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Abstract: Constitutional formulae of molecules are molecular graphs consisting of atoms as vertices
and bonds between them represented as edges. The various physical, chemical, and biological properties
of molecules are dependent on their molecular structures. The molecular structure is most important,
not only to chemists but also to all scientists. The molecular structure descriptors or topological indices
of molecules are a mathematical number or a set of selected invariants of matrices that are used to
Quantitative Structure-Activity (-Property) Relationships (QSAR/QSPR) studies. In this paper, we
computed some new degree-based topological indices of benzene ring implanted in the P-type-surface
in the 2D network and its line subdivision of graph.
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1. Introduction

In chemical graph theory, a molecular graph is a representation of the structural formula
of a molecule in the form of graph structure, where atoms are represented as vertices and bonds
of atoms are considered as edges. A molecular graph is a finite, simple, and connected graph.
Basically, a graph is denoted by G = (V(G), E(G)), where V(G) denote the vertex set and E(G)
denote the edge set of G, respectively. The number of vertices in G is called the order of
V(G) and is denoted by [V(G)|. The number of edges in G is called the order of E(G) and is
denoted by |E(G)|. A subdivision graph S(G) is derived from G by inserting a new vertex into
each edge of G. The line graph L(G), is the graph whose vertices are the edges of G and two
verticese, f € L(G) are connected if and only if they share a common vertex in G. The degree
of a vertex a € G, is the number of neighbor vertices of a and is denoted by d;(a). The sum
of the degrees of neighbor vertices of any vertex a in G is denoted by S;(a). A molecular
structure descriptor or a topological index is a real-valued function f: G - R, which maps each
molecular graph to certain real numbers, and it remains invariant under graph isomorphism. In
the past two decades, a large number of topological indices have been considered by some
eminent researchers to utilized for relationship examination in chemistry, pharmacology,
toxicology, and ecological science [1-7]. Nowadays, these indices are extensively used in
building quantitative structure-property relationship (QSPR), quantitative structure-activity
relationship (QSAR), and quantitative structure toxicity relationship (QSTR) [8-11]. In this
work, we compute various degree-based topological indices such as fifth M —Zagreb indices
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and their polynomials, fifth hyper M —Zagreb indices and their polynomials, general fifth
M —Zagreb indices and their polynomials, third Zagreb index or fifth M;-Zagreb index and it
is polynomial for a benzene ring implanted in P —type surface structure.

2. Materials and Methods

2.1. Various degree-based topological indices.

In [12], Graovac et al. first introduced fifth M —Zagreb indices in 2011. They defined
these indices as

My Gs(@ = ) (S6(a)+S6(b)
ab€eE(G)
and

M, Gs(G) = ) (Se(@Se(b)
ab€eE(G)
In 2017, V.R. Kulli [13], generalized these indices as

MEGs(@) = ) (Sa(@)+S5(b)°
ab€eE(G)
and

MEGs(@) = ) (Sa(@Ss(B)* .
abeE(G)
In the same paper [13], he also introduced fifth hyper M —Zagreb indices as

HM, Gs(@) = ) (Se(@)+56())’
ab€eE(G)
and

HM, Gs(G) = ) (Sa(@)Se(b))’
ab€E(G)
In [13], he also defined a new version of third Zagreb index or fifth M; —Zagreb index as

MiGs(@ = D IS:()=Ss(D)l
ab€eE(G)
Followed by these indices in his paper [13], he defined Zagreb polynomials as follows:

The fifth M —Zagreb polynomials are defined as
M; Gs(G,x) = Z xS6(@+S6 (b))

ab€eE(G)
and
M, Gs(G,x) = Z £ (S6(@SG(b))
abeE(G)
where, x is a variable. Fifth hyper M —Zagreb polynomials are defined as
HM, Gs(G,x) = Z £ (S6(@)+S6(b))?
abeE(G)
and
HM, G5(G, ) = Z £ (S6@Sa®)?
ab€eE(G)
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General fifth M —Zagreb polynomials are defined as

Mf G5(G,x) = Z x (Sc(@)+Sc(b)*
ab€eE(G)
and

M G (G, x) = Z £ (S6(@S(b)"
ab€eE(G)
where, @ € R, a # 0 and x is a variable. The new version of third Zagreb or M; —Zagreb
polynomial is defined as

M; Gs5(G,x) = 2 (Sc(@=Scd))
ab€E(G)
Some polynomials and their corresponding topological indices were studied in [14-19].

