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Abstract: The model of this work represents electrophysiological occurrences with a combination of 

some phospholipids such as POPC and galactocerebroside lipid bilayers as variable capacitors. The 

quantum effects of different thicknesses in the mixed membranes of GalC/POPC, Galc/ POPE, and 

Galc/DPPC have also explicitly been investigated. It is shown that quantum effects can appear in a small 

region of free spaces within the membrane thickness due to the number and type of lipid's layers. In the 

presence of external factors such as protein transmembrane and myelin proteins as a resistance, the 

forces can influence the state of the membrane, which results in a variable capacitance behavior. This 

allows introducing a capacitive susceptibility which can be resonating with the self-induction of helical 

coils in myelin proteins, the resonance of which is the main reason for various biological pulses. 
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1. Introduction 

Myelin consists of fatty molecules (lipids) which are located in the CNC (central 

nervous system) and as an insulator around nerve cell axons increases the velocities 

information to transit from one nerve cell to another tissue [1,2] like an electrical wire (the 

axon) with insulating material (myelin) around it [1]. In other words, reducing axonal 

membrane capacitance through insulating the axon increases the action potential due to large 

distances between the cations on the outside of the axon and Na⁺ that move through the axonal 

cytoplasm (axoplasm) [3]. Since the length neither of NOR (around one micron) compares to 

adjacent long myelinated internodes (around one millimeter) is too much shorter (1000 times), 

suddenly an electrical signal in a critical point between insulated myelinated towards 

uninsulated of unmyelinated stimulates the release of a chemical message or neurotransmitter 

that binds to receptors on the adjacent post-synaptic cell at specified area called synapses [4,5]. 

The insulating structure for myelin is essential for hearing, seeing, feeling, the sensation of 

pain, and as well as perception, knowledge, and memory. Therefore, multiple sclerosis, which 

mainly affects the central nervous system, is related to the disordering of myelin [6,7]. The 

principal operation of myelin is providing acceleration to electrical impulses propagate along 

with the myelinated fiber [8]. Although in unmyelinated fibers, electrical impulses move as 

continuous waves, in myelinated fibers, they are propagated via saltatory conduction, which is 

faster than a continuous wave. Myelin reduces the capacitor capacitance, consequently 

enhances the electrical resistance across the axonal membrane (Scheme 1) [9-11]. 
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Scheme 1. A part of neuron, including myelin-sheath, Node of Ranvier, and neurofibrils. 

Neurons transmit information by an electrical impulse that works as an action potential 

and has a velocity between 1 and 100 m/s. Neurons receive the pulses from dendrites and 

propagate the pulses with axon and connect to other cells via synapses electrically or sometimes 

chemically, therefore there are various neurons in the viewpoint of shapes, sizes, and 

electrochemical properties which generally contain a nucleus and organelles surrounded by 

membranes.  The membranes are a combination of a lipid bilayer whose proteins are embedded 

inside glycolipids. 

1.1. Electromechanical pulses.  

In an ionic exchange, the net current could be separated into 1- fast inward current 

carried by Na+ ions, and 2- slow activated outward current carried by K+ ions, which are results 

from independent permeation mechanisms for sodium and potassium ions in the membrane. 

This approach is known as the ionic hypothesis (Scheme 2). Various ion currents contribute to 

the voltage signal of a neuron in which 3 of them are central, including sodium current, 

potassium current, leak current that consists (mostly chloride ions) that their flow is controlled 

via their respective voltage's channels in a membrane. The semipermeable membrane 

segregates the interior section from the exterior cell. 

 
Scheme 2. A circuit of membranes including capacitor and ligands, sodium, and potassium channels as 

resistance. 
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𝐼𝑚𝑒𝑚 is given by:  

𝐼𝑚𝑒𝑚(𝑡) = 𝐶𝑚𝑒𝑚
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
+ 𝑍𝑁𝑎(𝑉𝑚𝑒𝑚 − 𝐸𝑁𝑎 ) + 𝑍𝐾(𝑉𝑚𝑒𝑚 − 𝐸𝐾 ) + 𝑍𝐿𝑒𝑎𝑘 (𝑉𝑚𝑒𝑚 − 𝐸𝐿𝑒𝑎𝑘 ) 

where 𝐸𝑁𝑎, 𝐸𝐾 𝑎𝑛𝑑 𝐸𝐿𝑒𝑎𝑘  are the Nernst potentials of different ions. It also is given by equation  

