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Abstract: Enzymes have been extensively used due to their catalytic properties, and immobilization is 

a promising technique to enhance their catalytic activity and stability. Lipases are enzymes naturally 

efficient, can be employed for the production of many different molecules, and have a wide range of 

industrial applications thanks to their broad selectivity. The objective of the present study was to 

characterize the Candida antarctica B CALB immobilized obtained using the aerogel technique 

regarding the morphological characteristics of the aerogel silica and its stability. For this purpose, 

analyzes of XRD, adsorption-desorption isotherms, TGA, SEM, and stability (storage, operational, and 

thermal) were performed. The supports obtained have an amorphous structure and isotherm type IV. 

Regarding TGA, two distinct regions were obtained and studied. Aerogels showed an increase in 

thermal, storage, and operational stability in relation to the free enzyme and demonstrated between 8 

and 12 cycles of reuse. The contribution of this work was to present the stability advantages of the 

immobilized CALB enzyme through the sol-gel technique. 
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1. Introduction 

In the biotechnological area, the application of enzymes as biocatalysts in several 

processes becomes an alternative to replace conventional methodologies [1, 2]. Lipases are 

enzymes that have been used as biocatalysts for a variety of reactions, due to their high activity 

and selectivity [3–5]. Among the lipases from different sources, Candida antarctica B (CALB) 

is particularly interesting due to its ability to catalyze various reactions [6–11]. It is one of the 

most used biocatalysts in organic synthesis due to its resistance to organic solvents, tolerance 

in non-aqueous media, specificity, and selectivity [12–15].  

Despite the advantages of its use as biocatalysts, its practical application has some 

restrictions, such as low thermal and operational stability, costs with product separation, and 

the impossibility of reuse [16, 17]. A strategy to overcome these drawbacks and enhance their 

stability in different reaction media is the immobilization process [18–20]. The immobilization 

process consists of keeping the catalyst confined to physical support. In this way, it makes 

viable the recovery of the biocatalyst from the reaction medium and allows the use repeatedly 
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or continuously [21]. In addition, it improves its stability and enables wider temperature and 

pH ranges [22, 23].  

The choice of support and immobilization technique becomes an important step. The 

support must have thermal and microbiological resistance, thermal stability, and have 

characteristics compatible with that of the enzyme to be immobilized [24, 25]. Among the 

techniques, one of the most used for the immobilization of biomolecules and other chemical 

catalysts described in the literature is the sol-gel technique [26, 27].  

The sol-gel process starts from a homogeneous solution with a precursor, solvent, and 

catalyst that, through hydrolysis and condensation reactions, gives rise to a colloidal solution 

called sol. By polycondensation reactions, the sol is transformed into an integrated, solid 

network with the liquid phase (solvents, catalysts) in the interstices, and this semi-solid three-

dimensional structure is called a gel [28–30]. This gel goes through two more processes: aging 

and drying. 

Among the immobilization techniques, the behavior of the lipase immobilized by the sol-

gel technique relies on the physical structure of the support, the chemical and physical properties 

of the lipase used and the drying method chosen, among them using desiccators (xerogel) [31] or 

gases in supercritical conditions, such as CO2 (aerogel) [32–34]. 

Within this context, the objective of the present study was to characterize the CALB 

immobilized obtained using the aerogel technique regarding the morphological characteristics of 

the aerogel silica and its stability. 

2. Materials and Methods 

2.1. Materials. 

The commercial lipase from Candida antarctica (CALB) was obtained from 

Novozyme (Bagswaerd, Denmark). The chemicals used for the sol-gel synthesis were 

tetraethoxysilane (TEOS Sigma-Aldrich) as a silica precursor, ammonium hydroxide 

(Quimex), hydrobromic acid (Vetec) as a catalyst and distilled water. To determination of 

esterification activity were used: ethanol (Merck), acetone (Merck), and sodium hydroxide 

(Synth). The substrate used in the esterification reaction was oleic acid (Aldrich) and ethanol 

(Merck). Carbon Dioxide (CO2) (White Martins) was used for the drying of the support to 

obtain aerogel as a solvent. 

