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Abstract: Wound healing is one of the most critical and complex processes in the human system, which 

involves many enzymes. Overexpression of Matrix metalloproteinases (MMPs) at the wound site delay 

the wound healing process. These overexpressed MMPs can be down-regulated or inhibited using small 

bioactive molecules derived from natural sources. Chlorogenic acid is a polyphenol derivative found in 

coffee and a well-known antioxidant. The main objective of the study is to unveil the molecular 

mechanism by which chlorogenic acid binds to the MMPs through molecular docking studies. The 

result of docking studies showed that chlorogenic acid showed an excellent binding affinity towards all 

four selected MMPs. The free binding energy of MMPs 2, 3, 8, and 12 were about -9.32, -8.17, -8.85, 

and -7.431kcal/mol, respectively. Thus, chlorogenic acid can be used to regulate the activity of 

metalloproteinases and help to promote wound healing activity. 
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1. Introduction 

Skin is the largest and essential part of the body that protects the body from invasion of 

microorganisms [1, 2]. The normal healthy skin is remarkably intact and can control the entry 

and growth of microbes [3, 4]. Any damage in the skin that causes the loss of integrity of the 

skin is termed as wound. Generally, a wound is a regular event in every individual’s life [5].  

There are a series of events that help in wound healing [6]. The four events of wound healing 

are hemostasis, inflammation, proliferation, and tissue remodeling [7, 8] 

The wound site consists of various enzymes that modulate the wound healing process 

[9]. Enzymes that are present in the extracellular matrix (ECM) are called matrix 

metalloproteinases (MMPs), also known as matrixins [10, 11]. MMPs belong to endoproteases 

that depend on zinc for their activity [12, 13]. There are about 23 MMPs in human beings, 

which are divided into six classes [14]. Gelatinase (MMP2), stromelysins (MMP3), collagenase 

(MMP8), and metalloelastase (MMP12) are few MMPs that are mainly involved in tissue 

repairing process [15, 16]. Under normal condition, MMPs are secreted in a balanced manner, 
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but due to oxidative stress in the wound site, there is an improper regulation in MMPs and 

endogenous regulatory process, which leads to degradation of newly formed ECM by MMPs, 

thus delaying the wound healing process and leading to chronic wound infections [17].  

Many medicinal plants have been reported to possess compounds that are showing 

significant wound healing activity [18], which posses less or no side effects compared to 

synthetic compounds [19]. Chlorogenic acid (CGA) is a secondary metabolite belongs to a 

group of phenolic compounds [20], and it is majorly present in plants such as coffee, vegetables 

such as potatoes and fruits including apples, pears, berries, etc., [21, 22]. It is known show free 

radical and metal scavenging activities [23, 24]. IUPAC chemical name of CGA is called 

1,3,4,5-tetrahydroxy cyclohexane carboxylic acid 3-(3,4-dihydroxycinnamate) [25, 26]. It is 

known to show that CGA possesses antioxidant, anticarcinogenesis, hepato-protectant [27, 28] 

and also plays a significant role in the wound healing process [29]. CGA is helpful in the wound 

healing process by increasing hydroxyproline content, diminishing nitric oxide levels, and also 

promotes reduced-glutathione levels in wound bed [30].  

Molecular docking is the in silico approach where the protein and ligand are used to 

find the best interactions between them. Hence, the results from in silico studies could be used 

to find the relevant information before in vitro and in vivo studies. This study is to understand 

of the interaction of CGA with and MMPs that are involved in the wound healing process. 

2. Materials and Methods 

2.1. Protein preparation. 

The three-dimensional structure of the selected matrix metalloproteinases (MMPs) 

were retrieved from RCSB database (https://www.rcsb.org/) in Protein Data Bank (PDB) 

format.  The four selected MMPs are of Homo sapiens origin, and PDB code of MMP 2, MMP 

3, MMP 8 and MMP 12 is  1QIB, 2DIO, 1MNC, and 1HNE, respectively [16].  

