
 

 https://biointerfaceresearch.com/  7177 

Article 

Volume 10, Issue 6, 2020, 7177 - 7186 

https://doi.org/10.33263/BRIAC106.71777186 

 

Synthesis and Evaluation of Antimicrobial Activities of 

New Piperidine Derivatives 

Tanveer Mahamad Alli Shaikh 1,* , Yibrah Ammare 1  

1 Department of Chemistry, College of Natural and Computational Sciences Mekelle University, Mekelle, Ethiopia 

* Correspondence: tanveerchem1@gmail.com;  

Scopus Author ID 8690415500 

Received: 9.05.2020; Revised: 3.06.2020; Accepted: 4.06.2020; Published: 7.06.2020 

Abstract: Nitrogen heterocycles with piperidine rings are the most prominent structural features and 

frequently utilized by pharmaceuticals. In this study, we have disclosed the synthesis of new compounds 

with piperidine motif. The synthesis of these derivatives was achieved using Wittig olefination, O-

alkylation, and nucleophilic substitution reaction. The antimicrobial activity was performed by disc 

diffusion method utilizing Staphylococcus aureus as gram-positive and Escherichia coli as a gram-

negative bacterial pathogen, respectively. 
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1. Introduction 

The heterocyclic compounds are known from the centuries and play an essential role in 

chemistry, biology, and medicine [1]. Moreover, molecules with the presence of heterocycles, 

both natural products and synthetic drugs, showed excellent bioactivity [2–6]. Over the past 

three decades, these structural features of heterocycles have been thoroughly exploited by 

researchers [7–9].  

Among them, the nitrogen-containing heterocycles have attracted due to their broad 

applications in natural products [10–13], alkaloids [14], pharmaceutical drugs [15], or drug-

like molecules [16–17], synthetic building blocks [18–23], electronics, material science [24–

25], polymers [26], Dyes [27–28], and agrochemicals [29]. Interestingly, the saturated N-

heterocycles are associated with certain advantages such as better solubility of drugs to enhance 

their metabolism [30–31], than the corresponding aromatic N-heterocycles. Mainly, the 

piperidine moieties are a fascinating class of N-heterocycles, found in therapeutic agents [32–

34], and chiral molecules [35–36], with significant biological activity, for example, 

antihypertensive, antibacterial [37–38], antimalarial [39], anticonvulsant [40], anti-

inflammatory [41-42], antiproliferative, antitubercular and antioxidant [43–44]. 

Due to the importance of the piperidine scaffold, several functionalized derivatives 

have been investigated to find the lead compound (Figure 1) [45]. Cinnamic acid derivatives 

such as esters, amides, and hydrazide have been exploited due to their essential antioxidant and 

anti-inflammatory activities [46–47]. Although a great variety of piperidine derived bioactive 

molecules have been studied, the combination of piperidine with α,β-unsaturated esters 

(cinnamate) is not known in the literature. Earlier, we have reported the asymmetric syntheses 

of piperidine-based molecules [48–50]. We present here an efficient method to synthesize 
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piperidine derivatives and investigation of their antimicrobial bioactivity against pathogens 

Escherichia coli as gram-positive and Staphylococcus aureus as gram-negative bacteria.  

 

 

 

Figure 1. Lead drugs and bioactive molecules with piperidine core. 

2. Materials and Methods 

 4-Hydroxy benzaldehyde, Wittig reagent [(carbethoxymethylene) 

triphenylphosphorane], and piperidine were purchased from Sigma-Aldrich, South Korea. The 

solvents and reagents (analytical grade) were procured from India, and it was used as such 

without any purification. The progress of the reaction was monitored using thin-layer 

chromatography (TLC), and the appearance of TLC spots was visualized by UV-lamp at 254 

and 365 nm. The purification of products was performed using a chromatographic method 

using 60-120 mesh silica gel and a combination of solvents hexane:EtOAc. All the obtained 

products were characterized using FTIR, melting points, 1H- and 13C-NMR and DEPT NMR. 

Melting points (m.p.) were recorded on the MEL-TEMP instrument in closed capillaries 

without correction. A FT-IR spectrum has been recorded on Shimadzu 4000 FT-IR using KBr 

pellet. Bruker instrument has been utilized to measure 1H-NMR of synthesized compounds, 

including 13C-NMR at 400 MHz for proton spectra and 100 MHz for carbon spectra, 

respectively. 

