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Abstract: Real-time drilling optimization refers to operations and equipment that could minimize total 

drilling costs. Drilling speed that is called the rate of penetration (ROP) in the drilling industry can be 

used as a good indicator for the performance evaluation of the drilling operation. Real-time control for 

drilling ROP is limited to just a few controllable parameters during drilling operations, that is, WOB, 

RPM, and hydraulics. These parameters can be controlled from the surface by the driller in real-time. 

In the traditional methods of ROP modeling, an inflexible equation could be developed between some 

important effective drilling parameters such as weight on the bit or bit rotational speed and drilling rate 

of penetration. These models had a low degree of accuracy, and they were not applicable in the newly 

drilled wells even in the same field with an acceptable degree of accuracy. In this study, a new real-

time continues-learning method for ROP modeling was developed. In this method, as the drilling 

operation gets starts and the drilling data reaches the surface, ROP modeling starts, and as the drilling 

continues, the model accuracy increases. For the method evaluation, 5 famous existing analytical 

drilling model was selected. Also, a new ROP model was developed in this work. All of these 6 models 

contain some constant coefficients that were obtained using a new machine learning method named 

Rain Optimization Algorithm. In the end, the accuracy of the models was compared. Results show that 

the presented method for ROP modeling is a very flexible method with a high degree of accuracy that 

can be easily used in any formation. Also, the newly presented model could increase the accuracy of 

ROP prediction from 75% to 81%. 

Keywords: Rate of penetration; Real-Time; Continues learning; ROP modeling; Rain Optimization 

Algorithm. 
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1. Introduction 

Drilling optimization refers to operations and equipment that could minimize total 

drilling costs. Drilling speed that is called the rate of penetration (ROP) in the drilling industry 

can be used as a good indicator for the performance evaluation of the drilling operation. 

Optimizing ROP to reduce drilling costs in oil and gas development wells is the permanent 

objective of drilling researchers [1-6]. Exact Prediction of ROP can lead to the improvement 

of drilling operation efficiency, causing drilling time and cost reduction [7]. Also, having a 

correct forecast of drilling rate and an exact ROP model can help to use a precise optimization 

algorithm leading to drilling parameter optimization and increasing drilling operation 

efficiency. An important point that should be noticed is that drilling speed increase might not 

cause drilling efficiency increase in every situation. However, it might cause some drilling 
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problems such as hole cleaning problems, wellbore instability or bit failure, causing drilling 

time and drilling cost to growth [8]. 

There are lots of direct and indirect equations for drilling rate prediction that relate some 

of the drilling parameters to the rate of penetration. Some of these equations use parameters 

that are not easy to obtain without performing complicated experiments or using uncertain 

empirical equations  [9]. Some of these equations and methods of utilizing them would be 

presented in the next section.    

Many parameters affect the rate of penetrations, some of them are controllable during 

drilling operations, and some of them are uncontrollable. Sikes (1936) determined that exerted 

weight on the bit (WOB), the rotational speed of bit (RPM), the diameter of the hole that is 

being drilled (𝑑ℎ), hole cleaning and hydraulics, bit type, and formation properties are the most 

important parameters affecting drilling ROP. Some of these parameters are a function of some 

other parameters [10]. For example, when a PDC bit is used for drilling a hole, PDC cutters 

number, side rake angle of the cutters, back rake angle of the cutters, size of cutters and 

arrangement of the cutters on the bit can influence on the drilling ROP strongly [11]. In the 

same manner, drilling fluid density and mud rheological properties are some of the important 

properties of drilling fluids' effect on ROP when talking about hydraulics  [12,13]. Some of 

these parameters, such as bit type, drill string design, or rheological properties of drilling fluid, 

are determined before starting to drill a hole and are constant while drilling. These parameters 

are described as uncontrollable drilling parameters. On the other hand, some of the other 

drilling parameters such as WOB, RPM, and pump flow rate can be changed in real-time while 

drilling in the surface by the driller, which are called controllable parameters [14]. 

Therefor real-time control for drilling ROP is limited to just a few controllable 

parameters during drilling operations, that is, WOB, RPM, and hydraulics (usually flow rate of 

the pump). These parameters can be controlled from the surface by the driller in real-time. 

Several investigators worked on the effect of WOB, N, and q on the drilling rate of 

penetration [15-17]. Dupriest et al. (2005) stated that the effect of WOB on the ROP could be 

considered in three regions [17]. At low WOBs, the bit is not engaged in the formation properly. 

In this region increasing, WOB has a minimal effect on ROP since there is no enough pressure 

on the bit for drilling to start. When WOB gets to a certain value, the intermediate region starts. 

In this section, ROP increases linearly with respect to WOB, and this trend continues until 

getting to the maximum point, which is called the founder point. This point is the optimum 

WOB for the drilling. After this point, increasing weight on the bit has a minimal effect on 

ROP increase. Even ROP can starts to decrease because of hole cleaning problems, drill pipe 

vibration or bit balling as it was considered by Gandelman (2012) [18]. 

Bourgoyne et al. (1986), stated that ROP has a linear relationship with the bit rotational 

speed (RPM) [16]. At the high RPMs, this relation deviates from the linearity because of drill 

pipe vibration or hole cleaning problems, as was stated by Gandelman (2012) [18]. 

Effect of pump flow rate (q) on the ROP can be considered from two aspects [19]: Pump 

flow rate increase can elevate friction pressure drop in the annulus causing drilling fluid 

pressure increase in the bottom of the hole, especially on the cutting at the bottom of the hole. 