2.2. Benzene ring implanted in P-type surface in 2D network.

The nanoscience, a period starting in 1985, when Cg, is discovered. The branch is
controlled by carbon allotropes to studying for applications in nanotechnology. Among these,
nanotubes, fullerenes, graphene, diamond, and spongy nanostructures were the most studied
[20-23]. In 1991, Mackay and Terrones [24], have proposed the concept of making conceivable
solid carbon with three coordinated frames by tilling the infinite periodic minimal surfaces
named as P and D, which are separate space into two disjoint mazes. Later Lenosky et al. [25],
has proposed conceivable three-dimensional carbon solids using D tilling of 192 atoms per
unit cell, a P tilling of 216 atoms per unit cell. In 1992, M.O. Keeffe et al. [26], compare the
energies of these proposed structures composed of six-fold, and eightfold rings happen in the
proportion 2: 3, and both have cells of just 24 atoms to those of graphite and of the icosahedral
fullerene C¢,. They named the second structure as poly benzene is seen as more steady than
Ceo energetically. Poly benzene might be depicted as a three-dimensional linkage of Cg
(benzene like) rings, thus the name poly benzene is predicted to be insulating. They manage
two three dimensional frameworks of benzene, one of them is called 6.82P (moreover poly
benzene) and has a place with space accumulate Im3m, contrasting with the P-type surface.
Generally, this structure is obtained by embeddings of the hexagon-fix in the surface of the
negative ebb and flow P (For more about this network, we refer our reader to [26,27]). The
molecular graph G of benzene ring implanted in the P-type surface in 2D network and its line
subdivision graph L(S(G)) is shown in Figure 1 and Figure 2, respectively.

3. Results and Discussion

In this section, we compute General fifth M —Zagreb polynomials and the new version
of the third Zagreb polynomial of the molecular graph G of a two-dimensional network of
benzene ring implanted in P-type-surface and its line subdivision graph L(S(G)). With the help
of these two polynomials, we compute some other polynomials and their corresponding
topological indices, which are mentioned earlier in this work. First, we compute general fifth
M —Zagreb polynomials for G . The edge partition of graph G based on the degree sum of
neighbor vertices of end vertices of each edge, is shown in Table 1. The total number of vertices
and edges in G are 24hk and (32hk — 2h — 2Kk), respectively.
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Figure 1. Two-dimensional networks of benzene ring implanted in P-type-surface

Table 1. The edge partitions with respect to the degree sum of neighbor vertices of end vertices of every edge of

G.

(S(a),S(b)): ab € E(G) Total number edges
(4,5) 8
(5,5) (4h + 4k — 8)
(5,7) (4h + 4k)
(5,8 (4h + 4k — 8)
6,7) (4h + 4k)
(6,8) (16hk — 12h — 12k + 8)
(7,7) (2h + 2k)
(8,8) (16hk — 8h — 8k)

Theorem 1. The general fifth M; —Zagreb polynomial of G is given by
M? G5(G,x) = (16hk — 8h — 8k)x*®“ + (16hk — 10h — 10k + 8)x**
+(8h + 8k — 8)x13“ + (4h + 4K)x'2" + (4h + 4k — 8)x1°" + 8x%° (1)

Proof. From the definition of general fifth M; —Zagreb polynomial index we get,

Mf G5(G,x) = Z x (Sc(@)+Sc(b)*
ab€eE(G)

_ L@+ Z £ (5+5)F L Z 5+ L (5+8)°

abEEl(G) abEEz(G) abEE3(G) ab€E4(G)

+ Z x©+D% 4 Z x©6+8)% 4 Z x7+D% 4 Z x(8+8)%
ab€Es(G) ab€Eg(G) ab€eE,(G) ab€Eg(G)