2.1. Synthesis.  

2.1.1. Synthesis of 3-(4-Hydroxyphenyl)-(E)-ethyl propenoate (6).  

A round bottom flask (100 mL) along-with magnetic bar, (Ethoxycarbonylmethylene) 

triphenylphosphorane (7) (10.45 g, 30 mmol) and deionized water (60 mL) was introduced 

successively. The resulting solution was stirred at 25 oC for 5 minutes. Then, 4-

hydroxybenzaldehyde (8) (2.44 g, 20 mmol) was slowly added to the flask. Again the whole 

mixture was allowed to stir for 5 minutes at room temperature and further heated to 80-90 °C 

(2 h) with continuous stirring. The reaction was monitored with the help of TLC. After 

completion of the reaction, it was cooled to 25 oC, and then transferred to a separatory funnel, 

and CH2Cl2 (3 × 40 mL) was used as an extraction solvent.[51]  The combined organics was 

treated with water (15 mL) and anhydrous Na2SO4. Removal of CH2Cl2 was carried out using 

a rotary evaporator resulted in the oil as a crude product. The crude product 6 was subjected to 

the chromatographic purification using 60-120 meshed silica gel, elution of 20% EtOAc in n-

hexane to provide 3-(4-Hydroxyphenyl)-(E)-ethyl propenoate in 85% (3.264 g) as a colorless 

solid. 
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Melting point: 68-72 oC; FTIR in KBr (cm-1): 680, 979, 1110, 1205, 1291, 1380, 1473, 1595, 

1610, 1716, 2922, 3224; 1H-NMR in CDCl3 (300 MHz) δ= 7.58 (d, 1H, HβC=CHαR, J = 16 

Hz), 7.42 (multiplet, 2H), 6.90 (m, 2H), 6.30 (d, 1H, HβC=CHα-R, J = 16 Hz), 5.40 (brs, 1H, 

H-O-Ar), 3.80 (q, 2H, OCH2, J 7.2 Hz & J 6.8 Hz), 1.37 (t, 3H, CH3, J 7.2 Hz & J 6.8 Hz); 
13C-NMR in CDCl3 (100 MHz) δ= 168.58, 158.81, 145.38, 130.10, 126.49, 116.08, 114.78, 

60.88, 14.28. 

2.1.2. Synthesis of (E)-ethyl 3-(4-(2-bromoethoxy)phenyl)acrylate (3). 

Wittig product 3-(4-Hydroxyphenyl)-(E)-ethyl propenoate (6) (2.88 g, 15 mmol) was 

dissolved using 25 mL of dimethyl formamide. Then the resulting solution was allowed to stir 

at 25 oC, and KOH (2.52 g, 45 mmol) was introduced in one portion. Subsequently, 1,2-

dibromoethane (5) (4.133 g, 22 mmol) was introduced with the help of a syringe. This whole 

mixture was allowed to heat (80 oC) for 3 h. The development of the reaction was monitored 

using TLC [52]. After completion of the reaction, the flask was cooled to 25 oC, extracted with 

EtOAc (40 mL x 3). Then ethyl acetate (EtOAc) layer was treated with anhydrous Na2SO4 

followed by evaporation of ethyl acetate using a rotary evaporator. Thus the obtained crude 

residue (3) was subjected to chromatographic purification using a column packed with (60-120 

mesh) silica gel and eluent as EtOAc:hexane (5%) affording pure (E)-ethyl-3-(4-(2-

bromoethoxy)phenyl)acrylate (3) in 70% (3.142 g) yield as white solid. 