This issue can hold the cutting on the bottom of the hole, causing chips to hold down 

phenomena and ROP decrease. On the other hand, the pump flow rate increase can raise the 

pressure drop across the bit, causing better bottom hole cleaning. From this point of view, 

increasing the pump flow rate would increase ROP. 
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It should be noticed that modeling drilling speed is a difficult problem since lots of 

parameters affect ROP, and some of these parameters are not easy to obtain. Many attempts 

had been made to develop an ROP model from available data of previously drilled wells. These 

models tried to be used in the new adjacent wells, but results were not satisfactory. In this work, 

an ROP model would be obtained from real-time drilling data, and this model would be used 

for optimizing the ROP in the remained parts of the same well. While the drilling is in progress, 

more data would be obtained, and the model would be updated. Once the drilled segment is 

longer the predicted model would be more accurate. 

2. Materials and Methods 

2.1. ROP models. 

In the 1950s and 1960s, many attempts had done to develop a relationship between 

WOB, RPM, and ROP. These equations that are called R-W-N equations (representing ROP, 

WOB, and RPM) was developed regardless of the hole cleaning conditions, vibration, and 

depth of the hole. In fact, the researchers were seeking a universal equation for every drilling 

conditions. Some of these equations are given in Table 1 where W determines weight on bit, N 

represents bit rotational speed, D is the bit diameter, and R shows the rate of penetration. 

Table 1. Some of the important R-W-N equations developed in the 1940 to 1960 decades [12]. 

Developer R-W-N equation 

van Lingen  𝑅 = 𝑊1.25𝑁0.8 

Gatlin 𝑅 = 𝑎 + 𝑏𝑊𝑁𝑐            𝑐 < 1 

Eckel , Bielstein and Cannon  𝑅 = 𝑎𝑊𝑁0.5 

Wardroup and Cannon  𝑅 = 𝑎𝑊𝑁0.4 

Moore  𝑅 = 𝑎𝑊𝑁 

Cunningham  
𝑅 =

𝑎𝑊𝑁𝑏

𝐷
                  𝑏 < 1 

Brantley  𝑅 = 𝑎 + 𝑏𝑊𝑁                 

 

Bingham (1964) significantly changed the path of R-W-N equations by adding an 

imperial exponent to the WOB [20]. He also could increase the applicability of his equation by 

confining that to a special formation and adding coefficient ‘a’ as formation drillability to it. 

𝑅 = 𝑎 (
𝑊

𝐷
)

𝑏
𝑁             (1) 

That a and b in this equation are dimensionless coefficients determined separately for 

each formation, W determines weight on the bit (lb), N represents bit rotational speed in RPM, 

D is the bit diameter (in), and R shows the rate of penetration. This model would be called BM 

(an abbreviation of the Bingham model) in this study. 

The effect of hydraulics on the drilling rate of penetration was first entered into the R-

W-N equations by Eckel (1967) [13]. He noticed that the nozzle velocity and flow rate had an 

important effect on ROP as follow: 

𝑅 = 𝑎1𝑤𝑎2𝑁𝑎3(
𝑎4𝑞𝜌

𝑑𝑛𝜇
)0.5                                      2 <

𝑎4𝑞𝜌

𝑑𝑛𝜇
< 100         (2) 

Where in this equation 𝑎1to 𝑎5 are dimensionless coefficients determined separately for each 

formation, q is the flow rate in GPM, 𝜌 is the specific gravity of drilling fluid, 𝑑𝑛 is nozzle 

diameter in in., and 𝜇 is fluid viscosity in cp. This model would be called EM (an abbreviation 

of the Eckel model) in this study. 
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Bourgoyne and Young (1986) developed the most comprehensive ROP equation until 

that time [16]. They stated that 8 factors are effective in drilling speed as follow:  

𝑅𝑂𝑃 = 𝑓1𝑓2𝑓3𝑓4𝑓5𝑓6𝑓7𝑓8 (3) 

Drilling parameter items considered to have an effect on the rate of penetration are as 

summarized below: 

𝑓1 = 𝑒2.303𝑎1 = 𝐾 (4) 

𝑓2 = 𝑒2.303𝑎2(10000−𝑇𝑉𝐷) (5) 

𝑓3 = 𝑒2.303𝑎3𝑇𝑉𝐷0.69(𝑔𝑝−9.0)
 (6) 

𝑓4 = 𝑒2.303𝑎4𝑇𝑉𝐷(𝑔𝑝−𝜌𝑐) (7) 

𝑓5 = [

(
𝑤

𝑑𝑏
) − (

𝑤

𝑑𝑏
)

𝑡

4 − (
𝑤

𝑑𝑏
)

𝑡

] 

 (8) 

𝑓6 = (
𝑁

60
)𝑎6 

(9) 

𝑓7 = 𝑒−𝑎7ℎ (10) 

𝑓8 = (
𝐹𝑗

1000
)𝑎8 

(11) 

In these equations, 

𝑇𝑉𝐷 = true vertical depth, ft 

𝑔𝑝 = pore pressure gradient, lbm/gal 

𝜌𝑐 = equivalent circulating density, ppg 

(
𝑤

𝑑𝑏
)

𝑡
 = threshold bit weight per inch of bit, 1000lbf/in 

ℎ = fractional tooth dullness 

𝐹𝑗 = hydraulic impact force beneath the bit, lbf 

𝑎1 𝑡𝑜 𝑎8 = constants that must be chosen based on local drilling conditions. 

