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Abstract: Recently, there is an increasing demand for water due to rapid industrialization and a growing 

human population. There is a too shortage of available water sources; thus, one option for increasing 

existing resources is the treatment and reuse of wastewaters. Vinasse poses a long-term risk to public 

health because of its toxic nature and a huge amount. This study investigates a new prospect of a 

combination of persulfate (PS)/ peroxymonosulfate (PMS) (activated by Ion (II)) and hydrogen 

peroxide (H2O2) for reducing total organic carbon (TOC) from vinasse and reuse of treated vinasse as 

well. Behaviors of PS/Fe(II)/ H2O2 and PMS/ Fe(II)/ H2O2 on total organic carbon (TOC) removal are 

explored by evaluating various effects, including H2O2 dosage, Fe (II) dosage, pH and reaction time. 

Hydrogen peroxide was used as an oxidation agent to improve the degradation of the organic matter of 

vinasse. The addition of H2O2 to PS/ Fe (II) or PMS/ Fe (II) generates highly oxidizing radicals, which 

enhanced, significantly, the removal of TOC. Both of PS/ Fe (II)/ H2O2 and PMS/ Fe (II)/ H2O2 systems 

favored neutral pH in removing the organic matter, and they were very active in the first 5 minutes. At 

the optimum conditions, about 86 % and 83% of TOC removal were achieved by PS/ Fe (II)/ H2O2 and 

PMS/ Fe (II)/ H2O2, respectively. Therefore, a combination of PS/PMS activated by Fe (II) with H2O2 

can be considered as a capable technique for sugarcane vinasse treatment and allowing to reuse the 

effluents in many applications. 
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1. Introduction 

Ethanol distillery wastewater is rated as one of the 17 most polluting industries [1], 

among them vinasse is considered to be the most hazardous distilleries due to its acidic nature, 

dark brown liquid with high biological oxygen demand (BOD), and chemical oxygen demand 

(COD). A considerable amount of vinasse is produced during ethanol manufacturing. 

Discharging of such large quantities of pollutants affects the environment in a harmful manner 

[2]. 

Recently, PS and PMS gained more attention and have been broadly applied to the 

degradation of organic compounds [3-5]. PS and PMS can be activated by heat, transition 

metal, electrolysis (EC) and UV to generate sulfate radical (SO4•−) [6-8]. Sulfate radical is a 
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strong oxidative character with a redox potential of (2.5–3.1 V), and it has high efficiency of 

mineralization of organic pollutants [9].  

A combination of PS / PMS with other substances in order to enhance the removal of 

contaminants has been reported several times. For example, using activated carbon as a 

persulfate/ peroxymonosulfate activator was reported by [10-12]. A combination of ozone with 

persulfate has been used to enhance the biodegradability of stabilized leachate [13]. 

Hydrogen peroxide has been used to reduce COD and BOD in a wide variety of 

industrial and domestic wastewater for many years [14]. Due to oxidation potential (Eo) of 

1.76 V, H2O2 is capable of oxidizing different organic contaminants and producing 

environmentally safe products, such as H2O, O2, and OH- [15]. Generation of hydroxyl radical 

(HO.) from H2O2 in water and wastewater treatment systems can be achieved by using various 

activation techniques such as Fenton’s reaction and UV, [16, 17]. Although the H2O2 reagent 

can act as a direct oxidant, its performance in the degradation of high organic content is limited 

[18]. According to many reports, persulfate oxidation in combination with H2O2 is more 

efficient for remediation of organic contaminants [19, 20]. Some of the studies have proposed 

that H2O2 may act as an activator of persulfate. [19]. So far, the role of H2O2 in persulfate 

activation is still vague and poorly demonstrated. In a specific manner, it is not well proved 

whether H2O2 certainly activate persulfate or indirectly involve in degradation reactions, such 

as Fenton-like reaction and consequently improve the degradation efficiency of organic 

contaminants. 

Vinasse contains recalcitrant organic components, such as melanoidins and phenolic 

compounds [2]. A combination of PS/ H2O2/Fe (II) or PMS/ H2O2/Fe (II) is expecting to 

generate high amounts of SO.-4 and OH·. The resulting high amounts of free radicals are 

expected to exhibit relatively high reactivity and became capable of degrading recalcitrant 

organic compounds. 