Melting point: 45-50 oC; FTIR in KBr (cm-1): 627, 645, 810, 1007, 1054, 1152, 1173, 

1225, 1280, 1491, 1597, 1712, 2845, 2910, 2997; 1H-NMR in CDCl3 (400 MHz) δ= 7.50 (d, 

1H, HβC=CHαR, J 16 Hz), 7.65 (d, 2H, J 8.4 Hz), 6.93 (d, 2H, J 8.8 Hz), 6.34 (d, 1H, 

HβC=CHαR, J 15.6 Hz), 4.34 (t, 2H, OCH2, J 6.2 Hz), 4.27 (q, 2H,  OCH2, J 7.2 Hz), 3.67 (t, 

2H, BrCH2, J 6.2 Hz), 1.35 (t, 3H, CH3, J 7.0 Hz); 13C-NMR in CDCl3 (100 MHz) δ= 167.25, 

159.75, 143.99, 129.76, 127.92, 116.26, 115.01, 67.86, 60.40, 28.79, 14.28. 

2.1.3. Synthesis of (E)-ethyl 3-(p-(2-(piperidin-1-yl) ethoxy) phenyl) acrylate (1). 

A 500 mL clamped flask charged with commercially available piperidine (4) (2.55 g, 

30 mmol) followed by addition of ethanol (250 mL). The solution was stirred at 25 oC for 5 

minutes, followed by the addition of (E)-ethyl-3-(4-(2-bromoethoxy)phenyl)acrylate (3) (4.488 

g, 15 mmol). Subsequently, K2CO3 (6.219 g, 45 mmol), then the catalytic portion of KI in water 

(20 mL) was introduced to the above reaction mixture [53]. The whole solution was refluxed 

up to 24 h, and the progress of the reaction was observed using TLC. After 24 h, the reaction 

flask was cooled to ambient condition. It was observed that white solid appeared at the bottom 

of the flask, which was separated using filter paper, and the resulting organic layer was 

evaporated using a rotary evaporator. Finally, obtained oil was again mixed with CH2Cl2 (100 

mL) followed by treatment with HCl (0.5%) and NaOH (0.5%) and H2O (40 mL). The solvent 

was exposed to Na2SO4. The solvent was removed using a rotary evaporator to afford product 

1 in crude form. The residue of product 1 was then purified using the chromatographic 

technique by (60-120 mesh) silica gel and eluted with 30% mixture of ethyl acetate in n-hexane 

as to isolate pure (E)-ethyl 3-(p-(2-(piperidin-1-yl) ethoxy) phenyl) acrylate (1) in 25% yield 

(1.14 g) as a brown liquid. 

FTIR neat (cm-1): 670, 710, 873, 953, 1069, 1163, 1210, 1239, 1305, 1452, 1643, 1720, 

2940, 2963; 1H-NMR in CDCl3 (400 MHz) δ= 7.55 (m, 2H), 7.02 (d, 1H, HβC=CHαR), 6.51 

(m, 2H), 6.22 (d, 1H, HβC=CHαR), 3.45 (q, OCH2, 2H), 3.29 (t, OCH2, 2H), 2.34-1.64 (m, 6H, 
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-CH2 of Pip) 1.04-0.67 (m, 6H, Piperidine 3,4,5-H) 0.52 (t, 3H, CH3); 13C-NMR in CDCl3 (100 

MHz) δ= 171.17, 157.45, 139.03, 130.06, 128.73, 113.19, 78.01, 65.33, 59.33, 57.41, 54.46, 

26.41, 24.50, 13.51. 

2.1.4. Synthesis of (E)-methyl 3-(p-(2-(piperidin-1-yl) ethoxy)-phenyl) acrylate (2). 

To the round bottom flask (E)-ethyl 3-(p-(2-(piperidin-1-yl) ethoxy)-phenyl) acrylate 

(1) (0.607 g, 2 mmol) was dissolved in MeOH (15 mL) and allowed to stir at 25 oC. To this 

solution, anhydrous Na2CO3 (0.212 g, 2 mmol) has been introduced and further heated to reflux 

(5 h), and the development of reaction was observed by TLC. Then the flask was cooled to 25 
oC,[54], and the solvent (MeOH) was evaporated under vacuum. The obtained crude residue 

was dissolved with a mixture of EtOAc–n-hexane (1:1, 10 mL) followed by filtration in order 

to remove unwanted salts. Evaporation of the solvent gave crude product 2 as oil, which was 

subjected to chromatographic separation using (60-120 mesh) silica gel and elution with 30% 

EtOAc:n-hexane to provide pure (E)-methyl 3-(p-(2-(piperidin-1-yl)ethoxy)-phenyl) acrylate 

(2) in 85% yield (4.13 g) as a brown oil. 