In Equation 3, 𝑓1 is representative of formation strength; 𝑓2shows the effect of depth 

and it is normalized for the depth of 10000 ft; 𝑓3determines the effect of pore pressure 

normalized to pore pressure gradient of 9 ppg/ft; 𝑓4displays the effect of bottom hole 

differential pressure; 𝑓5 demonstrates the effect of weight on bit, normalized to 4000 lbs; 𝑓6 

illustrates the effect of bit rotary speed normalized to 60 RPM; 𝑓7shows the effect of bit tooth 

wear and finally 𝑓8determines the effect of hydraulics using impact force effect. This model 

would be called BYM (an abbreviation of the Bourgoyne and Young model) in this study. 

In equation 11, the impact force can be calculated as follow: 

𝐹𝑗 = 0.000518𝜌𝑞𝑣𝑛           (12) 

𝑣𝑛 = 0.3208
𝑞

𝑇𝐹𝐴
           (13) 

By substituting equation 13 to equation 12 it can be concluded that 𝐹𝑗 ∝ 𝑞2. Also, 

Bourgoyne and Young (1986) stated that it is possible to use hydraulic horsepower (HHP) 

instead of impact force to consider the effect of hydraulics in equation 3 as follow [16]: 

𝑓8 = (𝐻𝑆𝐼)𝑎8           (14) 

𝐻𝑆𝐼 =
𝐻𝐻𝑃

𝐴𝑏
=

∆𝑝𝑏𝑞

1714

𝜋𝑑𝑏
2

4

          (15) 

∆𝑝𝑏 =
𝜌𝑞2

10861𝑇𝐹𝐴2         (16) 

https://doi.org/10.33263/BRIAC111.75897604
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC111.75897604  

https://biointerfaceresearch.com/ 7593 

Where in the Equations 14 to 16 HSI represents of hydraulic horsepower drop related 

to every square inch of bit, ∆𝑝𝑏 is the pressure drop in the bit in psi, 𝑑𝑏is bit diameter (in), and 

𝑇𝐹𝐴 is the total flow area of the bit nozzles (𝑖𝑛2). By substituting equation 15 to equation 16, 

it can be concluded that 𝐻𝑆𝐼 ∝ 𝑞3. 

Some of the parameters in equation 3, when this equation is used for a special hole with 

a specific formation, are constant [21]. Some of these parameters are bit diameter, nozzle 

diameter, apparent viscosity, pore pressure gradient, and mud weight. Therefore when this 

equation is used as a real-time optimization equation for drilling a specific formation, factors 

𝑓1, 𝑓3, 𝑓4 and 𝑓8 are nearly constant, and they can be considered as the constant multipliers in 

Bourgoyne and Young model (BYM). 

𝑎 = 𝑓1𝑓3𝑓4𝑓8              (17) 

Substituting  Equation 17 to equation 3, and supposing threshold WOB to be zero 

yields: 

𝑅 = 𝑎 × 𝑒2.303𝑎2(10000−𝑇𝑉𝐷) × (
𝑤

4𝑑𝑏
)

𝑎5

× (
𝑁

60
)𝑎6 × (

𝐹𝑗

1000
)𝑎8        (18) 

Gray (2018) more simplified Equation 18 and presented the following equation as modified 

Bourgoyne and Young model (MBYM): 

𝑅 = 𝑎1𝑇𝑉𝐷𝑎2𝑊𝑎5𝑁𝑎6𝑞𝑎8               (19) 

2.2. Developing a new ROP model using the concept of MSE. 

Mechanical specific energy (MSE) is the amount of work done for the excavating unit 

volume of rock [22]. In rotary table drilling, work is done both by the piercing the bit, WOB 

(lb), and the exerted force while rotation of bit or torque, T (lb-ft). Teale (1965) calculated the 

MSE as follow [22]: 

𝑊𝑜𝑟𝑘 = 𝑊 × 𝑅 + 60 × 2𝜋𝑁 × 𝑇 (20) 

Where: 

N: rotation speed in rev/min 

W: the weight on the bit in lb  

T: the torque in lb-ft 

R: penetration rate in ft/hr 

Work: the work is done for removing the rock in lb-ft/hr 

Also, the volume of excavated rock in one hour is: 

𝑉 = 𝐴 × 𝑅 (21) 

Where A is the cross-section area of the hole in in2, and V is the volume of removed rock in 

one hour. So, the mechanical specific energy (in lb/in2) can be computed by dividing work by 

volume: 

𝑀𝑆𝐸 =
𝑊

𝐴
+

60 × 2𝜋𝑁 × 𝑇

𝐴 × 𝑅
 

(22) 

Cherif (2012) stated that each bit has a mechanical efficiency related to its cutter size 

and structure [22]. Including mechanical efficiency (𝐸𝑚) to the Teal’s equation, the mechanical 

specific energy can be expressed as: 

𝑀𝑆𝐸 =
𝐸𝑚. Work

𝑉
=

𝐸𝑚

𝐴
(W +

60 × 2𝜋 × 𝑁 × 𝑇

𝑅
) 

(23) 

Chen et al. (2014) stated that provided mechanical energy on the surface has a great 

difference with the mechanical energy received by the bit due to friction between pipes and 
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borehole, especially in directional and horizontal drilling [24]. So he formulated a relation 

between measured surface weight on bit and bottom hole weight on the bit:  