2.2. Ligand preparation. 

The three-dimensional structure of the CGA was retrieved from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/). The compound ID of CGA is 1794427 with the molecular 

formula of C16H18O9, and the molecular weight is 354.31 g/mol. The CGA  was screened by 

using an online server http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp in order to 

find its physicochemical properties such as molecular weight, hydrogen bond donors, hydrogen 

bond acceptors, lipophilicity and molar refractivity [31, 32] and its properties were compared 

with Lipinski’s rule of five [33, 34]. 

2.3. Active sites of MMPs. 

The active site is one of the essential criteria in docking studies where the ligand 

interacts with the protein’s active site amino acid residues to give effective binding interactions. 

In the present study, the experimentally verified active site residues of the selected MMPs, 

MMP2, MMP 3, MMP8, and MMP12 were considered based on literature reports [35–38]. 

2.4. Dock preparation. 

The retrieved MMPs were processed using USFC Chimera 1.31.1. The additional 

chains present in the protein structure were removed, and only one chain was used. During 

dock preparation, ions, ligands, and water molecules present in each protein crystal structure 
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were removed. Then, the charges were added additionally to other residues (Gasteiger) and 

standard residues (AMBERff14SB). These dock prepared proteins were used for further 

docking process. Similarly, the CGA structure was also dock prepared using USFC Chimera 

1.31.1 [39, 40]. 

2.5. Molecular docking process. 

AutoDock tool 1.5.6 was used for analyzing the docking studies between MMPs and 

CGA. The dock prepared MMPs and CGA were reconstructed into PDBQT format. For CGA, 

a torsion tree was applied to rotate all the rotatable bonds. The original grid spacing of 0.375 

Ǻ was remodeled according to the active site residues and fitted into the active site cavity of 

the protein molecules. The chlorogenic acid was docked against all the four selected MMPs; 

MMP2, MMP 3, MMP8, and MMP12 separately. Here, Lamarckian genetic algorithm (LGA) 

was used, and the population size was about 150, the maximum number of generations was 

about 27000. The rate of gene mutation and crossover was set about 0.02 and 0.8, respectively 

[41]. Based on the RMSD and affinity score, out of 10 conformations, one of the best docking 

pose for each MMP was taken for further analysis. The resulting best conformation of CGA 

and MMP was visualized using USFC Chimera 1.31.1. The hydrogen bonds between active 

site residues of MMP and CGA were also noted for interaction analysis [42, 43]. 

3. Results and Discussion 

3.1. Protein and ligand preparation. 

MMPs are a group of enzymes involved in the wound healing process, and four MMPs 

such as MMP2, MMP3, MMP8, and MMP12 were selected for the docking study.  Under 

natural conditions, these MMPs are regulated in a balanced manner, but under certain 

conditions like a chronic wound, these MMPs activity is upregulated, and it leads to delay in 

wound healing [44, 45].  CGA is a natural bioactive compound found in coffee was selected as 

a ligand to study the interaction with the selected MMPs [46]. The 3D structure of selected 

MMPs was retrieved from RCSB in PDB format, and CGA structure was obtained from 

PubChem database are shown in Figures 1 and 2. Selected MMPs and CGA were docks 

prepared using chimera software before subjecting to the docking process. The dock 

preparation includes removal of ions, ligands, the addition of hydrogen bonds, and also the 

addition of Gasteiger charges. 

3.2. Ligand properties. 

The ligand properties of CGA were predicted using the Lipinski rule of five, and the 

detail is shown in table 1. The results showed that CGA follows all the five rules except one 

property.  The number of hydrogen donors for CGA was found to be six whereas it is expected 

less than five. However, Lipinski’s rule of five does not apply to natural compounds [47]. 

3.3. Active site prediction of MMPs. 

The amino acid residues present in the active site of selected MMPs, MMP2, MMP3, 

MMP8, and MMP12, are listed in table 2. Phe, Asn, Tyr, Asp, His, Ser, Val, Glu, etc., were 

some of the active site residues. These residues show stronger binding interaction with the 

ligand molecule. 
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3.4. Docking interaction and analysis. 

