demineralized 

dentin and an increase in bond strength through wetting the surface of collagen fibers and 

maintaining the collagen network in the expanded state by stiffening the collagen fibers [31]. 

EQUIA® Forte and Ketac Molar glass-ionomers do not contain HEMA. Although 

EQUIA® Forte glass-ionomer does not contain HEMA, the strength of its bond was higher 

than that of Fuji II LC glass-ionomer. Limited studies are available on the properties of this 

glass-ionomer. However, based on the manufacturer’s claim, this glass-ionomer has improved 

properties, including a consistent bond to dentin. Considering a lack of significant differences 

in bond strength between Fuji II LC and EQUIA® Forte glass-ionomer and unavailability of 

similar studies, further studies are recommended on the subject. In the present study, glass-

ionomers exhibited more cohesive failures compared to composite resin, consistent with the 

results of previous studies. Cohesive failures in glass-ionomers are explained by the fact that 

the cohesive strength of the glass-ionomer in question is less than its bond strength to dentin 

[14, 23]. Inconsistent with a study by Burrow et al., who reported air inclusions in the glass-

ionomer powder as stress concentration points, increasing the odds of cohesive failure in this 

restoration material [30], the most frequent cohesive failures were recorded with the hand-

mixed glass-ionomer.   

 

4. Conclusions 

The results showed that the micro-tensile bond strength was affected by the dentin type. 

In this context, in all the restoration groups, the bond strength in sound dentin was significantly 

higher than that in affected dentin. The highest and lowest micro-tensile bond strengths were 

recorded with Z350 composite resin in sound dentin and with hand-mixed Fuji II LC glass-

ionomer in affected dentin. The most frequent failure was made in the sound, and affected 

dentin was an adhesive failure. 
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