𝑊𝑏 = 𝑊. 𝑒−𝜇𝑠.𝛾𝑏 (24) 

 

𝑇 =
𝜇𝑏.𝐷𝑏.𝑊.𝑒−𝜇𝑠.𝛾𝑏

36
           (25) 

Therefore when torque data is available in vertical wells: 

MSE=
𝐸𝑚

𝐴
. (𝑊. 𝑒−𝜇𝑠.𝛾𝑏 +

10.47N.𝜇𝑏.𝐷𝑏.𝑊.𝑒−𝜇𝑠.𝛾𝑏

𝑅
)    (26) 

Where in this equation: 

Em: Mechanical efficiency of the bit 

𝛾𝑏: Bit sliding coefficient (between 0.3 and 0.85) 

𝜇𝑠: Drill string sliding coefficient (between 0.25 and 0.4)  

Letting  

𝑎1 = 𝜇𝑠. 𝛾𝑏 

𝑎2 = 10.47. 𝜇𝑏. 𝐷𝑏 

𝑎3 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝑢𝑛𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 

Equation 26 can be summarized as follow: 

𝑎3. 𝑀𝑆𝐸 =
𝐸𝑚.𝑊.𝑒−𝑎1

𝐴
(1 +

𝑎2.𝑁

𝑅
)       (27) 

Rearranging Equation 27 for ROP, yields: 

𝑅 =
𝑎2.𝑁.𝑊.𝑒−𝑎1

𝑎3.𝐴.𝑀𝑆𝐸

𝐸𝑚
−𝑊.𝑒−𝑎1

        (28) 

Dupriest et al. (2005) stated that Bits tend to transfer 30% to 40% of their input energy 

to the rock, even when operating at peak performance [17].  

Pessier (1992) mentioned that in the best situation, the minimum amount of MSE has a 

value of the order of confining compressive strength (CCS) of the rock. Therefore, in the most 

efficient situation, the minimum amount of MSE is equal to CCS, and just about 35% of the 

energy is transferred by the bit. This means that in Equation 28, CCS can be used instead of 

MSE [25]. Also, we can suppose the mechanical efficiency of the bit to be 0.35. The amount 

of CCS can be found from adjacent wells or can be calculated from the log or empirical 

equations. Therefore, Equation 28 can be rewritten as follow: 

𝑅 =
𝑎2𝑁.𝑇

𝑎3.𝐴.𝐶𝐶𝑆

0.35
−𝑊.𝑒−𝑎1

          (29) 

This model that is discussed by Mozzeni and Khamehchi (2019) would be call MKM1 

in this study [23]. 

2.3. New ROP model by including torque. 

In neither of the previous models for ROP, the parameter of torque is not available. 

Torque is a function of weight on bit, bit properties, and formation properties, and by entering 

it to the ROP model, all of these parameters would be included in the model. It is possible to 

use from the available torque data for developing or fitting a model, but the main problem is 

while using this model where the torque is not a controllable parameter. Torque is a function 

of WOB, bit properties, and formation properties. So it is not possible to adjust the torque 

exactly on an arbitrary value while drilling, but it is possible to adjust the WOB. On the other 

hand, the drilling rate has a high dependency on the torque, and it is hard to ignore such 

important data. 
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The proposed method for this problem is to predict the torque as a function of WOB 

using a search algorithm from the real-time drilling data. As it was proposed by Chen et al. 

(2014) torque is a function of WOB as follow [24]: 

𝑇 =
𝜇𝑏.𝐷𝑏.𝑊.𝑒−𝜇𝑠.𝛾𝑏

36
          (30) 

Letting 𝑏1 =
𝜇𝑏.𝐷𝑏

36
 and 𝑏2 = −𝜇𝑠. 𝛾𝑏 this equation would be more simplified as: 

𝑇 = 𝑏1. 𝑊. 𝑒−𝑏2          (31) 

In this equation 𝑏1 and 𝑏2 are dimensionless constants that can be tuned from real-time 

drilling data. So, having torque, the following equation can be proposed for predicting ROP as 

a new model (MKM2) according to previous discussions on effecting parameters on ROP: 

𝑅 =
𝑎1.𝑊𝑎2𝑁𝑎3𝑇𝑎4𝐻𝑆𝐼𝑎5

𝐴
          (32) 

After model fitting and obtaining 𝑎1 to 𝑎5 and 𝑏1 to 𝑏2 from drilling data of a special 

section, by substituting Equation 31 to Equation 32 the following model would be applicable 

for ROP prediction or ROP optimization in the next drilling sections of a hole: 

𝑅 =
𝑎1.𝑊𝑎2𝑁𝑎3(𝑏1.𝑊.𝑒−𝑏2)𝑎4𝐻𝑆𝐼𝑎5

𝐴
         (33) 

2.4. Model performance evaluation. 

In all of six previously discussed ROP models (BM, EM, BYM, MBYM, MKM1, and 

MKM2), there are empirical coefficients that should be calculated in real-time. For this 

purpose, the constants would be guessed using a metaheuristic search algorithm, and the 

amount of ROP for each model would be calculated. The calculated ROP would be compared 

with the field ROP. The most common method for calculating cost function is the sum of the 

squares of difference:   

𝐶 = ∑ (𝑅𝑓𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑀

𝑖=1         (34) 

Which in this equation, C is the cost function value, M is the number of training data, 𝑅𝑓𝑖𝑒𝑙𝑑 is 

the value of obtained ROP in the field and 𝑅𝑚𝑜𝑑𝑒𝑙 is the value of calculated ROP using the 

model. 