2.2. Synthesis of silica and CALB lipase immobilization in aerogel. 

The Candida antarctica B lipase was immobilized by the sol-gel technique, with the 

use of tetraethylorthosilicate (TEOS) as a precursor of silica, according to a methodology 

previously established [35]. The drying of the immobilized enzyme in the sol-gel matrix was 

carried out as described by Ficanha et al. [34], using pressurized CO2 sub and supercritical 

conditions. The choice of pressure values (80 bar to 200 bar) and temperature (25°C to 55°C) 

were made considering the value of the CO2 density in each temperature and pressure 

condition. In the present study, the best results obtained by Ficanha et al. [34] were chosen for 

characterization. 
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2.3. Morphological characterization of aerogel silica. 

2.3.1. X-ray diffraction analysis (XRD) and textural analysis. 

Aerogels were characterized by X-ray diffraction (XRD) (Rigaku, Miniflex II, Kα- 1,58 

Cu). The specific surface areas of aerogels synthesized with and without enzyme were 

determined using the BET method [36]. The volume and average pore diameter were calculated 

by the BJH method. For the analysis of the surface area, the samples were previously submitted 

to a heat treatment at 60 ° C with reduced pressure for 12 h. The analysis was performed at a 

constant temperature of -196 ° C (77 K). 

2.3.2. Thermogravimetric Analysis (TGA). 

Thermogravimetric analyzes were performed on aerogels samples with and without 

immobilized enzymes. The TGA curves were obtained by the DTG-60H equipment 

simultaneously with the DTA-TG Shimadzu and analyzed using the Thermogravimetric 

Analyzer software, based on the loss of mass as a function of temperature. The operating rate 

was the heating rate of 20 ° C/min, in the ambient temperature range up to 600 °C and nitrogen 

flow of 50 mL/min. 

2.3.3. Scanning electron microscopy (SEM). 

The scanning electron microscopy was performed in a scanning electron microscope 

JEOL/EO with a voltage of 20 kV and magnifications of 500 and 1000 times. Each sample was 

attached to a double-sided tape on the top of an aluminum cylinder. The material was covered 

with a thin layer of gold by electro-vaporization. 

2.4. Analytical determinations. 

2.4.1. Determination of esterification activity. 

The esterification activity of the immobilized enzyme was carried out by the synthesis 

reaction of oleic acid and ethanol (molar ratio 1:1), according to Ficanha et al. [34]. 

2.4.2. Storage stability. 

Storage stability is an important parameter that must be evaluated since its study will 

allow determining for how long the immobilized biocatalyst can be stored and how much of its 

initial activity will be maintained throughout the storage period. The experiments were carried 

out at room temperature (20 °C - 25 °C) and refrigeration (3 °C - 5 °C). The stability was 

monitored until reaching a loss of 50% of its initial esterification activity. The results were 

presented as a percentage of residual activity (RA), calculated by Equation 1. 

 

𝑅𝐴 (%) =
𝐸𝐴𝑖

𝐸𝐴0
 𝑥 100                                                     (1) 

 

Where: EAi = esterification activity at time “i”; EA0 = initial esterification activity. 
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2.4.3. Operational stability. 

The efficiency of the operational stability (reuse) of the lipase immobilized in situ in 

aerogel was determined using a defined amount of the immobilized in successive cycles of 

ethyl oleate synthesis. After each batch, the reaction medium (liquid phase) was removed, and 

the solid phase (immobilized aerogel) was maintained. After this step, a new solution of oleic 

acid and ethanol was added. The residual activity of each cycle was calculated by the ratio of 

esterification activity in cycle n to the esterification activity in cycle 1 (initial activity). 

2.4.4. Thermal stability. 

The thermal stability of immobilized and free CALB lipases was determined by the 

Arrhenius method. From the data obtained during the thermal stability evaluation, the 

degradation kinetics was determined through the analysis of the reaction order. 