𝐸𝑖 =
𝑅𝑇

𝑧𝐹
𝐿𝑛

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
 where 𝐶𝑜𝑢𝑡 and 𝐶𝑖𝑛 are the concentrations of ions on the inner and outer side 

of the cell. This equation indicates that current flows due to diffusion along the gradients (even 

in the absence of other external voltages). Consequently, if the external voltage is equal to the 

Nernst potential, no current flows. Using Kirchhoff's laws, "cable". 

 1.2. Membrane contains POPC, GalC, POPE, and DPPC. 

The cable equation of currents for potential propagation along GalC of myelinated 

axons yields a dynamics behavior. By this works, a small piece of cell membrane including 

pure GalC, POPC, DPPC, POPE, and also a mixing of GalC/DPPC, GalC/POPC and 

GalC/POPE with 50% mol ratio of each have been simulated for our model of membrane 

capacitors (Fig.1). 

 

 

Figure 1. Monte Carlo calculation of various membranes including DPPC and POPC 

1.3. Membrane capacitor model. 

Capacitance can be calculated from the rate and amplitude changes in the voltage 

responses based on voltage clamp. These ways are applied widely to determine the total 
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capacitance of several neurons membrane. By this work, we simulated our systems based on 

several membrane thicknesses in the viewpoint of capacitors. In detail, Glial cell wraps around 

axons a few times (30-150 times) this like adding 330 membranes in the series. Therefore, 

through myelination, the diameter of the axon increases, and the speed of conduction increased 

by the diameter of the axon. Besides, potential action is related to 
1

𝑟𝑎𝐶𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒
   (scheme 3). 

 

Scheme 3. Voltages are changing of myelin along the axon. 

Generally, only two or three terms adequately describe 𝑉𝑚𝑒𝑚(𝑡)(Fig.2). Through dividing 

"Iext" to a series of the resistive terms as 𝑅𝑖 =
𝑉𝑖

𝐼𝑒𝑥𝑡
  steady-state can be evaluated as the sum of 

these resistive terms"𝑅𝑖𝑛=
∆𝑉𝑚𝑒𝑚

𝐼𝑒𝑥𝑡
". The time constant of the slowest exponential (e-t/τ =0) 

corresponds to the membrane time constant 𝜏𝑚 = 𝑟𝑚𝐶𝑚 . 

 
Figure 2. Schematic diagrams representing the membrane potential change, voltage-clamp step, and the charge 

deposited on the membrane for a given "Vmem". 
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It is also exhibited that the quantum effects are able to change the membrane's 

capacitances due to the external effects. Also, it is also concluded that the electrical properties 

of the membranes are affected via the application of electron densities in the membranes 

mentioned above. In our previous works, it has been declared [36-65] that the quantum 

components are a manifestation of the density of states (Dos) of the phosphate or galactose 

groups and their Thomas-Fermi screening lengths. Hence, the hybrid capacitance of any Nano-

capacitor architecture is as follows:  

𝐶𝑚𝑒𝑚 = (
1

𝑐𝑚𝑒𝑚
𝑄𝑢𝑎

(𝑜𝑛𝑒 ℎ𝑎𝑛𝑑)
+

1

𝑐𝑚𝑒𝑚
𝑔𝑒𝑜 +

1

𝑐𝑚𝑒𝑚
𝑄𝑢𝑎

(𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 ℎ𝑎𝑛𝑑)
)−1where 𝑐𝑚𝑒𝑚

𝑄𝑢𝑎 (𝑡𝑜𝑝 𝑠𝑖𝑑𝑒) 

and𝑐𝑚𝑒𝑚
𝑞𝑢𝑎

(𝑑𝑜𝑤𝑛 𝑠𝑖𝑑𝑒) are the quantum capacitances due to the finite Dos of the phosphate 

group's electrodes, respectively, as illustrated in Fig. 3. 

 

Figure 3. Quantum capacitances due to the finite Dos of the phosphate group's electrodes. 