FTIR neat (cm-1): 665, 715, 745, 868, 945, 1052, 1155, 1223, 1247, 1318, 1460, 1610, 

1645, 1715, 2923, 2976; 1H-NMR in CDCl3 (400 MHz) δ= 7.55 (m, 2H, Ar-H), 6.97 (m, 2H, 

Ar-H), 6.46 (d, 1H, HβC=CHαR J = 8.0 Hz), 6.17 (d, 1H, HβC=CHαR, J 8.0 Hz), 3.40 (t, 2H, -

O-CH2, J 8.0 Hz), 2.90 (s, 3H, O-CH3), 2.26 (t, 2H, N-CH2, J 7.2), 2.12 (m, 2H, N-CH2, J 7.2 

Hz & J 6.8 Hz), 1.90 (m, 2H, N-CH2), 1.12 (m, 2H, R-CH2R J 6.8 Hz); 13C-NMR in CDCl3 

(100 MHz) δ= 171.48, 157.42, 143.70, 130.10, 128.55, 114.21, 113.17, 78.01, 65.02, 57.40, 

54.43, 26.49, 24.54. 

2.2. Evaluation of antibacterial activity. 

The in-vitro antibacterial screening of piperidine derivatives 1 and 2 were tested using 

two bacteria, namely Escherichia coli and Staphylococcus aureus, using the disc diffusion 

method. The disc diffusion method was performed with Whatman No.1 filter paper making 

discs measuring in 6 mm diameter. The compounds 1-2 and standard compounds were 

dissolved using ethanol with a concentration of 10 mg/mL. The aliquots of 10 µL and 20 µL 

of the sample and standard solutions were added out to the discs, each in triplicate. The paper 

discs impregnated with the aliquots of 10 µL and 20 µL of the sample was transferred to a petri 

dish where the bacteria was cultivated. Sampling Petri dish was poured with a 20 mL Mueller-

Hinton agar medium with 0.1 mL of the corresponding microorganism, which was spread 

through glass rod. Then the petri dish was incubated, keeping temperature 37 °C, for 24 h. The 

antibacterial activity was calculated based on measuring the area of inhibition zone in diameter. 

All these tests were carried out in triplicate, and the mean of inhibition zone (dm), was 

calculated and presented as mean ± standard deviation. The results obtained were compared 

with commercially available drug chloramphenicol as standard. 

2.2.1. Preparation of media. 

The in-vitro antibacterial screening of newly synthesized compounds 1 and 2 were 

tested against two bacterial species, namely Escherichia coli and Staphylococcus aureus, using 

the disc diffusion method.[55] Mueller-Hinton agar (MHA) was used as a medium to study 

biological assay, which was made by dissolving 3.8 g MHA and 100 mL distilled water. In 

order to make a homogeneous solution, the medium was heated gently with frequent agitation 
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and then boiled for one minute. Later, the medium was autoclaved, keeping temperature 121 
oC, 15 min., which was further cooled to 25 oC. The pH of the medium was maintained at 7.1. 

3. Results and Discussion 

3.1. Synthesis of designed piperidine derivatives. 

Both piperidine and cinnamic acid esters are associated with important biological 

properties. In the literature, there is no report to combine these two molecules as lead structures. 

Therefore we have chosen to synthesize new derivatives with a combination of piperidine and 

cinnamic acid esters based on the fact that they are highly bioactive substances. The 

retrosynthetic analysis of the newly designed piperidine derivatives 1 and 2 is represented in 

Scheme 1. In order to find the shortest synthetic route, the first disconnection could be possible 

between C-N bond of target compounds (1 and 2), which resulted in the two fragments 3 and 

4. These two intermediate 3 and 4 possibly join through nucleophilic substitution reaction to 

give target 1. 

Further, the intermediate 3 envisaged synthesizing by employing O-alkylation reaction 

of 1,2-dibromoethane (5) with α-β-unsaturated ester 6. The α-β-unsaturated ester (6) could be 

further obtained from 4-hydroxylbenzaldehyde 8 via Wittig olefination reaction (7). While the 

target compound 2 could be achieved by a transesterification reaction of 1 with methanol. 