The main objective of model fitting is minimizing the cost function. Therefore, after 

finding the best constants for each model, these models should be compared to each other. For 

this purpose, the value of error would be calculated using another part of the data: 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (𝑅𝑓𝑖𝑒𝑙𝑑,𝑖 − 𝑅𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝐾
𝑖=1         (35) 

In this equation, RMSE is the root mean square error, and k represents the number of 

test data. An important point about RMSE is that the importance of the value of error is 

determined related to the ROP value interval. For resolving this problem, RMSE can be 

normalized to the mean of drilling ROP as follow: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

1

𝑘
∑ 𝑅𝑓𝑖𝑒𝑙𝑑,𝑖

𝑘
𝑖=1

    (36) 

In this study, the cost function value for each model would be calculated using Equation 34 

and the error value for each model would be compared using Equations 35 and 36. 

2.5. Model fitting method. 

In this study, it will be used for the Rain Optimization Algorithm (ROA), one of the 

newest metaheuristic search algorithm introduced by Moazzeni and Khamehchi (2019) [26]. 
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In this algorithm, each solution of the problem can be modeled by a raindrop. 

Depending on the problem, some points in the answer space can be selected randomly as the 

raindrops fall in the ground randomly. The main property of each drop of rain is its radius.  

The radius of every raindrop can be reduced as time goes by, and it can be increased as 

a raindrop is connected to other drops. When the initial population of answers is produced, the 

radius of each droplet can be assigned randomly in an appropriate range. In each iteration, 

every droplet checks its neighborhood dependent on its size. Single droplets that are not still 

connected to any other droplet, just check for the end limit of the place that it has covered.   

 
Figure 1. 30ft drilling optimization intervals in a 200ft long formation. 

When we are solving a problem in n-dimensional space, every droplet consists of n 

variable. So at the first step, the lower and upper limit of variable one will be checked as these 

limits would be determined by the radius of the droplet. At the next step, two endpoints of 

variable two would be tested, and this is continued until the last variable. In this stage, the cost 

of the first droplet would be updated by moving it downward. This is not the end action for this 

droplet, and while cost function is reducing, it will move downward in the same direction. This 

action will be performed for all droplets, then the cost and position of all droplets will be 

assigned. 

Therefore this algorithm would find the constants in the selected ROP models by 

simulating them to rain droplets. By starting drilling operations, the first batch of drilling data 

would be produced. In each step, the newly obtained data, in conjunction with the previously 

obtained data, would be entered into ROA, and the best value of the constants of the model 

https://doi.org/10.33263/BRIAC111.75897604
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC111.75897604  

https://biointerfaceresearch.com/ 7597 

would be found. This method of solving a problem that is called the real-time continues-

learning method is shown in Figure 1. 

As it can be seen in Figure 1, a formation with a 200-foot hight is divided into 30-foot 

sections. When the first batch data related to the first 30-foot was obtained, the constants of 

each ROP model would be calculated separately by ROA, and the value of error for each model 

would be calculated. Then the best model would be selected and using that model, optimum 

drilling parameters for the next 30-foot would be calculated. Using these drilling parameters, 

drilling proceeded until the second batch of data related to the second 30-foot segment 

obtained. Again using the first and second batch of data, drilling optimization would be 

performed, and this process would be continued to the end of the formation. The important 

point is that the length of the optimization segment can be reduced or extended arbitrarily, but 

it should be noticed that it is not common to change drilling parameters in very short periods. 

3. Results and Discussion 

Model fitting was done on six analytical ROP models (BM, EM, BYM, MBYM, 

MKM1, and MKM2) using ROA, and the error of each model was calculating using Equations 

35 and 36. Used data for this work is from K4 formation in the south Pars gas field in Iran from 

the depth of 14608 to 14800 ft. Table 2 shows the first batch of the used data. Available data 

has been normalized as follow before entering to ROA: 

𝑊𝑛 =
𝑊

4000
           (37) 

𝑁𝑛 =
𝑁

60
           (38) 

𝑇𝑛 =
𝑇

10000
      (39) 

𝑞𝑛 =
𝑞

400
        (40) 

𝑇𝑉𝐷𝑛 =
𝑇𝑉𝐷

10000
           (41) 

𝐹𝑗𝑛
=

𝐹𝑗

1000
           (42) 

𝐻𝑆𝐼𝑛 =
𝐻𝑆𝐼

1000
           (43) 

Table 2. A sample of used drilling data for solving the ROP models. 

data 

number 

Depth (ft) wob (lb) Torque 

(lb*ft) 

RPM 

(rpm) 

Spp (psi) q (gpm) ROP (ft/min) 

