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Abstract: The sulfur-containing bioactive molecules (soft base) tends to bind strongly with Hg(II) (soft 

acid), thereby inhibiting the mercury (II) catalyzed exchange rate of cyanide ligand from [Ru(CN)6]
4- 

by pyrazine. This inhibitory effect of Mercaptoacetic acid (MAA) encourages us to establish a new 

kinetic method for its micro-level estimation. Optimized reaction condition viz. 6.25×10-5 M [Ru(CN)6
4-

], pH = 4.0, 7.5×10-4 M [Pyrazine], 0.05 M KCl, 8.5 ×10-5 M [Hg+2] and 45 (±0.1) oC temperature were 

utilized for the kinetic spectrophotometric investigation at 370nm (λmax of [Ru(CN)5 Pz]3- complex). 

The modified mechanistic scheme for inhibition caused by sulfur donor ligand, MAA has been 

proposed. The proposed analytical method provides the detection of MAA up to 2.0 × 10-6 M, indicates 

that the methodology can be effectively and economically employed to analyze the biological samples 

having MAA. This method can also be convincingly adopted for the quality check of MAA containing 

industrial products. 
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1. Introduction 

Sulfur is the key element in the living organisms for the various metabolic processes. 

Sulfur occurs in structural proteins of a cell, in enzymes, and in large numbers of bioactive 

molecules, which plays a vital role in metabolism [1-4]. Thus there is a continuous demand to 

develop an effective methodology for the quantitative determination and detection of sulfur-

bearing compounds in distinct samples. Mercaptoacetic acid (MAA), generally known as 

thioglycolic acid, is a bi-functional organic compound consisting of carboxyl and thiol groups. 

The chelating complexes of MAA with metal ions have been used for the determination of 

Ag(I), Pb(II),  Mo(II), Sn(II), Tl(III) and Fe(III) and extraction of Cu(II) and Cd(II) [5-7]. MAA 

has been widely used in the leather industry for the depilation process, in fabric dying, in 

cosmetics (mainly in hair perming) [8-9]. The derivatives of MAA are also used as a heat 

stabilizer for PVC plastics, as a corrosion inhibitor and anti-scaling agent for the oil field 

industry [10-11]. In contrast to widespread industrial applications, the long term exposure of 

MAA can cause chronic deceases like cancer and reproductive problems [12]. On acute 

exposure, MAA causes breathing problems, skin burning, irritation and possible damage of 

eyes, coughing and choking, gastrointestinal damage, dizziness etc. [13]. American Conference 

of Governmental Industrial Hygienists (ACGIH) recommended 1 ppm as the airborne exposure 
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limit of MMA for an 8-hour work shift. The unavoidable use of MAA and its derivative in 

various industries and cosmetic products attracts environmental analyst and chemists to 

develop methods for its micro-level determination.        

Numerous reports are available to determine sulfur-bearing compounds in 

pharmaceutical preparations, biological and analytical samples  [14-20]. The determination 

methods include chromatography  [21-24], colorimetry [16] [17], flow injection analysis  [25], 

fluorimetry  [26], voltammetry  [27-29], potentiometry  [30], NMR-spectrometry  [31] and 

spectrophotometry  [32-33]. The major disadvantages of most of these methods are a high 

initial investment and are time-consuming. Very few kinetic reports are available using various 

detection techniques  [34-37]. Naik et al. developed a kinetic spectrophotometric method to 

quantitatively determine D-Pa utilizing its inhibitory effect towards Hg(II) catalyzed ligand 

substitution reaction  [38-39]. 

Ruthenium (a corrosion-resistant material  [40]) complexes with several bioactive 

ligand exhibits widespread applications as Antifungal  [41], Antiamebic [42], Anticancer  [43], 

Antimetastatic  [44], Immunosuppressant  [45], Antileukemic  [46-47], Antitumor  [48-49] and 

DNA binder  [50-51].  The metal-catalyzed ligand imitation of [Ru(CN)6]4- with nitrogen donor 

heterocyclic ligand in aqueous / surfactant medium have been investigated by several authors  

[52-53]. The mercury (II) catalyzed imitation of cyanide ligand from [Ru(CN)6]4- with pyrazine 

has been effectively utilized to determine Hg(II) at trace level  [54]. The concept of HSAB 

(hard-soft acid-base) has been extensively used to explain the stability of different metal 

complexes. The sulfur-bearing compounds (soft base) exhibit a tendency to bind strongly with 

Hg(II) (soft acid) [38-39]. MAA suppresses the mercury(II) catalyzed exchange rate of cyanide 

ligand from hexacyanoruthenate(II) with pyrazine. This inhibitory effect of MAA encourages 

us to establish a new kinetic method for its micro-level estimation. The developed method 

based on ligand imitation reaction between hexacyanoruthenate(II) and pyrazine catalyzed by 

Hg(II) is more useful as the uncatalyzed reaction is insignificant under specified reaction 

condition. The present communication proposes a novel, simple and accurate method which 

permits to determination MAA down to 2.0 × 10-6 M with good accuracy and reproducibility. 