A change in voltage leads to a capacitive current due to the changes in the charge on 

the capacitor which is given by: 
𝑑𝑄

𝑑𝑡
=

𝑑

𝑑𝑡
[(𝐶𝑚𝑒𝑚. 𝑉𝑚𝑒𝑚] = 𝐶𝑚𝑒𝑚

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
+ 𝑉𝑚𝑒𝑚

𝑑𝐶𝑚𝑒𝑚

𝑑𝑡
 and   

𝑑𝐶𝑚𝑒𝑚

𝑑𝑡
= 𝑓(

𝑑𝐶𝑚𝑒𝑚
𝑔𝑒𝑜

𝑑𝑡
 ,

𝑑𝐶𝑚𝑒𝑚
𝑞𝑢𝑎

𝑑𝑡
). Heimburg exhibited that the changing voltages during the nerves 

pulses are entirely dependent on the capacitances changing. In addition, transition voltages can 

exchange the ions. They have also exhibited how the electrical properties of the membranes 

are affected through the application of lateral pressure or tension in a membrane. Consequently, 

It can be considered that any changing in the dimension of the membrane through electrical 

phenomenon depends on 𝐶𝑚𝑒𝑚
𝑞𝑢𝑎

 (and independent to 𝐶𝑚𝑒𝑚
𝑔𝑒𝑜

 ), which means the tunneling effect 

is changing due to the dynamic system in the fluid mosaic model of the membrane. 

2. Materials and Methods 

2.1. Computational details. 

The final parameterization of GalC/DPPC, GalC/POPC, and GalC/POPE were 

computed using self-consistent field calculations in order to find the optimal pre-geometries, 

as well as the total and partial charges of each side of membranes. DFT or density functional 

theories with the van der Waals interaction were applied to model the exchange-correlation 

energies of DPPC monomers. All optimization of monomer molecules of each membrane were 
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performed through Gaussian 09. The main focus in this study is to obtain the results from DFT 

methods such as m062x, m06-L, and m06 for the (Myelin's lipids molecules) n {n=1-10}. The 

m062x, m06-L, and m06-HF are advanced and novel functional with a suitable correspondence 

in non-bonded calculations between GalC/DPPC, GalC/POPC and GalC/POPE monomers and 

are useful for determining the voltages in viewpoint of distance differences distance between 

two lateral in two sides of myelin's lipids. For non-covalent interactions between two layers of 

membranes, the B3LYP method is not suitable for describing van der Waals forces via 

medium-range interaction. Based on our previous works [12-69] our systems have been 

simulated. 

3. Results and Discussion 

We used model descriptive structures of several membranes including GalC/DPPC, 

GalC/POPC and GalC/POPE with the simplest consisting of two spheres attached to the related 

ends of a cable, which denote neuritis (𝑙𝑙𝑒𝑛𝑔𝑡ℎ & 𝑑𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟). We modeled variations in neuronal 

component size through changing𝑙𝑙𝑒𝑛𝑔𝑡ℎ & 𝑑𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟.  

The fatty acid's chains layers give negative amplitude which decreases rapidly if the 

layers are uniform and less rapidly if the terminal methyl groups are localized near the center, 

in order to give a narrow area of lower electron densities. In this work, GalC/DPPC, 

GalC/POPC, and GalC/POPE were chosen as the mixed membranes capacitors since the alkyls 

groups are an excellent space-filling, similar to that of a biological system. Since the alkyl 

chains in those membranes have an ideal electrical insulator that might be polarized through 

applying the external electrical fields, the expected thickness of alkyl's layers between those 

membranes plates has been estimated, optimized and applied as an excellent model of dielectric 

constant for those capacitances calculations (Table 1). 