1 14608 7093.98 18542 121 1932 490 0.533413 

2 14609.66 7066.8 18777 121 1932 490 0.556653 

3 14611.32 7057.74 18807 121 1932 490 0.546693 

4 14612.98 7030.56 18789 121 1930 490 0.573253 

5 14614.64 7066.8 18759 121 1923 490 0.540607 

6 14616.3 7062.27 19086 122 1922 490 0.5561 

7 14617.96 6998.85 19439 119 1916 490 0.62416 

8 14619.62 7098.51 18708 122 1909 490 0.390653 

9 14621.28 6545.85 18212 122 1867 491 0.93624 

10 14622.94 6754.23 18459 123 1865 491 0.604793 

11 14624.6 6491.49 19022 121 1865 491 0.785733 

12 14626.26 6215.16 19658 119 1862 491 1.00264 

13 14627.92 6505.08 19075 121 1859 491 0.765813 

14 14629.58 6713.46 18384 123 1851 491 0.553333 

15 14631.24 6654.57 18544 122 1851 490 0.639653 

16 14632.9 6872.01 18542 122 1852 490 0.680047 

17 14634.56 6872.01 18558 122 1851 490 0.6889 

18 14636.22 6804.06 19284 122 1847 490 0.850473 

19 14637.88 6930.9 18508 123 1849 490 0.702733 
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data 

number 

Depth (ft) wob (lb) Torque 

(lb*ft) 

RPM 

(rpm) 

Spp (psi) q (gpm) ROP (ft/min) 

20 14639.54 6890.13 18747 123 1846 490 0.720993 

21 14641.2 6939.96 17983 124 1849 490 0.495787 

22 14642.86 6935.43 17883 124 1845 490 0.455393 

23 14644.52 6813.12 18589 124 1852 490 0.618073 

24 14646.18 6749.7 18745 122 1854 490 0.747 

25 14647.84 6795 18636 123 1854 490 0.67728 

26 14649.5 6967.14 18011 124 1862 490 0.508513 

27 14651.16 6962.61 18046 124 1863 490 0.545587 

28 14652.82 6980.73 17731 125 1871 490 0.50962 

29 14654.48 7003.38 17471 125 1872 490 0.45318 

30 14656.14 6980.73 17505 124 1879 490 0.3984 

In the proposed procedure in this study, after drilling a particular section of a hole (every 

50 centimeters), a new data series will be added to the previous data set. In this case, all 

previous data will be used for solving the model. So by increasing the depth, available drilling 

data will be more complete, and the model will be more precise. Figure 2 shows the ROP and 

some of the drilling parameter values in the optimization interval with respect to the depth. 

 
Figure 2. ROP, WOB,Torque, RPM, and Flow rate values vs. depth in the optimization intervals. 

At the first trial, ROA will guess the amount of the a-constants in all six models 

separately. At the next iterations, this algorithm tries to change a-constants to reduce the cost 

function of each model, and this process would be continued for 100 iterations. 

For solving this problem using ROA, the initial population was 100, the minimum 

amount of each variable was zero. Also, the initial radius of each raindrop was set to be 0.02, 

and rain speed was equal to rain adsorption that was 10 in each iteration, and 100 iterations for 

each run was considered.  
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Table 3. Obtained a-constants, RMSE, NORM RMSE, and Cost Function Value for each model, obtained using 

the first 30 data series input. 

Model Name Model a-constants RMSE NORM 

RMSE 

Cost 

Function 

Value 

BM 
𝑅 = 𝑎1 (

𝑊

𝐷
)

𝑎2

𝑁 
𝑎1 = 0.30 

𝑎2 =1.30E-10 

0.149 0.239 0.664 

EM 𝑅 = 𝑎1𝑤𝑎2𝑁𝑎3(
𝑎4𝑞𝜌

𝑑𝑛𝜇
)0.5 𝑎1 = 0.28 

𝑎2 = 0.06 

𝑎3 = 0.37 

𝑎4 = 17.17 

 

0.147 0.236 0.649 

BYM 𝑅 = 𝑎1 × 𝑒2.303𝑎2(10000−𝑇𝑉𝐷)

× (
𝑤

4𝑑𝑏
)

𝑎3

× (
𝑁

60
)𝑎4

× (
𝐹𝑗

1000
)𝑎5 

𝑎1 = 2.052 

𝑎2 = 2.27𝐸 − 05 

𝑎3 = 0.0006 

𝑎4 = 0.861 

𝑎5 = 2.054 

 

0.147 0.236 0.647 

MBYM 𝑅 = 𝑎1𝑇𝑉𝐷𝑎2𝑊𝑎3𝑁𝑎4𝑞𝑎5  

 

𝑎1 = 0.56 

𝑎2 = 1.40 

𝑎3 = 5.1𝐸 − 05 

𝑎4 = 0.02 

𝑎5 = 0.90 

0.145 0.233 0.629 

MKM1 
𝑅 =

𝑎2𝑁. 𝑇
𝑎3.𝐴.𝐶𝐶𝑆

0.35
− 𝑊. 𝑒−𝑎1

 
𝑎1 = 9.04𝐸 − 10 

𝑎2 = 0.184 

𝑎3 = 3 

0.161 0.259 0.780 

MKM2 
𝑅 =

𝑎1. 𝑊𝑎2𝑁𝑎3𝑇𝑎4𝐻𝑆𝐼𝑎5

𝐴
 

 

𝑎1 = 0.010 

𝑎2 = 0.010 

𝑎3 = 0.723 

𝑎4 = 2.714 

𝑎5 = 2.557 

0.122 0.195 0.445 

 
Figure 3. Trend of changing error while a-constants are tuning for all six models. 

In the first attempt, just the first data set was used for finding a-constants of each model. 

Then, when second data sets arrived, first and second data series used for finding a-constants, 

and this process continued for 30 data series.  Table 3 shows the obtained a-constants, RMSE, 

Normalized RMSE, and Cost Function Value for each model, obtained using the first 30 data 

series input. 

