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Abstract: A model molecule for P4O10-ZnO-CaO is constructed to build Calcium Zinc Phosphate Oxide 

glasses. Then the effect of alkalis Li; Na and K upon the model molecule is studied with ab initio 

Hartree-Fockat HF/3-21G** level of theory. The overall aim is to evaluate the electronic properties of 

both the model molecules and alkali substituted molecules. The calculated parameters, including highest 

occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) bandgap energies; 

Total dipole moment (TDM) and molecular electrostatic potentials (MESP) are calculated.  It has also 

been observed that the calculated  TDM of the glassy system P4O10-ZnO-CaO is increased while the 

HOMOH/LUMO band gap is decreased as an indication for the reactivity of the studied model 

molecules. The active sites for the studied models are described by the calculated MESP, which is 

confirming the results of both TDM and HOMO/LUMO.  
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1. Introduction 

Many forms of glasses depend on their structure on phosphate glasses continue to be a 

topic for a variety of technological applications [1-3]. The molecular structure of phosphate 

glass shows different properties, which in turn dedicated to many different applications that are 

related to their molecular-level structures [4-6]. The addition of ZnO on phosphate glass 

affected the properties of phosphate glass [7-8]. Several studies were constructed on Calcium 

Zinc phosphate oxide glasses such as doping with Mg and Li [9-10]. Molecular modeling could 

be used alone and/or with the help of experimental molecular spectroscopic technique as a 

descriptive tool for the molecular structures of many systems and structures in different areas 

of science. Such computational techniques are now widely used to mimic the molecular 

behavior in chemistry, drug design, computational biology, and material science [11-16]. The 
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range of molecular systems is ranging from small chemical systems to large biological 

molecules and material assemblies. It was previously utilized to study  P4O10-ZnO-CaO-Na2O 

glasses doped with copper oxide [17]. The temperature-dependent constraint model of alkali 

phosphate glasses was established for considering the structural and topological role of the 

modifying ion sub-network constituted by alkali ions and their non-bonding oxygen 

coordination spheres [18]. Molecular dynamics (MD) simulations have given new insight into 

the structural motifs which affect the dissolution, which is not accessible to experimental 

methods [19]. It is an excellent tool to describe atomic-level structural information for 

phosphate-based bioactive glasses [20]. MS simulations could also give information about the 

effect of alkali upon phosphate-based glasses [21-22]. Based on these considerations, it is clear 

that different classes of computational modeling gave information about the systems, whereas 

the experimental approach is limited or even unavailable [23- 32]. Of course, glass systems are 

among these systems [33-34]. 

In this work, molecular modeling at HF/3-21G** is utilized to study the effect of Li-

Na-K on Calcium Zinc Phosphate Oxide glasses. 

2. Materials and Methods 

 All the studied structures are subjected to energy optimization, then some physical 

parameters are calculated. Total dipole moment and HOMO/LUMO bandgap energies and 

molecular electrostatic potential were calculated at a higher level of theory at HF/3-21G** 

using GAUSSIAN 09 software [35], which is implemented at Spectroscopy Department, 

National Research Centre, Egypt. 

3. Results and Discussion 

Before describing the results, it is important to describe how the model molecule is 

built. A model molecule of phosphate glass P4O10 is built as indicated in figure 1, then ZnO, 

CaO in the nanoscale are added as indicated in figure 2. The metal oxides are added in the two 

of the three corners while in the last corner, as shown in figure 3, Li, Na, K are added 

respectively; accordingly, Li, Na, K are added separately to form three models. Table 1 

presented the calculated HF/3-21G**  TDM and HOMO/LUMO band gap energy for the 

studied structures. Both physical quantities reflect the reactivity of a given compound.  TDM 

is increased as the chemical reactivity increased. Meanwhile, decreasing the HOMO/LUMO 

band gap energy is also a descriptor for increasing the reactivity of a given chemical structure 