Table 1. Dielectric constant, capacitance and the stability energies of various modeled membrane capacitors in 

various thicknesses for GalC/DPPC capacitor 

GalC/DPPC 

& Number of 

atoms 

∆𝐸𝑆(𝑒𝑉) 

 

∆𝑉 = 

∆(∑ 𝑽𝑷+

𝟏𝒕𝒐𝑵 −

∑ 𝑽𝑷−

𝟏𝒕𝒐𝑵)  

∆𝑄 = 

∆(∑ 𝑸𝑷+

𝟏−𝑵 −

│ ∑ 𝑸𝑷−

𝟏−𝑵│)  

Expectation 

of dielectric 

thickness 

𝐶𝑔(𝐹)

× 1020 

Dielectric 

Constant 

(N=50) 0.0  - - - - - 

(N=100) +0.30 3.5 1.12 39.33 2.1 7.23 

(N=200) +1.25 3.2 1.42 38.23 4.7 7.15 

(N=400) 0.95 4.9 1.63 40.31 1.2 6.13 

(N=500) +0.65 5.4 1.65 39.01 1.4 5.82 

(N=600) 0.45 5.6 1.85 39.44 1.3 5.39 

(N=3000) 1.45 5.75 1.90 40.25 1.3 6.29 

Similar as other capacitors, the an-isotropic attachment of alkyl groups allows the 

formation of several layered structures. Long-ranges interlayers interactions play a prevailing 

role in characterizing the electrical and mechanical properties of those systems and hence their 

efficiency in these models of capacitors. The ESP curve is drawn versus the number of lipids 

in where the minimum values of the ESP correspond to the odd numbers of lipids. However, 
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as for the even numbers, the ESP values are constant, indicating that the variable capacitances 

in those membranes are independent of the number of lipids. This means, what makes the cell 

membranes for acting as a model of variable capacitors do not related to the internal structures, 

though; they depend on the external cellular effects the same as electrical situations and any 

other pulses. The interaction energy between two sides of the membrane (P+30, P-30) of the 

electrodes) is also calculated based on. The dielectric permittivity as a function of capacitor 

sizes was calculated using QM/MM methods (Table 2).  

Table 2. The dielectric and capacitance CQ= quantum capacitance, Cg= geometry capacitance, and Cnet= net 

capacitance, of modeled of GalC/DPPC capacitor in various thicknesses. 

 

 

 

 

 

 

The nano-capacitances of 𝐶𝑔, 𝐶𝑄 and 𝐶𝑛𝑒𝑡 for GalC/DPPC, GalC/POPC, and 

GalC/POPE in different thickness of dielectrics are listed in table 2.  Although the dielectric 

strength can be deduced from the bandgap of an alkyl space filler, the dielectric constant is 

directly calculated, which is much more accurate than the other ways. For large dielectric 

thicknesses, the classical capacitances of the "𝐶𝑔 ∝
1

𝑑
" is conformable. This conformability is 

not valid for short distances due to the quantum effect; therefore the dielectric permittivity as 

a function of dielectric size has been defined through, 𝐶𝑄(𝐹) × 1020 =

∆𝑞(𝑄+
∆𝑞

2
)

∆𝐸𝑆
𝑎𝑛𝑑 𝐶𝑛𝑒𝑡(𝐹) × 1020 =

𝐶𝑔𝐶𝑄

𝐶𝑄+2𝐶𝑔
 (Fig.4). 

 

Figure 4. (A) Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. (B) Structure 

of a human myelin protein P2, indicate the opening of the beta-barrel in fatty acid-binding proteins 

4. Conclusions 

 It has been shown in this study that quantum effect has appeared in a small region of 

the membrane thickness due to the number of lipid bilayers. In the presence of external fields 

via protein trance membrane or channel ions, charges employ those forces that can influence 

the state of the membrane in myelin, thereby influencing the variable fields makes a variable 

GalC/DPPC & Number of 

atoms 

 

𝐶𝑄(𝐹) × 1019 

=
∆𝑞(𝑄 +

∆𝑞
2 )

∆𝐸𝑆
 

𝐶𝑛𝑒𝑡(𝐹) × 1019 = 
𝐶𝑔𝐶𝑄

𝐶𝑄 + 2𝐶𝑔
 

ESP                  Mulliken ESP                Mulliken 

(N=500)      1.45                 1.55   1.30                 1.25 

(N=600)      1.15                 1.38   1.03                 0.97 

(N=2000)      1.66                 1.83   1.17                 1.20 

(N=3000     1.43                 1.56   0.99                 0.99 
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capacitance. This effect allows one to introduce a capacitive susceptibility that resonates with 

the self-induction effect of helical coils. 
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