This method can also be successfully adopted for the quality check of MAA containing 

industrial samples. 

2. Materials and Methods 

2.1 Materials and instrumentation. 

The de-ionized distilled water and analytical grade reagents were used throughout the 

kinetic measurements. A calculated amount of pyrazine (Merck) and K4[Ru(CN)6].3H2O 

(Merck) were used for the preparation of their stock solutions. Mercaptoacetic acid, procured 

from Himedia, was used without further purification. All the stock solutions were stored in 

amber-colored bottles to avoid their possible photo-degradation. HgCl2 solution was prepared 

daily since the loss in [Hg+2] was observed as it gets adsorbed on the glass surface. 

Hydrochloric acid (S, D. Fine-Chem Ltd. India) and potassium hydrogen phthalate (Merck) 

were used to prepare a desired buffer solution by the reported method. The ionic strength of 

the reaction medium was maintained by KCl (Merck). 

The measurement of absorbance at fixed wavelength and acquisition of other kinetic 

data was carried out on a double beam (Systonic S-926) spectrophotometer fitted with a 
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thermo-stated cell compartment. The standard buffer solutions were used to calibrate the digital 

pH meter (Toshniwal, CL46) before pH measurements. 

2.2. Procedure. 

The detailed kinetic investigation of the substitution reaction was utilized to judiciously 

select the optimum reaction condition at which the indicator reaction is more sensitive and 

proceed at the fastest rate. All the reacting solutions viz., buffer solution of pH = 4.0, 7.5×10-4 

M [Pyrazine], 6.25×10-5 M [Ru(CN)6
4-], 8.5 ×10-5 M [Hg+2], 0.05 M KCl and mercaptoacetic 

acid were placed in thermostat at 45oC to attain thermal equilibrium. Then 2.0ml from each 

solution was pipette out and mixed swiftly in the order: buffer solution, pyrazine, KCl, HgCl2, 

and mercaptoacetic acid in an Erlenmeyer flask and immersed in the thermostat to fix the same 

temperature. 2.0ml of hexacyanoruthenate(II) was finally added to trigger the reaction. After 

vigorous shaking, the reaction mixture was transferred immediately to the spectrophotometer’s 

cell, kept in a temperature-controlled cell compartment at 45oC via circulating water 

arrangement. The advancement of the indicator reaction was monitored by examining the 

escalation in absorbance at 370nm, which corresponds to the stable yellow-colored [Ru(CN)5 

Pz]3- complex. To quantitatively determine MAA, a calibration curve was drawn by plotting 

the change in absorbance as a function of varying [MAA] at fixed time intervals. 

3. Results and Discussion 

The exchange of cyanide ligand with pyrazine from hexacyanoruthenate(II), catalyzed 

by Hg(II) produces a yellow-colored [Ru(CN)5 Pz]3-. The reaction product exhibits a strong 

absorption band at 370nm due to metal to ligand charge transfer (MLCT) transition. The 

product absorbs strongly at 370nm without any interference from the reactants, catalyst, and 

other reaction reagents  [54].  
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Figure 1. Calibration curve for the Mercaptoacetic acid determination. 

The earlier reports on thioglycolic acid and sodium thiosulphate exhibit that the thio 

compounds inhibit the substitution rate of cyanide with an incoming ligand from 

hexacyanoruthenate(II) using  Hg(II) as a catalyst  [34-36]. Mercaptoacetic acid, a sulfur donor 

ligand, also decreases the rate of a reaction under investigation by forming a stable catalyst–

inhibitor [Hg(II)----MAA] complex, thereby decreasing the effective concentration of Hg(II) 

catalyst resulting in loss of its catalytic efficiency. It is also observed that the rate of inhibitor 

reaction decreases with the proportional addition of [MAA].  
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Optimized reaction conditions were utilized to measure the absorbance change At (t = 

15 and 20 min) with varying [MAA] (0.20 × 10-5 to 3.0 × 10-5). The plot of At versus [MAA] 

exhibits a linear dependency (Figure 1). It can be served as a calibration curve for the MAA 

determination. The relevant expressions are given by equations 1 and 2. 