For this, the experiment was carried out by incubating the enzymes at temperatures 

from 40 ºC to 80 ºC. Samples were taken over the incubation time to perform the esterification 

activity and to determine the residual activity.  

The thermal deactivation constant (kd) at each temperature was calculated according to 

the Arrhenius kinetic model, considering that the enzyme deactivation follows the first-order 

kinetics, according to Equation 2. 

 

𝐴 =  𝐴0 𝑒𝑥𝑝. (−𝑘𝑑 . 𝑡)                                                  (2) 

 

Where: A = final activity; A0 = initial activity; t = time. 

 

From the thermal deactivation constants at each temperature, the half-life times (t1/2) 

(Equation 3) were obtained, which corresponds to the time necessary for the inactivation of 

50% of the initial enzyme concentration to occur at the temperature tested. 

 

𝑡1/2 =  −
ln 0,5

𝑘𝑑
                                                               (3) 

 

Where: t1/2 = half-life time; kd = deactivation constant. 

 3. Results and Discussion 

3.1. Morphological characterization.  

3.1.1. X-ray diffraction analysis (XRD) and textural analysis. 

The characterization of the porosity of the silica aerogel, whether with or without 

enzymes, is an important factor as it helps to understand the results of the enzymatic activity. 

The X-ray diffractograms for the aerogel obtained with different drying conditions in the 

presence of the lipase are shown in Figure 1. 

All aerogels with enzymes exhibit the same behavior in relation to their diffractograms, 

with no peaks that characterize crystalline materials, but halos in the region conceived between 

15-30o (2θ), which characterize them as amorphous materials. 

The amorphous structure of materials obtained by the sol-gel technique was described 

by Hench and Noguès [37], in which they report that the hydrolysis and condensation reactions 
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of the silicon monomer in the presence of an acid catalyst (HBr) act as a cross-linking agent 

with the formation of the amorphous structure SiO2, in which the three-dimensional lattice is 

formed around of the enzyme. 

 

Figure 1. X-ray diffractograms of immobilized aerogels obtained under different drying conditions. (a) 80 bar 

and 40 °C, (b) 140 bar and 40 °C, and (c) 200 bar and 25 °C. 

 

Figure 2. Adsorption-desorption isotherm of silica aerogel. (a) 80 bar and 40 °C without enzyme, (b) 80 bar and 

40 °C with enzyme, (c) 140 bar and 55 °C without enzyme, (d) 140 bar and 55 °C with enzyme, (e) 200 bar and 

25 °C without enzyme and (f) 200 bar and 25 °C with enzyme. 
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The N2 adsorption-desorption isotherms, specific surface area, specific pore volume 

and diameter of the hydrophobic matrices and immobilized biocatalysts were determined from 

nitrogen adsorption-desorption measures, which is a method used for the characterization of 

microporous and mesoporous materials. The textural analysis shows the results in relation to 

the specific surface area (BET method), pore-volume, and average pore diameter for the sol-

gel matrices and their derivatives [38].  

The results of N2 adsorption-desorption textural analyzes performed on aerogel with 

and without the presence of CALB lipase obtained by different drying conditions are shown in 

Figure 2. 

Aerogels, regardless of the drying condition, presented isotherm type IV, which are 

characteristically exhibited by mesoporous materials [39], such as silica and H2 hysteresis type, 

corresponding to a defined distribution of pore sizes and shapes, with “inkwell” pores, narrow 

neck and wide body. Aerogels are predominantly mesoporous solids and have low density, 

mesoporosity, and high surface area [40, 41].  

The pore size, surface area, and pore volume distributions of the aerogels determined 

by the BJH method are shown in Table 1. 

 

Table 1. Morphological characteristics of aerogels. 