As can be seen in Table 3 MKM2 model has the least amount of Normalized RMSE of 

19.5 percent among the 6 considered models in this study. On the other hand, the MKM1 model 

has the maximum amount of RMSE (26 percent) between the considered models. The trend of 

changing error while a-constants are tuning for all six models can be seen in Figure 3. 

In Figure 3, the performance of each model is shown using candlelight. Each candle 

has a body, a downward shadow, and an upward shadow. The minimum showed value with the 

body (opening point) shows the error value for the first data series. The maximum value of the 

body (close point) determines the last obtained error using all data series. The minimum amount 
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of error in the tuning process is shown by the downward shadow (min), and the maximum error 

is shown by the upward shadow (max). Figure 3 shows that the MKM2 model has the best 

performance in every four subjects compared with other models. 

Table 4. Normalized data used for ROP model tuning. 

Data point depth wob n Torqe n RPM n Rop (ft/min) 

1 4400 1.773495 1.8542 2.016667 0.533413 

2 4400.5 1.7667 1.8777 2.016667 0.556653 

3 4401 1.764435 1.8807 2.016667 0.546693 

4 4401.5 1.75764 1.8789 2.016667 0.573253 

5 4402 1.7667 1.8759 2.016667 0.540607 

6 4402.5 1.765568 1.9086 2.033333 0.5561 

7 4403 1.749713 1.9439 1.983333 0.62416 

8 4403.5 1.774628 1.8708 2.033333 0.390653 

9 4404 1.636463 1.8212 2.033333 0.93624 

10 4404.5 1.688558 1.8459 2.05 0.604793 

11 4405 1.622873 1.9022 2.016667 0.785733 

12 4405.5 1.55379 1.9658 1.983333 1.00264 

13 4406 1.62627 1.9075 2.016667 0.765813 

14 4406.5 1.678365 1.8384 2.05 0.553333 

15 4407 1.663643 1.8544 2.033333 0.639653 

16 4407.5 1.718003 1.8542 2.033333 0.680047 

17 4408 1.718003 1.8558 2.033333 0.6889 

18 4408.5 1.701015 1.9284 2.033333 0.850473 

19 4409 1.732725 1.8508 2.05 0.702733 

20 4409.5 1.722533 1.8747 2.05 0.720993 

21 4410 1.73499 1.7983 2.066667 0.495787 

22 4410.5 1.733858 1.7883 2.066667 0.455393 

23 4411 1.70328 1.8589 2.066667 0.618073 

24 4411.5 1.687425 1.8745 2.033333 0.747 

25 4412 1.69875 1.8636 2.05 0.67728 

26 4412.5 1.741785 1.8011 2.066667 0.508513 

27 4413 1.740653 1.8046 2.066667 0.545587 

28 4413.5 1.745183 1.7731 2.083333 0.50962 

29 4414 1.750845 1.7471 2.083333 0.45318 

30 4414.5 1.745183 1.7505 2.066667 0.3984 

So the MKM2 would be selected as the best model in this formation. The ROP model 

for this formation until this point can be considered as follow: 

𝑅 =
0.01𝑊0.01𝑁0.723𝑇2.714𝐻𝑆𝐼2.557

33.16
          (44) 

This equation can more be simplified as follow: 

𝑅 = 0.0003𝑊0.01𝑁0.723𝑇2.714𝐻𝑆𝐼2.557        (45) 

It is possible to use Equation 44 for predicting ROP in every depth. Having 𝑊𝑂𝐵𝑛 =

1.688, 𝑁𝑛 = 2.050, 𝑇𝑛 = 1.845 and 𝐻𝑆𝐼𝑛 = 2.166 in the data point 10 from Table 4, the 

amount of calculated ROP in this point using Equation 44 is: 

𝑅𝑂𝑃 = 0.0003 ∗ 1.6880.01 ∗ 2.0500.723 ∗ 1.8452.714 ∗ 2.1662.557 = 0.596 ft/min 

Real ROP in this point is 0.60, and the calculated ROP is 0.604 which is very close to 

the reality. Changing the used data series for model tuning changes the model accuracy. For 

model tuning in each point, it is possible to use some arbitrary previous data series. Increasing 

the number of used data series decreases the model accuracy, but the model would be more 

universal. For considering the effect of used data series number (DSN) in the model tuning, it 

is used of 5 DSN, 10 DSN, and 30 DSN for the MKM2 model. Figure 4 shows the predicted 

ROP vs. real ROP in these three situations. 

It should be considered that choosing the DSN for model tuning is arbitrary, but 

selecting less DSN caused the model to be more local that means the model is valid just for a 

few next adjacent points, but the error of model fitting would be reduced. Figure 4(a) shows 
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the predicted ROP vs. real ROP using MKM2 and DSN of 30 with the normalized RMSE equal 

to 0.166. On the other hand, Figure 4(b) shows the predicted ROP vs. real ROP using MKM2 

and DSN of 10 with the normalized RMSE equal to 0.128, and Figure 4(c) shows the same 

thing with DSN of 5 and normalized RMSE of 0.113. Noticing that the number of a-constants 

in the MKM2 is 5, it is unreasonable to reduce the DSN below 5. 