 

Reaction Condition: pH = 4.0 ± 0.02, [Pyrazine] = 7.5×10-4 M, I = 0.05 M (KCl), [Ru(CN)6
4-] = 6.25×10-5 M, 

Temperature = 45.0 ± 0.1 oC and [Hg+2] = 8.5 ×10-5 M.   

𝐴15 = 0.120 − 3.52 × 104[MAA]                          (1) 

𝐴20 = 0.146 − 4.76 × 104[MAA]                           (2) 

The standard deviation and linear regression coefficient for A15 and A20 versus [MAA] 

plots are 0.0026, 0.0006 and 0.9985, 0.9967, respectively. The reproducibility and accuracy of 

the present method for MAA determination were tested by dissolving the calculated amount of 

MAA in distilled water and performing experiments for recovery. The recovered MAA 

inclusive of percentage error and standard deviation are reported (Table 1). The observed 

detection limit for MAA was 2.0 ×10-6 M.    

The modified mechanistic scheme for inhibition, caused by sulfur donor ligand MAA 

to the mercury (II) catalyzed exchange of cyanide with pyrazine from hexacyanoruthenate(II) 

can be proposed by exploiting the same reaction without inhibitor and may schematically be 

represented by equations (3) – (7).   

Table 1. Recovery results and % error for MAA determination 

Reaction Condition: pH = 4.0 ± 0.02, [Pyrazine] = 7.5×10-4 M, I = 0.05 M (KCl), [Ru(CN)6
4-] = 6.25×10-5 M, 

Temperature = 45.0 ± 0.1 oC and [Hg+2] = 8.5 ×10-5 M. 

[MAA]×105 M 

(Taken) 

                          A15                            A20 

[MAA]×105 M 

(Found) 
% Error 

[MAA]×105 M 

(Found) 
% Error 

0.25 0.26 ± 0.016  + 0.04 0.29 ± 0.032 + 0.16 

0.60 0.60 ± 0.02 0.000 0.60 ± 0.00 0.000 

1.10 1.05 ± 0.06 ̶  0.045 1.09 ± 0.03 ̶  0.009 

1.30 1.29 ± 0.08 ̶  0.008 1.33 ± 0.04 + 0.023 

1.75 1.75 ± 0.00 0.000 1.73 ± 0.06 ̶  0.011 

2.25 2.21 ± 0.05 ̶  0.018 2.25 ± 0.00 0.000 

2.50 2.50 ± 0.01 0.000 2.55 ± 0.08 + 0.020 

2.90 2.92 ± 0.08 + 0.007 2.88 ± 0.07 ̶  0.007 

Since the inspected substitution reaction does not proceed without catalyst under 

specified reaction condition (not considered in the above scheme) [54], so the current Hg(II) 

catalyzed reaction system must produce more efficient and accurate results for the MAA 

determination. Considering “So” as the initial concentration of [Ru(CN)6
4-] we can deduce the 

rate expression very similar to the enzyme-catalyzed reaction (in the presence of an inhibitor) 

for a single substrate. The catalyzed reaction rate (Vo) in the absence of an inhibitor can be 

represented by Eq. (8).    

Vo =
Vmax

1 +
Km

[So]

                           (8) 

Equation (8) can be rearranged in the form of Lineweaver-Burk expression  [55] (Eq. 9). 

https://doi.org/10.33263/BRIAC106.71527161
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC106.71527161  

 https://biointerfaceresearch.com/ 7156 

 
Scheme 1. The mechanistic pathway for the Hg(II) catalyzed exchange of cyanide with pyrazine from 

hexacyanoruthenate(II) 

 
Figure 2. The Lineweaver-Burk plot for the determination of Km and Vmax in the absence of inhibitor. 

Reaction Condition: pH = 4.0 ± 0.02, [Pyrazine] = 7.5×10-4 M, Temperature = 45.0 ± 0.1 oC, I = 0.05 M (KCl) 

and [Hg+2] = 8.5 ×10-5 M. 

1

Vo
=  

1

Vmax
+  

Km

Vmax
 

1

[So]
                           (9) 

Here Km corresponds to M-M (Michaelis-Menten) constant; the maximum rate at larger 

substrate concentration is represented by Vmax, and Vo shows the initial reaction rate in the 

defection of inhibitor. 

The plot of 1/Vo versus 1/[So] is in accordance with the equation of straight line having 

a slope and intercept of Km/Vmax and 1/Vmax, respectively (Figure 2). The calculated value of 

Km was found to be 0.188 ± 0.015 mM.      
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 Equation (10) represents the initial reaction rate (Vi) at constant catalyst concentration, 

in the presence of inhibitor (MAA). 