Aerogel Drying condition Surface area (m²/g) Pore volume (cm³/g) Pore size (Å) 

With enzyme 80 bar and 40°C 297.41 1.01 135.35 

With enzyme 140 bar and 55°C 197.83 0.90 182.25 

With enzyme 200 bar and 25°C 179.70 0.73 163.12 

Without enzyme 80 bar and 40°C 324.21 1.45 188.16 

Without enzyme 140 bar and 55°C 312.92 1.17 186.04 

Without enzyme 200 bar and 25°C 304.66 1.10 178.11 

 

It is observed for all aerogels, regardless of the drying condition, that the surface area, 

the volume, and the pore size reduce with the use of the enzyme. This mesoporous structure 

provides space for the immobilization of the CALB lipase. Also, due to the surface area, this 

support can facilitate the capture of the substrate and thus assist in increasing the 

immobilization yield and the activity of the immobilized enzyme [42]. 

3.1.2. Thermogravimetric Analysis (TGA). 

The mass loss of the free CALB lipase and the aerogels with and without the enzyme 

was determined by thermogravimetric analysis and is shown in Figure 3. This technique allows 

the determination of the temperature range in which the heated samples undergo a 

conformational change, presenting a mass loss profile. 

The value obtained for the mass loss of the aerogel without immobilized lipase was 

15.26%, with the largest mass loss observed in the region I (11.25%). This result may be due 

to water loss through evaporation that can occur at temperatures up to 200 °C. For the 

immobilized aerogel, the loss of mass was 74.56%, with the greatest loss of mass also in the 

region I (71%). 

It is observed that the aerogel without immobilized lipase presents a lower loss of mass 

than the aerogel immobilized with lipase. The thermograms were divided into two regions. In 

Region I, where the temperature is up to 200 °C, weight loss occurs mainly associated with 

dehydration, decomposition of amino groups, and, generally, organic groups. 

In Region II (200 to 600 °C), the loss is related with the condensation of silanol groups 

and the loss of some organic components (C, H, O, and N) in the conformation of volatile 
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compounds, including lipase and the participation of unreacted silane groups of the precursor 

TEOS, present in the silica, due to the incomplete sol-gel reaction [43].  

 
Figure 3. TGA-curves obtained for the aerogels with and without immobilized CALB lipase. 

3.1.3. Scanning electron microscopy (SEM). 

The morphologies of immobilized aerogels obtained under different drying conditions 

using scanning electron microscopy (SEM) are shown in Figure 4. 

 

Figure 4. Scanning electron microscopy (SEM) of the aerogel with a magnification of 500 times (a, c, e) and 

1000 times (b, d, f). (a) and (b) 80 bar and 40 °C, (c) and (d) 140 bar and 55 °C, (e) and (f) 200 bar and 25° C. 

The SEM micrographs of dry aerogel in different conditions show particles with 

irregular morphologies, without a defined shape, with heterogeneous sizes and less than 200 

μm. These are typical support structures obtained by the sol-gel technique [44]. Liquid 

displacement with supercritical carbon dioxide drying avoids surface tension because of the 

absence of liquid to vapor transition and prevents the microcellular network of the hydrogel 

from further collapse [45]. 
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3.2. Storage stability. 

Figures 5a and 5b describe the behavior of residual esterification activity for 

immobilized aerogel, stored at room temperature and refrigeration, respectively. 

Regardless of the drying condition, the enzyme immobilized in the aerogel showed a 

longer storage time when compared to the free enzyme. Regarding the drying condition, the 

immobilized aerogel showed similar behavior, with an esterification activity greater than 50% 

for 165 days of storage at room temperature and greater than 260 days in refrigeration. Among 

the storage conditions, samples stored in refrigeration showed a performance 60% higher than 

that observed for room temperature. 

 

Figure 5. Residual activity in storage stability at room temperature (a) and refrigeration (b) of free and 

immobilized CALB on silica aerogel under different drying conditions.  

Storage stability for long periods is one of the main factors to be considered when using 

immobilized lipases. These results demonstrate that an important factor is the temperature at 

which the aerogels are stored. 

It is worth mentioning that the results obtained for the storage of aerogel (regardless of 

the storage method) presented longer times than those described in the literature for xerogels 

[46, 47].  