= |E1(G)|x* + |E,(G)[x™" + |E3(Q) x> + |E4(6)[x™"
+Es(G)|x3" + |Es(G)x**" + |E;(G)|x™" + |Eg(G)|x*"

= 8x%" + (4h + 4k — 8)x1°“ + (4h + 4K)x12" + (4h + 4k — 8) x13“
+(4h + 4k) x13% + (16hk — 12h — 12k + 8)x™*“ + (2h + 2k)x1*"
+(16hk — 8h — 8Kk)x 16"

Hence, the result follows as in equation 1.
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Corollary 1. In equation 1, replacing @ = 1 and a = 2 respectively we get the
M;Gs(G,x) and HM,G5(G, x) as follows:

(i) M,Gs(G,x) = (16hk —8h — 8k)x*® + (16hk — 10h — 10k + 8)x*
+(8h + 8k — 8)x'® + (4h + 4k)x'? + (4h + 4k — 8)x'° + 8x°,

(i) HM,G5(G,x) = (16hk — 8h — 8k)x?>® + (16hk — 10h — 10k + 8)x'%
+(8h + 8k — 8)x'%° + (4h + 4k)x1** + (4h + 4k — 8)x10 + 8x81,

Proposition 1. Differentiate the counting polynomial as shown in equation 1, with respect to
x at x = 1, we get the general fifth M; —Zagreb index as follows:
(1) M¢ G5(G) = (16hk — 8h — 8k)(16)* + (16hk — 10h — 10k + 8)(14)®
+(8h + 8k —8)(13)* + (4h + 4k)(12)* + (4h + 4k —)(10)* + 8.9%,

Corollary 2. In Proposition 1, replacing @ = 1 and a = 2 respectively we get the
M, G<(G) and HM,G<(G) as follows:

(i) M,G5(G) = 480hk — 76h — 76k,
(i) HM,G5(G) = 7232hk — 1680h — 1680k — 584.

Theorem 2. The general fifth M, —Zagreb polynomial of G is given by
M¢ G5(G,x) = (16hk — 8h — 8k)x®*“ + (2h + 2k)x**“ + (16hk — 12h — 12k + 8)x*8"
+ (4h + 4K) x*2% + (4h + 4k — 8) x*°" + (4h + 4k)x35"
+(4h + 4k — 8)x25" 4 8x20° (2)

Proof. From the definition of general fifth M, —Zagreb polynomial index we get,

Mg Gs (G, X) = Z x(SG(a)SG(b))a
ab€eE(G)

_ z LX) Z MEEOLEN Z £ GXDT Z 2 (5%8)°
ab€eE{(G) ab€eE,(G) abeE3(G) ab€E4(G)

+ x©xXDE x(©x8)% 4 xTxXDE 4 x(8x8)%

ab€Es(G) abEEg(G) ab€E, (G) ab€Eg(G)
= [E1(G)|x*°" + |Eo(G)|x*5" + |E3(G)|x35" + |E4(G)|x**"
+HEs (G)]x*2" + |Eg(Q)1x*®" + |E7(G)|x*" + |Eg(G)]x**"
= 8x2%° + (4h 4 4k — 8)x25" + (4h + 4k)x35“ + (4h + 4k — 8) x**°
+ (4h + 4k) x*2“ + (16hk — 12h — 12k 4+ 8)x*8” + (2h + 2k)x**”
+ (16hk — 8h — 8k)x6%*
Which is the required result as shown in equation 2 .
Corollary 3. Replacing @ = 1 and a = 2 respectively in equation 2, we get the M,G (G, x)

and HM,Gs(G, x) as follows:
https://biointerfaceresearch.com/ 6885
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()  M,G<(G,x) = (16hk — 8h — 8Kk)x®* + (2h + 2Kk)x*°
+(16hk — 12h — 12k + 8)x*® + (4h + 4k) x*2