The docking studies were done using AutoDock Tool 1.5.6. The dock prepared CGA 

was docked with all four selected dock prepared MMPs. The best interactions between MMPs 

and CGA were predicted using the Root Mean Square Deviation (RMSD) score and binding 

affinity values. The selected best poses were analyzed for hydrogen bond donor residues and 

also the relative bond distances between the MMPs active sites and CGA. 

 3.4.1. Interaction between CGA and MMP 2. 

The molecular interaction between MMP2 and CGA was visualized using chimera software is 

shown in figure 3a. From figure 3a, it was found that CGA fits into the active site pocket, and it interacts 

with amino acid residues of MMP 2 that is likely to show more excellent inhibition activity in under in 

vivo condition. CGA interaction with MMP 2 (Gelatinase) showed the second-highest affinity score of 

about - 9.32 kcal/mol out of 10 poses and RMSD score 72.55. The bond length and hydrogen bonding 

residues are listed in table 3. Thus, CGA could help in regulating the enzyme gelatinase and thereby 

enhancing the amount of gelatin, collagen, elastin, and fibronectin in the wound site and decreasing the 

aggregation of platelets, pro-inflammatory factors and also reducing proteolytic affect at the wound site 

thereby faster ECM development and helps in the wound healing process [16, 48]. 

3.4.2. Interaction between CGA and MMP 3. 

MMP3 belongs to stromelysins subfamily, and it enhances the production of laminin, aggregan, 

gelatin, and fibronectin in wound site, which leads to a faster wound healing process. The hydrogen 

bonding that is formed between active site residues of MMP 3 and CGA was visualized using chimera 

and shown in figure 3b. The bond length and hydrogen bonding residues are given in table 3. It showed 

the interactions score between MMP3 and CGA of about - -8.17 kcal/mol out of 10 poses and RMSD 

scores 93. Figure 3b indicates that CGA fits into the active site pocket of MMP 3 and forms hydrogen 

bonds with interacting amino acid residues. Hence CGA can be considered as a potential inhibitor 

molecule. It can down-regulate the  MMP 3 (stromelysins) activity and which in turn reduces the activity 

of TGF-β and anti-inflammatory factors at the wound site [27]. 

3.4.3. Interaction between CGA and MMP 8 

MMP 8 belongs to the collagenase 2 subfamily, which is involved in the degradation of collagen 

deposition in the extracellular matrix [49]. Excess degradation of collagen type I results in a decrease 

in wound healing.  Therefore, inhibiting the activity of MMP 8 at the wound site is essential to enhance 

the collagen deposition [50].  Interaction between MMP8 and CGA through hydrogen bonding was 

visualized using chimera is shown in figure 3c. From figure 3c, it was found that CGA fits into the 

active site pocket, and out of four MMPs selected, MMP 8 showed maximum affinity score of about -

8.85kcal/mol out of 10 poses and RMSD score was found to be 34.03. Hence, CGA may provide more 

excellent inhibitor activity towards the MMP 8. The bond length and hydrogen bonding residues were 

listed in table 3. Regulating the collagenase at the wound site can help to decrease the degradation of 

collagen at the wound site, and increase the accumulation of gelatin, aggrecan, fibronectin synthesis. 

Inactivation of MMP 8 leads to lowering the activity of chemokines and cell migration towards the 

wound site, which leads to reducing the inflammatory activity and promoting the wound healing process 

[51]. 