[][36-37]. For P4O10 structure, the  TDM is 0.0000 Debye; the band gap was 12.3622 eV.  For 

P4O10-ZnO-CaO structure, the  TDM is increased to 6.1981 Debye, and the bandgap energy is 

decreased to 3.5391 eV. This indicated that both metal oxides are increasing the reactivity of 

P4O10 structure. The effect of Li, Na, and K upon the reactivity of P4O10-ZnO-CaO is also 

indicated in the same table. The  TDM for P4O10-ZnO-CaO-Li is increased to be 23.5878 

Debye; the bandgap energy is further decreased to be 1.4947 eV.  The same quantities for 

P4O10-ZnO-CaO-Na are respectively 27.9715 Debye and 1.1715 eV. Finally, the TDM and 

bandgap energy became 27.8134 Debye, 2.0588 eV corresponding to P4O10-ZnO-CaO-K. 

Regarding these results, one can conclude that metal oxides in nanoscale such as ZnO and CaO 

increase the reactivity of P4O10. Further reactivity of such a system is achieved as far as easily 

ignitable elements are introduced to such a system. The ability of a given surface to interact 

with its surrounding medium is measured with another important physical quantity, which is 
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the molecular electrostatic potential (MESP) that calculated at HF/3-21G** level and indicated 

in Figures 1-c and 2-c. More specifically, MESP is displayed by charge distribution revolving 

around the molecule space. It is considered as an important parameter for understanding both 

the electrophilic and nucleophilic attacks sites for biological recognition [38]; this is, of course, 

for biological interactions process. More generally, it could be an indication of hydrogen 

bonding interactions [39] in material science. So that, the MESP is predicting the reactive 

molecular sites for the studied structures. The MESP map and contour are indicated by colors 

whereas, different values of the electrostatic potential at the surface are represented by different 

colors. Potential is following the increasing orders: red < orange < yellow < green < blue. 

Where blue indicates the highest electrostatic potential energy, and red indicates the lowest 

electrostatic potential energy ][40].Intermediary colors represent intermediary electrostatic 

potentials. They are introducing metal oxides as well as other metals, increasing the reactivity 

of the studied structure. 

Table 1. Calculated HF/3-21G** total dipole moment and HOMO/LUMOband gap energy for the studied 

structures. 

Structure Total dipole moment 

Debye 

HOMO/LUMO 

eV 

P4O10 0.0000 12.3622 

P4O10-ZnO-CaO   6.1981 3.5391 

P4O10-ZnO-CaO-Li 23.5878 1.4947 

P4O10-ZnO-CaO-Na 27.9715 1.1715 

P4O10-ZnO-CaO- K 27.8134 2.0588 

 
a    b    c  

Figure 1. HF/3-21G** calculated structures for a- P4O10, b- HOMO/LUMO for P4O10 and c- MESP for P4O10. 

 
a    b    c  

Figure 2. HF/3-21G** calculated structures for a- P4O10-ZnO-CaO, b- HOMO/LUMO for P4O10-ZnO-CaO and 

c- MESP for P4O10-ZnO-CaO. 
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Figure 3. HF/3-21G** calculated structures for P4O10-ZnO-CaO-X; where X is Li; Na and K respectively. 

4. Conclusions 

 Molecular modeling, a cost-effective, safe, and easy-to-use tool helps to investigate, 

interpret, explain, and identify molecularly. properties of many systems and structures. In this 

work, it is applied at HF level to study the effect of alkali on the electronic properties of 

Phosphate (P4O10) metal-oxide glass (ZnO&CaO). TDM, HOMO/LUMO bandgap, and MESP 

are reflecting the reactivity of the studied structures. TDM is increased by decreasing the 

HOMO/LUMO bandgap as a result of doping. This is an indication that the studied metal 

oxides in nanoscale increase the reactivity of P4O10 glass. The calculated MESP indicted the 

active sites in the studied glass structure, which changes with changing the studied alkalis. 
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