+(4h + 4k — 8) x*° + (4h + 4k)x3>
+(4h + 4k — 8)x2° + 8x20,

(i)  HM,G5(G,x) = (16hk — 8h — 8k)x*%9 + (2h + 2k)x 2401
+(16hk — 12h — 12k + 8)x23%* + (4h + 4k) x1764
+(4h + 4k — 8) x16°0 4 (4h + 4k)x1225
+(4h + 4k — 8)x°25 + 8x*00,

Proposition 2. Using the first derivative of counting polynomial as shown in equation 2, at
x = 1 we get the general fifth M, —Zagreb index as
(i) M$Gs(G) = (16hk — 8h — 8k)(64)* + (2h + 2k)(49)“
+(16hk — 12h — 12k + 8)(48)“ + (4h + 4k)(42)~
+(4h + 4k — 8)(40)* + (4h + 4k)(35)* + (4h + 4k — 8)(25)“
+8.(20)4.

Corollary 4. From Proposition 2, we get the M,G<(G) and HM,G<(G) by replacinga =1
and a = 2 respectively as follows:

()  M,Gs(G) = 3232hk — 1862h — 1862k + 24,
(i)  HM,Gs(G) = 102400hk — 34758h — 34758k + 3832.

Theorem 3. The new version of third Zagreb polynomial of G is given by
M3Gs(G,x) = (4h + 4k — 8)x3 + (16hk — 8h — 8k + 8)x? + (4h + 4k + 8)x
+(16hk — 2h — 2k — 8) (3)

Proof. By definition of new version of third Zagreb polynomial index we get,

M3G5(G,X') = Z x(|SG(a)—SG(b)|)
ab€eE(G)

_ z xl@a-s)l | Z MICHT z MIC TN Z MIEE]
ab€eE{(G) ab€E,(G) ab€E3(G) ab€E4(G)

N Z I Z A6l 4 z My Z 1E-8)]
ab€Es(G) abEE,(G) abEE, (G) abEEg(G)
= [E.(@)|x" + |E,(G)1x° + |E3(G)|x* + |E4(G)]x®
+|Es(G)|x" + |E¢(G)|x? + |E7(G)|x° + |Eg(G)|x°
= 8x + (4h + 4k — 8) + (4h + 4k)x? + (4h + 4k — 8) x3 + (4h + 4k) x
+(16hk — 12h — 12k + 8)x2 + (2h + 2K) + (16hk — 8h — 8k)
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Hence, the result as in equation 3.
Proposition 3. Differentiating the counting polynomial as shown in equation 3, with respect
to x at x = 1 we get new version of third Zagreb index M;Gs(G) as

(1) M3G5(G) = 32hk.

Now we consider line subdivision graph L(S(G)) of two dimensional network of benzene
ring implanted in P-type-surface. The edge partition with respect to the degree sum of neighbor
vertices of end vertices of every edge of L(S(G)) is shown in Table 2. Total number of edges
in L(S(G)) is (88hk — 10h — 10Kk).

Table 2. The edge partitions with respect to degree sum of neighbor vertices of end vertices of every edge of

L(S(®)).

(S(a),S(b)): ab € E(L(S(6))) Total number edges
(4.4) (4h + 4k +4)
(4,5) (8h + 8k + 4)
(5,5) (8hk — 4h — 4k + 4)
(5,8) 16hk
(8,8) (4h + 4k)
(8,9) (32hk — 8h — 8k)
(9,9) (32hk — 14h — 14k)

Theorem 4. The general fifth M; —Zagreb polynomial of L(S(G)) is given by
M G (L(S(G)),x) = (32hk — 14h — 14k)x®" 4+ (32hk — 8h — 8k)x(1D*

+(4h + 4k) x1O% 4 16hk. xIDY 4+ (8hk — 4h — 4k + 4)x1O*

+(8h + 8k + 4)x°“ + (4h + 4k + 4)x8° (4)
Proof. From the definition of general fifth M, —Zagreb polynomial index we get,
M Gs(L(S(G)),x) = Z £ (SG(@+56(b)"
abEE(L(S(G)))
= 2 x@HO% 4 Z x(4+5)%
abek; (L(S(G))) abeE,(L(S(G))
n z MCOLI Z £ (5+8)°
abeEs(L(S(G))) abeE,(L(S(G)))
n Z NI LA Z £ (8+9)7
abEES(L(S(G))) abEE6(L(S(G)))
+ Z x(9+N%
abeE7(L(s(G)))