 

 

Scheme 1. Retrosynthetic analysis of designed piperidine derivatives. 

The synthesis of desired piperidine compounds (1 and 2) was achieved by employing 

Wittig olefination, O-alkylation, and nucleophilic displacement reactions outlined in Scheme 

2. The α-β unsaturated ester 6 was obtained by employing Wittig olefination of 4-hydroxy 

benzaldehyde (8) and phosphonate ester (7) in aqueous conditions at 90 oC. Obtained α-β 

unsaturated ester 6 was then reacted with potassium hydroxide in DMF followed by alkylating 

agent 1,2-dibromoethane (5), which resulted in the formation of O-alkylated-α-β unsaturated 

ester in good yield. Finally, the introduction of piperidine moiety was accomplished by 

subjecting a nucleophilic substitution reaction. Thus, the reaction of O-alkylated-α-β 

unsaturated 3 with piperidine (4) under alkaline conditions K2CO3 and KI as a catalyst in the 

presence of aqueous ethanol produce the compound1 in good yield. 
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Scheme 2. Synthesis of (E)-ethyl 3-(p-(2-(piperidin-1-yl)ethoxy)phenyl)acrylate (1). 

In order to synthesize compound 2 we utilized a transesterification strategy (Scheme 

3). Therefore, compound 1 was treated with carbonate and methanol at ambient conditions to 

give the desired compound 2. 

 

 

 

Scheme 3. Synthesis of (E)-methyl 3-(p-(2-(piperidin-1-yl) ethoxy)-phenyl)-acrylate (2). 

3.2. In-vitro antibacterial study.  

 The antibacterial activities of the target products (1-2) were tested against pathogenic 

bacteria strains by using the disc diffusion method. The newly synthesized compounds were 

examined, against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-

negative) bacterial species grown in Mueller-Hinton agar (MHA). The results were compared 

with the commercially available antibiotic drug chloramphenicol as a reference. The test results 

obtained for the synthesized compounds 1 and 2, which was exposed to bacterias species 

Staphylococcus aureus and Escherichia coli, are presented in Table 1. 

Table 1. Antibacterial activities of piperidine derived analogs .a 

Antibacterial activities (Inhibition zone) 

Samples Microorganism Inhibition zone in mm 

Concentration in 10mg/ml 

  10 µL 20 µL 

Compound 1 Escherichia coli 6± 0.82 9± 1.41 

Staphylococcus aureus 17± 1.63 22± 4.32 

Compound 2 Escherichia coli 8± 0.82 12± 0 

Staphylococcus aureus 18± 2.94 24± 3.26 

Ethanol Escherichia coli -- -- 

Staphylococcus aureus -- -- 

Chloramphenicol Escherichia coli 28± 2.16 31± 3.56 

Staphylococcus aureus 19±  1.63 23± 2.45 
a Procedure for sample preparation is presented in the materials and methods section. 

From Table 1, it was observed that piperidine derivatives were active against 

Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. From 

the inhibition data of synthesized compounds, compound 2 was more active than the 

corresponding analogs 1. Additionally, compound 2 showed good activity with respect to the 

commercially available standard drug chloramphenicol against gram-positive bacteria 

(Staphylococcus aureus). This activity resulted from the decrease of the hydrocarbon chain of 

the ester part. Compounds 1 and 2 were active against E. coli, gram-negative bacteria as 

compared with standard drug chloramphenicol. 
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4. Conclusions 

 We have described the synthesis of new compounds namely (E)-ethyl 3-(p-(2-

(piperidin-1-yl)ethoxy)phenyl)acrylate (1) and (E)-methyl 3-(p-(2-(piperidin-1-

yl)ethoxy)phenyl)-acrylate (2) employing simple reaction conditions for example Wittig 

olefination, O-alkylation and nucleophilic displacement reaction. Furthermore, the synthesized 

compounds (1 and 2) were evaluated for their antibacterial activity using the disc diffusion 

method. The compounds 1 and 2 have been investigated employing Staphylococcus aureus 

(gram-positive) and Escherichia coli (gram-negative) bacteria, respectively. Interestingly, 

compound 1 showed moderate antibacterial activity, while compounds 2 displayed excellent 

antibacterial activity as compared with standard drugs. 
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