This behavior is linked to the stability provided by the greater porosity of the aerogels, 

which acts to protect the three-dimensional conformation of the immobilized lipase and the 

active site from any structural changes that may affect its catalytic activity [48].  
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3.3. Operational stability. 

The operational stability of the immobilized aerogel was verified in esterification 

reactions in consecutive batches with the reuse of the immobilized. The results obtained for 

operational stability are shown in Figure 6. 

 

Figure 6. Operational stability of CALB immobilized on silica aerogel in different drying conditions. 

The heterogeneous catalyst has received significant interest as it can be reused many 

times in subsequent cycles without any treatment [49]. All immobilized aerogels showed 

similar behavior, with a continuous decline in residual activity between cycles, presenting 

between 8 and 12 cycles with residual activity greater than 50%. In comparison to the number 

of cycles obtained, similar results were found in works developed by Maury et al. [50] and 

Orçaire, Buisson, and Pierre [51]. The authors observed that the catalytic activity of the enzyme 

decreases to approximately 60% after 11 cycles. 

3.4. Thermal stability. 

Due to the behavior of the three aerogels for storage and recycling stability, it was 

decided to achieve thermal stability for the aerogel (80 bar and 40 °C), which showed better 

results. The stability of free and immobilized lipases was evaluated at temperatures from 40 ºC 

to 80 ºC, with the graphic profile shown in Figure 7. 

 

Figure 7. Thermal stability at 40 ºC, 50 ºC, 60 ºC, 70 ºC and 80 ºC of free (a) and immobilized (b) CALB 

lipase. 
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For both lipases (free and immobilized), the lowest loss of activity as a function of time 

was observed for the lowest temperature employed in this study (40 ° C). On the other hand, 

both lipases showed approximately 20% of their residual activity in 45 min of storage at 80 °C. 

It is also observed that thermal stability varies inversely with temperature. 

The values for the thermal deactivation constant and half-life of the free and 

immobilized CALB lipase in aerogel are shown in Table 2. 

Table 2. Thermal deactivation constant (kd), determination coefficients (R²), and half-life (t1/2) of the free and 

immobilized CALB lipase. 

Temperature (°C) 
Free enzyme Immobilized in aerogel 

kd (h-1) R² t1/2 (h) kd (h-1) R² t1/2 (h) 

40 0.12 0.89 5.79 0.12 0.93 6.02 

50 0.34 0.91 2.07 0.20 0.93 3.39 

60 0.42 0.89 1.66 0.32 0.96 2.17 

70 1.06 0.94 0.65 0.57 0.95 1.21 

80 1.48 0.96 0.47 1.26 0.88 0.55 

 

With the exception of the temperature of 40 ° C, all other conditions showed lower kd 

values for the immobilized lipase and longer half-lives (t1/2) than those obtained for the free 

enzyme. Both results suggest that the thermal stability of the immobilized enzyme is greater 

than that of the free enzyme. In addition, the support in question acts to protect the enzyme 

from the negative effects of temperature in relation to its active conformation [52, 53], enabling 

its use in processes that require higher temperatures. 

The results demonstrated that the immobilization of enzymes, a class of proteins [54], 

on solid supports is an important tool to enable the use of enzymes, as it allows their reuse and 

can significantly reduce inactivation due to the influence of temperature and organic solvents. 

Besides that, an accurate study of characteristics parameters is the most important requirement 

for many future applications [55,56]. 

 

4. Conclusions 

The immobilization process provided an increase in thermal, storage, and operational 

stability in relation to the free enzyme. In terms of thermal stability, the aerogel support 

protected the enzyme from the negative effects of temperature, enabling its use in processes 

that require higher temperatures. Regarding operational stability, the results demonstrated the 

possible reuse of immobilized aerogels (between 8 and 12 cycles), proving the efficiency of 

the method used for immobilization. In addition, regardless of the storage condition, the aerogel 

had a longer storage time when compared to the free enzyme.  

Aerogels, regardless of the drying condition, presented isotherm type IV and 

amorphous structure. The immobilized aerogel obtained can replace conventional chemical 

processes in industrial applications due to the good results presented for stability. 
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