 

Figure 4. (a) the predicted ROP vs. real ROP using MKM2 and DSN of 30; (b) the predicted ROP vs. real ROP 

using MKM2 and DSN of 10; (c) the predicted ROP vs. real ROP using MKM2 and show the same thing with 

DSN of 5 

Also, when drilling is progressing from a data point, it is possible to predict ROP in the 

next data point that is not still drilled when WOB, RPM, Torque, and HSI at this point are 

available. For this aim, MKM2 model with DSN of 10 would be used to predict ROP in the 

next point that is not steel drilled. It is clear that before doing this simulation, the amount of 

torque in the intended point should be calculated. Chen et al. (2014)   proposed the following 

equation for predicting torque on the bit [24]: 

𝑇 =
𝜇𝑏.𝐷𝑏.𝑊𝑂𝐵.𝑒−𝜇𝑠.𝛾𝑏

36
           (46) 

This equation can be considered as  

𝑇 = 𝑏1𝑊𝑂𝐵. 𝑒−𝑏2           (47) 

Where 𝑏1 and 𝑏2 are some empirical constants relating to the bit-type, formation, bit 

life, and drilling parameters. 𝑏1 and 𝑏2 can be obtained with the proposed method in this study 

using ROA and DSN of 10.  The obtained 𝑏1 and 𝑏2coefficient and RMSE, Normalized RMSE, 

and cost function value for predicting torque is given in Table 5. Figure 5 compares the 

predicted torque in each point before drilling that point and the real torque at this point after 

drilling. Also, a comparison of predicted ROP using MKM2  and DSN of 10 before drilling 

and real value of ROP after drilling can be seen in  Figure 6. 

Table 5. Obtain a and b coefficients and RMSE, Normalized RMSE, and cost function value for predicting 

torque. 

depth 𝒃𝟏 𝒃𝟐 RMSE norm_RMSE cost 

14608 2.365217 0.816368 0 0 0 

14609.66 2.502496 0.864569 0.015331 0.008216431 0.00047 
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depth 𝒃𝟏 𝒃𝟐 RMSE norm_RMSE cost 

14611.32 2.337684 0.792745 0.015893 0.008494748 0.000758 

14612.98 2.478146 0.848533 0.016097 0.008595026 0.001037 

14614.64 2.463726 0.842498 0.014417 0.007695517 0.001039 

14616.3 2.335388 0.785857 0.018635 0.009915658 0.002084 

14617.96 1.192181 0.107314 0.033415 0.017693575 0.007816 

14619.62 2.29899 0.76597 0.032751 0.017362334 0.008581 

14621.28 2.353505 0.785407 0.038427 0.020449731 0.01329 

14622.94 1.329826 0.209645 0.035436 0.018867102 0.011301 

14624.6 2.690463 0.904146 0.058187 0.030935555 0.030471 

14626.26 1.264865 0.132063 0.102157 0.054040993 0.093924 

14627.92 1.58874 0.349814 0.103718 0.054775107 0.096818 

14629.58 1.432528 0.242374 0.09861 0.052192144 0.087516 

14631.24 2.593527 0.832112 0.095153 0.050523223 0.081486 

14632.9 2.661415 0.861217 0.098525 0.052592161 0.087365 

14634.56 1.301895 0.14292 0.092612 0.049479755 0.077193 

14636.22 1.316788 0.152277 0.092187 0.048941502 0.076486 

14637.88 2.829824 0.920152 0.096595 0.051266879 0.083976 

14639.54 2.596971 0.842475 0.094964 0.050483142 0.081164 

14641.2 2.484546 0.819096 0.062748 0.033690273 0.035436 

14642.86 1.235216 0.134108 0.053494 0.028927112 0.025754 

14644.52 2.836251 0.965705 0.053192 0.028728833 0.025465 

14646.18 2.355415 0.78022 0.052542 0.028343574 0.024846 

14647.84 2.817027 0.957392 0.05337 0.028773635 0.025635 

14649.5 2.72475 0.928979 0.05935 0.032103214 0.031702 

14651.16 2.537801 0.867905 0.051398 0.028010165 0.023776 

14652.82 2.47327 0.847737 0.057983 0.031748378 0.030259 

14654.48 2.508115 0.871433 0.063799 0.03520582 0.036633 

14656.14 2.472308 0.86069 0.068524 0.037924234 0.042259 

 

 
Figure 5. Comparison of the predicted torque in each 

point before drilling that point and the real torque at 

this point after drilling. 

 
Figure 6. Comparison of predicted ROP using 

MKM2  and DSN of 10 before drilling and real value 

of ROP after drilling. 

As it can be seen in Figure 5, the real-time continuous learning method with DSN of 10 

could predict Torque value before drilling with normalized RMSE of about 4%, which means 

the accuracy of the method is about 96%. Also, the proposed method in this study could predict 

the ROP before drilling with Normalized RMSE of 23% when DSN was set to 10, as can be 

seen in Figure 6. 
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4. Conclusions 

 In this study, a new hybrid method for ROP modeling was presented. This model can 

predict the drilling rate using real-time drilling data. Also, continuous learning property of the 

proposed method causes the accuracy of the model to increase as the drilled section length 

increases. Moreover, a new empirical ROP method named MKM2 was presented. In this 

model, torque on the bit was used as a new input parameter, and a method for predicting torque 

at the next undrilled segment was proposed that the model could predict the torque value with 

96% accuracy. Also, five famous models named BM, EM, BYM, MBYM, MKM1 were used 

for predicting ROP that could predict the drilling rate with about 75 percent degree of accuracy. 

The new proposed model (MKM2) could increase the degree of accuracy to 81%, which could 

yield 6% improvement in the ROP prediction accuracy. In addition, the MKM2 could predict 

the ROP before drilling with Normalized RMSE of 23% when DSN was set to 10. 
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