3.4.4 Interaction between CGA and MMP 12 

MMP 12 belongs to metalloelastase group of enzymes, which are essential for tissue repairing 

process. But overexpression of MMP 12 results in infiltration of inflammatory cells and delays wound 

healing [52]. Docking between CGA and MMP12 showed that CGA fit into the active site of the MMP 
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12, and the interaction was visualized using chimera and represented in figure 3d. Hydrogen bond length 

and hydrogen bonding residues in the active site of MMP12 are listed in table 3. From the figure 3d, it 

was found that CGA fits to the active site pocket of MMP12 with affinity score of binding was estimated 

to -7.43 kcal/mol out of 10 poses and RMSD score of about 64.84.  The inhibitory nature of CGA under 

in vivo condition will help in reducing the activity of  MMP12 activity at the wound site and enhance 

the accumulation of elastin, gelatin, collagen, fibronectin, laminin, vitronectin, proteoglycan,  and 

angiogenesis help in faster wound healing process [53].  

 

Figure 1. Structure of Chlorogenic acid. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Structure of Matrix Metelloproteinases (MMPs) (a)MMP2, (b)MMP3, (c)MMP8 and (d)MMP12. 

Table 1. Lipinski rule of Five. 
Lipinski rule Accepted values Value for Chlorogenic acid 

Molecular mass(Da) < 500 354.0 

Hydrogen bond donor < 5 6 

Hydrogen bond acceptors < 10 9 

High lipophilicity (LOGP) < 5 -0.6459 

Molar refractivity 40-130 82.518768 

Table 2. Active site residues present in selected MMPs. 
Enzymes Residues in the active site Amino acids Reference 

MMP2 
162, 163, 164, 165, 201, 202, 

221, 222, 223 

Asn, Val, Leu, Ala, His, Glu, Pro, 

Leu, Tyr 
[35] 

MMP3 
23, 25, 31, 43, 49, 51, 53, 71, 85, 

89, 105, 136 

Glu, Asn, Ser, Phe, Val, Phe, Cys, 

Phe, Tyr, Tyr, Tyr 
[36] 

MMP8 179, 181, 182, 219, 238, 240 Gly, Leu, Ala, Glu, Pro, Tyr [37] 

MMP12 
57, 102, 192, 193, 194, 195, 213, 

214, 215, 216, 226 

His, Asp, Phe, Gly, Asp, Ser, Ala, 

Ser, Phe, Val, Asp 
[38] 

https://doi.org/10.33263/BRIAC106.68656873
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC106.68656873  

 https://biointerfaceresearch.com/ 6870 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Hydrogen bonding interaction of CGA in the active site of MMPs (a) MMP2 (b) MMP3 (c) MMP8 

(d) MMP12 

Table 3. Molecular interactions observed between CGA and selected MMPs. 

Receptor 

protein 

No. of   

H 

bonds 

present 

Amino 

acid 

residues 

that 

forms 

H bond 

Length 

of H-

bond (Ǻ) 

Binding 

energy 

(kcal/mol) 

Inhibitor 

constant ki 

(micromolar) 

at 

temperature 

298.15K 

Final 

intermolecular 

energy 

(kcal/mol) 

Reference 

RMSD 

Cluster 

RMSD 

MMP2 6 

Gly 162 

 

Leu 164 

Ala 165 

 

Try 223 

1.849 

2.072 

1.819 

1.959 

2.939 

2.406 

-9.32 1.50 -11.61 72.55 0 

MMP3 2 Pro 137 
2.032 

2.191 
-8.17 5.56 - 10.45 93 0 

MMP8 2 
Leu 181 

Pro 238 

2.028 

1.792 

1.872 

-8.85 51.82 -9.13 34.03 0 

MMP12 2 

Ser 214 

 

Val 216 

1.818 

2.269 

2.060 

-7.43 710.69 -7.58 64.84 0 

 

4. Conclusions 

 The molecular docking studies between CGA and MMPs revealed that CGA is a 

potential inhibitory molecule. From the interaction results, it is observed that CGA fits into the 

active site of MMPs and also interacts with active site amino acid residues present in the MMPs 

through hydrogen bonding. It is also shown that CGA showed an affinity towards all four 

MMPs. Further, in vivo studies to be carried out to evaluate the inhibitory potential of CGA to 
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down-regulate excess activity of selected the MMPs in the chronic wound site to promote the 

faster wound healing process. 
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