In past years, countries and international organizations have designed strategies or laws 

in order to regulate the reuse of treated wastewaters. These laws or guidelines establish the 

maximum concentrations of contaminants permitted, taking into account the type of water 

reuse [21]. Among these countries, Sudan established standard characteristics of the reused 

treated wastewaters. The reuse of treated wastewater depends on the type of wastewater, the 

characterization of treated wastewater, and the purposes of using. The treated wastewater can 

be reused for many purposes such as forestry, ornamental, garden, other green spaces, and 

cleaning of equipment in agricultural or industrial. 

Our previous study [22] has demonstrated that only 49% and 70% of TOC were 

removed from vinasse using PS/ Fe (II) and PMS/ Fe (II), respectively. However, the TOC 

removal extent was inconvenient, suggesting that proper activation of PS and PMS is still 

required. Therefore, the objective of this study is to propose a new approach of treatment of 

vinasse by a combination of PS/PMS (activated by ferrous ion) with H2O2 and reuse the treated 

vinasse according to Sudanese legislation for wastewater reuse. 

2. Materials and Methods 

2.1. Chemicals and reagents. 

 Hydrogen peroxide H₂O₂ (30%) was obtained from Suprasolv (Germany). Potassium 

iodide (99%), H2SO4 (98 %), and FeCl3 were obtained from Merck (Germany). FeSO4.7H2O 

(99.5 %), Potassium persulfate (PS) (99 %), and potassium peroxymonosulfate (PMS) were 
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purchased from Acros Organics (USA). Sodium hydroxide was obtained from Fluka 

(Germany). Ammonium molybdate [(NH4)6Mo7O24 • 4H2O] was obtained from Sigma-Aldrich 

(USA). Soluble starch was purchased from Sigma-Aldrich (USA). Sodium thiosulfate 

(Na2S2O3 • 5H2O) was purchased from Sigma-Aldrich (Germany). All reagents were of 

analytical grade, and only deionized water was used. Ultrapure water was used for the 

preparation of all aqueous solutions. 

2.2. Characterization of Vinasse. 

          The vinasse used in this study was obtained from an ethanol distillery located at White 

Nile State (Sudan). Vinasse was collected directly after the distillation. Vinasse was, initially, 

treated by the coagulation-flocculation process at the optimum condition and then treated by 

PS- Fe (II) or PMS- Fe (II) system as described previously by [22]. The characteristic 

parameters of raw vinasse and pretreated vinasse are shown in Table 1. The main 

physicochemical parameters of vinasse were determined according to [23]. The concentrations 

of H2O2 were determined according to the method described by Solvay Chemicals [24].  

2.3. Experimental procedures. 

       All experiments were performed in a batch mode. All tests were carried out at room 

temperature in the oxidation reactor. All chemicals and reagents used in the experiments were 

of analytical grade. Aqueous solutions were prepared in the deionized water (Elga, USA). In 

order to determine the optimum conditions, we carried out four-stage of experiments as follow: 

a) Optimum dosage of PS/Fe (II) or PMS/Fe (II) [22] and different dosages of H2O2 

were added into the oxidation reactor(50-mL glass vials) which contained raw 

vinasse before the run. The H2O2 reagent was added gradually to achieve the 

optimum dosage for the treatment of vinasse. 

b) Optimum dosage of PS/Fe (II) or PMS/Fe (II) and H2O2 (obtained from previous 

oxidation step) were added to the reactor. Then, the immediately different dosage 

of Fe (II) was added to the mixture to achieve the optimum molar ratio of H2O2/Fe 

(II). 

c) Under optimum conditions of three previous oxidation steps, pH values of 3, 5, 

7, and 9 were examined and assessed. The pH value of vinasse was adjusted 

gradually using sulfuric acid and sodium hydroxide. All runs in steps 1, 2, and 3 

were performed for 4 hr. of oxidation. 

d) The reaction time was studied from 0.083 hr. to 24 hr. at pH 7. 

Table 1. Characteristics of raw and pretreated vinasse. 

Parameters Raw vinasse Pretreated vinasse 

pH 

Color 

TS 

TDS 

COD 

BOD 

TOC 

TN 

3.5 

Dark brown 

111mg/L 

63.8mg/L 

126g/L 

69.0g/L 

48.000mg/L 

8.31mg/L 

- 

Colorless 

- 

- 

- 

- 

134.5mg/L 

- 

           The orbital shaker was used at 150 rpm in all experiments runs. All samples were 

filtered through a syringe filter with a pore size of 0.45 µm prior to analysis. The extent of 
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organic matter in vinasse was evaluated by TOC analyses. TOC analyzer (Shimadzu TOC-L) 

was used to measure TOC concentration in order to monitor the degradation efficiency of 

organic matter. All samples were immediately analyzed without quenching. The effect of H2O2 

dosage, amount of Fe (II), pH, and reaction time was studied in detail. All experiments were 

conducted in triplicates. 