= |E (L(S(G) ) + |E (L(S(@) )™ + |Eo(L(S(G)) )| 0"
HEL(L(S(@) Y0+ [Eg(L(S(G)) ) x 19
+|E6(L(S(®) )|xA7% + |E,(L(S(G)) )|x®”

= (4h + 4k + 4)x8 4+ (8h + 8k + 4)x°" + (8hk — 4h — 4k + 4)x(10*
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+16hk. x4 (4h + 4k) x1O% 4+ (32hk — 8h — 8k)x1N*
+(32hk — 14h — 14k)x(1®"

Which is the desired result, as shown in equation 4.

> OO
eL Q)
@v 2 /*{\f{ﬁ SO

Figure 2. Line subdivision graph of benzene ring implanted in P-type-surface network

Corollary 5. Replacing « = 1 and a = 2, respectively in equation 4, we get
M,Gs(L(S(6)),x) and HM,G5(L(S(G)), x) as follows:
(i)  MGs(L(S(G)),x) = (32hk — 14h — 14k)x'® + (32hk — 8h — 8k)x"’
+(4h + 4k) x© + 16hk.x*® + (8hk — 4h — 4k + 4)x1°
+(8h + 8k + 4)x° + (4h + 4k + 4)x8,
(i) HM,Gs(L(S(G)),x) = (32hk — 14h — 14k)x3%* + (32hk — 8h — 8k)x?%°
+(4h + 4k) x2°¢ + 16hk. x16°
+(8hk — 4h — 4k + 4)x1°° + (8h + 8k + 4)x8!
+ (4h + 4k + 4)x%%.

Proposition 4. Differentiate the counting polynomial as shown in equation 4, with respect to
x at x = 1, we get the general fifth M, —Zagreb index of L(S(G)) as follows:

() M Gs(L(S(G))) = (32hk — 14h — 14k)(18)* + (32hk — 8h — 8k)(17)%
+(4h + 4k) x1O% + 16hk. x(13% 4+ (8hk — 4h — 4k + 4)x(10O¢
+(8h + 8k + 4)x°* 4+ (4h + 4k + 4)x®"

Corollary 6. Replacing a« = 1 and a = 2respectively in Proposition 4, we get
M;Gs (L(S(6))) and HM, G5 (L(S(6))) as follows:
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(i) M;Gs(L(S(G))) = 1408hk — 260h — 260k + 108,
(iv) HM,Gs(L(S(G))) = 23120hk — 5320h — 5320k + 980.

Theorem 5. The general fifth M, —Zagreb polynomial of L(S(G)) is given by
M2 G (L(S(G)),x) = (32hk — 14h — 14k)x®D" + (32hk — 8h — 8k)x(72*

+(4h + 4k) x©D7 + 16hk. xO% + (8hk — 4h — 4k + 4)x?D”
+(8h + 8k + 4)x@0% + (4h + 4k + 4)x1O° (5)
Proof. From the definition of general fifth M, —Zagreb polynomial index we get,
Mg G5(L(S(®)),x) = 2 £ Se@S6D)*
abEE(L(S(G)))

= Z x(4><4)a + Z x(4-><5)a

abek; (L(S(G))) abek,(L(S(6)))

n Z £ (5X8) Z £ (5%X8)7

abeE;(L(S(G)) abeE,(L(S(G)))

N z LB | Z 2 (8X9)°

abeEs(L(S(G))) abeEs(L(S(G)))

N Z 2 (9%9)°

abEE7(L(S(G)))

= [E.(L(S(®) )|x" + [E, (L(S(6)) ) [« #V*
+|E3(L(S(®) )|x @D + |E4(L(S(®)) )|x“@0*
+|Es(L(S(®)) )|x©®D* + |Es(L(S(®)) )|x7?*
+|E,(L(S(®)) )|x®V*
= (4h + 4k + 4)x(19% + (8h + 8k + 4)x@O"
+(8hk — 4h — 4k 4+ 4)x@® + 16hk. x40 + (4h + 4k) x©D*
+(32hk — 8h — 8k)x 7P + (32hk — 14h — 14k)x®D®

Hence the result.