                                             Km
′ =  Km (1 +  

[Io]

KCI
′ ) 

Vi =  
Vmax

1 +  
Km

′

[So]

                                                   (10) 

Where K´
m represents the probable value of M-M constant for the catalyzed reaction in the 

presence of inhibitor  [56], K´
CI shows the dissociation constant of the catalyst inhibitor 

complex (C-I) and the initial inhibitor concentration is Io. 

Vi =  
Vmax

1 +  
Km

[So]
 (1 +  

[Io]
KCI

′ )
                                  (11) 

 
Figure 3. The plot of (1/Vi – 1/Vmax) versus initial concentration of inhibitor for the determination of Km and 

KCI Reaction Condition:  pH = 4.0 ± 0.02, [Pyrazine] = 7.5×10-4 M, I = 0.05 M (KCl), [Ru(CN)6
4-] = 6.25×10-5 

M, Temperature = 45.0 ± 0.1 oC and [Hg+2] = 8.5 ×10-5 M. 

The double reciprocal of the above equation gives Eq. (11), which is in accordance to 

the Lineweaver-Burk expression. 

1

Vi
 −  

1

Vmax
=  

Km

[So]Vmax
+  

Km

[So]Vmax 
 
[Io]

KCI
′                   (12) 

Equation (12) rules out the formation of substrate inhibitor complex, while for good 

results, the inhibitor “I” and catalyst “C” must form a stable complex. 

The linear plot of ( 
1

Vi
−

1

Vmax
) versus the initial [MAA] is aligned with the equation of 

a straight line (Figure 3). The evaluated Km value, in the presence of inhibitor, is in good 

agreement with the previously computed Km value in the defection of inhibitor (0.188 ± 0.015 

mM). The calculated dissociation constant value of C-I complex (K´
CI) using the slope of the 

plot was 1.425 × 10-5 ± 0.02 indicates the high stability of C-I complex.   

The influence of diverse anions, cations, and chelating ligands on the quantitative 

determination of MAA was studied using A15 calibration curve (Table 2). It is important to 

note that the chelating ligands, which can significantly interfere with the determination of 

MAA by forming a stable complex with Hg(II) are absent in the reaction system under 
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investigation. On the other hand, the cations and anions which may complex with MAA and 

other reactants must also be absent.  

Table 2. Effect of diverse ions on Mercaptoacetic acid determination 

Reaction Condition:  pH = 4.0 ± 0.02, [Pyrazine] = 7.5×10-4 M, I = 0.05 M (KCl), [Ru(CN)6
4-] = 6.25×10-5 M, 

Temperature = 45.0 ± 0.1 oC and [Hg+2] = 8.5 ×10-5 M. 

External ion [External ion] M, limit Interference 

NO3
- 2.0 × 10-4 Almost non interfering 

I- 6.0 × 10-4 No Interference 

SO4
2- 2.0 × 10-4 Interfering significantly 

Na+ 6.0 × 10-5 Interfering appreciably 

Pb2+ 4.0 × 10-5 No Interference 

Cu2+ 2.0 × 10-4 No Interference 

Cd2+ 8.0× 10-5 No Interference 

Mg2+ 6.0 × 10-4 No Interference 

Zn2+ 2.0 × 10-4 No Interference 

Fe3+ 8.0 × 10-4 No Interference 

Al3+ 4.0 × 10-4 No Interference 

C2O4
2- 4.0 × 10-4 Interfering significantly 

HEDTA 8.0 × 10-4 Interfering significantly 

EDTA 6.0 × 10-4 Interfering significantly 

DTPA 6.0 × 10-4 Interfering significantly 

IDA 8.0 × 10-4 Interfering significantly 

4. Conclusions 

 A sensitive, rapid, and more accurate spectrophotometric method was developed to 

determine MAA at a micro-level. The present investigation, based on ligand exchange reaction 

between hexacyanoruthenate(II) and pyrazine catalyzed by Hg(II) is more useful as the 

uncatalyzed reaction is insignificant under specified reaction condition. The addition of 

inhibitor only retards the rate of catalyzed reaction, which eventually escalates the efficiency 

and accuracy of the present system for inhibitors determination. The proposed method provides 

the detection of MAA up to 2.0 × 10-6 M indicates that the methodology can be effectively and 

economically utilized to analyze the industrial and biological samples having MAA. This 

method can also be convincingly adopted for the quality check of MAA containing products. 
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