3. Results and Discussion 

3.1. Effect of H2O2 concentration. 

To reveal the performance of H2O2 in enhancing TOC removal from vinasse, the 

concentration of H2O2  was varied from 1.44 mM to 5.76 mM and from 0.36 mM to 1.44 mM 

in PS/Fe (II) and PMS/ Fe(II) systems respectively. As shown in figure 1(a and b), the addition 

of H2O2 to the PS/ Fe (II) or PMS/ Fe (II) system improved the organic degradation. In PS/ Fe 

(II), the addition of 1.44 mM of H2O2 removed 49% of TOC. Increasing the dosage of H2O2 

up to 4.32 mM, provides the greatest active sites to produce higher amounts of sulfate radicals, 

and consequently gives better degradation efficiency (60.27%.). Equations (1) and (2) 

demonstrate that sulfate radicals were generated in ferrous ion activated systems, and hydroxyl 

radicals which are produced from the decomposition of H2O2 increases the concentration of 

sulfate radicals [25], and accordingly enhancement of TOC removal. 

S2O8
2- + Fe2+ → SO4

•− + Fe3+ + SO4
2-           (1) 

SO4
2- + OH. → SO4

•− + OH-                                   (2) 

 

Crimi and Taylor, [26] described the mechanism of the cooperative reaction between 

PS and H2O2, which is the decomposition of H2O2 to form OH·, followed by the activation of 

the PS to produce SO4
•−. In addition, many studies demonstrated that the addition of H2O2 to 

the PS, can improve the pollutant removal efficiency [27, 28]. 

In PMS/ Fe (II) system, TOC removal was significantly increased by addition (0.36 

mM) of H2O2 Figure 1b. The increased degradation efficiency is attributed to the producing 

sulfate radical equation (3). As well as hydroxyl radical, which is formed via decomposition of 

H2O2. 

HSO5
- + Fe2+ → SO4

•−+ Fe3++ OH-                  (3) 

  

Figure 1. Effect of a: H2O2 dosage in PS/ Fe(II)/ H2O2 system: concentration of PS = 1.44 mM; concentration of 

Fe (II) = 0.72 mM; pH = 7; reaction time= 4 h b: H2O2 dosage in PMS/ Fe(II)/ H2O2 system: concentration of 

PMS = 0.36 mM; concentration of Fe(II) = 0.9 mM; pH = 7; reaction time= 4 h. 
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            Moreover, both sulfate and hydroxyl radicals may have played an important role in 

enhancing TOC removal. Further addition of H2O2 demonstrated slight enhancement of TOC 

removal, from 77.93 to 83.35%. This may be attributed to the very strong and rapid reactions 

caused by the high oxidant dosages, which may inhibit the generation of hydroxyl radicals and 

consequently slow down the rate of pollutant degradation. Based on the results and the 

literature, the mechanism of PS/Fe (II)/ H2O2 and PMS/Fe(II)/ H2O2 processes were illustrated 

in Figure 2. 

 
Figure 2. Proposed mechanism of PS/Fe (II)/ H2O2 and PMS/Fe (II)/ H2O2 processes. 

 

  3.2. Effect of H2O2/Fe (II) molar ratio. 

             To assess the effect of Fe(II) concentration, fixed concentrations of H2O2 (2.88 mM and 

0.72 mM) were added to PS/H2O2 and PMS/H2O2 systems respectively, whereas, the 

concentration of Fe (II) was varied from 2.88 to 8.64 mM and 0.72 to 2.16 mM for PS/H2O2 

and PMS/H2O2 respectively. Figure 3a presents TOC removal versus H2O2/Fe (II) molar ratio 

in PS/ H2O2 or PMS/H2O2 systems. Increasing Fe (II) in PS/H2O2 system leads to increase TOC 

removal, most likely, the added of favorable concentration of Fe (II), resulting in producing a 

high amount of HO. radical. It may play a significant role in producing more SO4
•− as well [25]. 

On the other hand, both HO. and SO4
•− might concurrently react with organic pollutants and 

enhanced the degradation performance.  

  Our result is in good agreement with Lin et al., [29], who proved that both sulfate and 

hydroxide radicals could work simultaneously for pollutant removal. However, this 

phenomenon needs further studies to clarify it. 