Corollary 7. Putting a =1and «a = 2respectively in equation 5, we get
M,Gs (L(S(G)),x) and HM,Gs (L(S(G)), x) as follows:

(i) M,Gs (L(S(G)),x) = (32hk — 14h — 14k)x®V + (32hk — 8h — 8k)x("?
+(4h + 4k) x©®® + 16hk.x*® + (8hk — 4h — 4k + 4)x (>

+(8h + 8k + 4)x(?9 4+ (4h + 4k + 4)x(19)
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(i)  HM,Gs (L(S(G)),x) = (32hk — 14h — 14k)x(©56D
+(32hk — 8h — 8k)x 18D + (4h + 4k) x(4099)
+16hk.x(1590) + (8hk — 4h — 4k + 4)x (62>
+(8h + 8k + H)x00 4+ (4h + 4k + 4)x259),

Proposition 5. Appling the first derivative of counting polynomial as shown in equation 5, at
x =1, we get the general fifth M, —Zagreb index of L(S(G)) as

(i)  MZGs(L(S(G))) = (32hk — 14h — 14k)(81)* + (32hk — 8h — 8k)(72)"

+(4h + 4k) (64)% + 16hk(40)® + (8hk — 4h — 4k + 4)(25)®
+(8h + 8k + 4)(20)* + (4h + 4k + 4)(16)“

Corollary 8. We compute the M, G- (L(S(G))) and HM,Gs (L(S(G))) by replacing a =
1 and a = 2 respectively in Proposition 5, as follows:

() MyGs(L(S(G))) = 5736hk — 1330h — 1330k + 244,
(i)  HM,Gs (L(S(G))) = 406440hk — 115218h — 115218k + 5124

Theorem 6. The new version of third Zagreb polynomial of L(S(G)) is given by
M5G5(L(S(G)),x) = 16hkx® + (32hk + 4)x + (40hk — 10h — 10k + 8). (6)

Proof. From the definition of new version of third Zagreb polynomial index we get,

M, Gs(L(S(G)),x) = z £ (S6(@=Sa(D)))

abEE(L(S(G)))

= Z x (44D 4 Z x(4-5D
abEEl(L(S(G))) abEEZ(L(S(G))

n Z x(5-5D 4 Z x(15-8D
abEE3(L(S(G))) abEE4(L(S(G)))

n Z x(8-8D 4 Z x(8-9D
abeEs(L(S(G))) abeEs(L(S(G)))

n Z x(19-9D)

abeE,(L(S(G)))

= |E(L(S@) )x* + |E(L(S(®) )" + |Es(L(S(®) )[x°

+|EL(L(S(®) )|x® + |Es(L(S(®)) )|x° + |E6(L(S()) )|x*
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+|E;(L(S(®)) )|x°
= (4h + 4k + 4)x° + (8h + 8k + 4) x + (8hk — 4h — 4k + 4)x° + 16hk. x3
+(4h + 4k)x° + (32hk — 8h — 8k) x + (32hk — 14h — 14k)x°

Hence the result follows as in equation 6.

Proposition 6. The first derivative of counting polynomial as shown in equation 6, with
respect to x at x = 1 we get M5Gs (L(S(G))) as

(1) MyGs (L(S(6))) = 80hk + 4.
3. Conclusions

In this work, we computed general fifth M —Zagreb polynomials and the new version
of third Zagreb polynomial for the molecular graph G of the two-dimensional network of
benzene ring implanted in the P —type surface and its line subdivision graph L(S(G)). Hence
we computed some other polynomials and their corresponding topological indices such as fifth
M —Zagreb polynomials and their corresponding fifth M —Zagreb indices, fifth hyper
M —Zagreb polynomials and their corresponding fifth hyper M —Zagreb indices, M; —Zagreb
polynomial and it is corresponding M; —Zagreb index by using our derived results. In the
future study, we want to compute these indices for some chemically important molecular
structures.
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