  The performance of TOC removal is slightly decreased at a further increase of Fe (II) 

dosage. This could be ascribed to an excessive amount of Fe2+, which acts as an intrinsic 

scavenger of radicals due to the forming of Fe3+ as indicated by equation 4 [30].  

Fe2+ + OH· → Fe3+ + OH−         (4) 

  While in PMS/H2O2 system, the addition of Fe (II) leads to a decrease of TOC removal. 

This reduction is properly due to the form of some representative reactions expected during the 

oxidation are as following equations 4, 5, and 6 [31].   

RH + HO. → R. + H2O           (5) 

R. + Fe3+ → R+ + Fe2+           (6) 

Fe2+ + HO → Fe3+ + OH-      (7) 

Where RH = organic compound 
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Figure 3. Effect of a;  Fe (II) concentration in PS/ Fe(II)/ H2O2 system, conditions: concentration of H2O2= 2.88 

mM, pH =7 and reaction time =4 h; PMS/ Fe(II)/ H2O2 system: concentration of H2O2= 0.72 mM, pH =7 and 

reaction time =4 h; b; pH in PS/Fe(II)/ H2O2 system, concentration of H2O2=2.88 mM, Fe(II) = mM 5.76 and 

reaction time =4h, in PMS/ Fe(II)/ H2O2 system conditions: concentration of H2O2= 0.72 mM, Fe(II)= 0.72 and 

reaction time =4h. 

  3.3. The effect of pH.  

  The effect of pH on TOC removal was examined in both acidic and basic ranges over 

4 hours. Therefore, values of 3, 5, 7, and 9 were taken. The ratios of the H2O2 to Fe (II) ratio 

were fixed in 1:2 and 1:1 for PS/ H2O2 and PMS/ H2O2 systems, respectively. As shown in 

figure 3b, maximum removal of TOC 86.4% for PS/ H2O2 and 62.2% for PMS/ H2O2 were 

achieved at pH 7. Most researchers reported that the PS, PMS, and H2O2 achieve the highest 

efficiency of organic pollutants degradation at low pH, due to the formation of SO4
•−and HO. 

radicals through acid-catalysis reaction [27,32]. In contrast to these reports, the improvement 

of TOC removal in a neutral medium may be explained by the formation of some complexes 

due to some reactions between Fe (II) and soluble compounds in the vinasse, such as 

polyaromatic and polyphenols [33]. These complexes prevent the oxidation of Fe (II) to Fe 

(III) and consequently enhance the TOC removal. 

 

Figure 4. The effect of reaction time in PS/ Fe(II)/ H2O2 system, concentration of H2O2= 2.88, Fe(II) = 5.76 and 

pH =7, in PMS/ Fe(II)/ H2O2 system conditions: concentration of H2O2= 0.72mM,Fe(II)= 1.44mM 0.72 and pH 

=7. 

  3.4. The effect of reaction time. 

          To observe the effect of reaction time, the oxidation experiments were carried out for 

0.083, 0.5, 4, 8, and 24 hours on the pretreated vinasse. The results indicated that the TOC 
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removal increased significantly for the first 5 min for both PS/Fe (II)/H2O2 and PMS/ Fe 

(II)/H2O2 systems, as indicated in figure 4. When the reaction times increased from 5 min to 4 

h TOC removal increased significantly, from 50 to 86.42% and 54.6 to 62.2 % for PS/ Fe 

(II)/H2O2 and PMS/ Fe (II)/H2O2 systems respectively. After 24 h of reaction time, the TOC 

removal decrease to 64.7 and 53.53% in both systems, respectively. This might be due to the 

reforming of some of the organic compounds. 

4. Conclusions 

 This study has focused on the degradation of the organic matter from vinasse through 

a combination of PS/PMS mediated activation Fe (II) with H2O2 and reused the treated vinasse 

for the first time. The effects of H2O2, a further dosage of Fe (II), pH, and reaction time were 

studied. At higher H2O2 dosage, a significant amount of radicals were produced, leading to a 

removal of 83.35% of TOC in PMS/ Fe (II)/ H2O2 system. In PS/ Fe (II)/ H2O2 system, at 

optimum experimental conditions of H2O2 and Fe (II), 86% of TOC removal was achieved. 

Summing up the results, it can be concluded that PS/H2O2/Fe (II) and PMS/H2O2/Fe (II) were 

capable of mineralizing the recalcitrant organic compounds in vinasse and allowing reuse the 

effluents in irrigation of plenteous trees and green areas, side of roads outside cities according 

to Sudanese legislation for wastewater reuse.  
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