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Abstract: Work is focused on OHCP-PdNPs synthesis with the help of meso-modified OHCP 

derivatives. OHCP-PdNPs utilized for the C-C coupling reactions as an efficient nanocatalyst. This 

study includes the stability as well as pH studies of fine PdNps. OHCP is an electron-rich ligand that is 

capable of reducing as well as encapsulate the metal ions because of the availability of electron-rich 

hydrazide functional group and H-bonding promoter four pyrrole units. In comparison with normal 

hydrazine, CP-hydrazide has a higher withdrawal ability, so Pd-NPs periphery is surrounded by them 

and undergoes stronger web-like capping on palladium. Similarly, OHCP-PdNPs are aqueous and air-

stable, besides affordable alternatives for the synthesis of stable PdNPs. Moreover, encapsulating the 

periphery of PdNPs using OHCP enhances its activity and selectivity. Which indicates the perfect 

association of metal-cage recognition? This recognition may lead to numerous promising applications 

towards an efficient catalytic activity.  
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1. Introduction 

Nanoscience is the field as an ingenious and interdisciplinary science with vast 

applications in catalysis, electroanalysis, sensor, dyes, sciences, and medicine, among different 

fields [1-3]. The metal nanoparticles have increased extensive enthusiasm for academic and 

industrial fields [4] as they have remarkable properties in electronics, biological activity, optics, 

and organic synthesis [5]. The definition of nanocatalysis means the new way to the interesting 

and enlarging field of catalysts, which is designed, and the mechanism takes place at the 

nanoscale level [6]. A metal derived nanoparticles have attracted the interest of research as 

catalysts in chemical reactions and are currently an imperative field in nanoscience and 

nanotechnology [7, 8]. 

The significance of size, shape, well-controlled monodispersity, and different chemical 

composition; metal nanoparticles synthesis is becoming a key tool in nanoparticle research [9, 

10]. Catalysis is taken place on a metal surface, so surface to volume ratio possesses enormous 

impact, and as a part of it, the reactivity of metal nanoparticle is higher and unique than their 

metal counterparts [11, 12]. Catalysis by palladium nanoparticles (PdNps) has evoked great 

interest because of its boundless applications in organic synthesis, including C–C bond-

forming reactions [13]. The nature of the active catalytic species in reactions such as the 

Suzuki‐Miyuara reaction [14], Heck reaction [15, 16], Hiyama reaction [17], Stille reaction 
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[18], Hydrogenation reaction [19], etc. reactions are of great interest since few decades. There 

are a large number of complex organic compounds synthesized by using catalytically active 

palladium complexes [20]. Many carbon-carbon and carbon-heteroatom coupling reactions 

take place with the help of palladium complexes such as (PPh3)4Pd [21]. However, those active 

palladium complexes are air sensitive, toxic, and due to their leaching properties difficult to 

separate from the reaction products. The preparation of metal nanoparticles often requires the 

use of chemical reduction methods in which a reducing agent and a number of stabilizers are 

used to prevent the accumulation of metal nanoparticles [8, 22] and the leaching of the which 

may include an activity of the catalyst [8]. A large number of nanoparticles have been 

synthesized using the chemical reduction method [23] with needful modification in the actual 

method. In some synthesis, there is wide use of reducing agents like borohydride [24], 

hydrazide [25] to form ultrafine nanoparticles. During the nanoparticle formation, aggregation 

is the biggest drawback to overcome such type of aggregation PdNps are stabilized by different 

types of stabilizing agents like polymers or organic surfactants, inorganic complexes, and 

bioinorganic molecules. However, sometimes the consequence of the employment of such 

stabilizers may subside the catalytic activity due to the adsorption over the surface of 

nanoparticles [26] and furthermore possibility of leaching, so it is when concerned with PdNps 

as a catalyst, herewith a perfect stabilizer is needed to revive this problem and generate 

nanoparticles of acceptable size to prove as a highly active catalyst [27]. To overcome all above 

issues researcher have developed a wide range of stabilizing agents but recently supramolecular 

class for e.g., calix[4]pyrroles [28, 29], calixarenes [30], porphyrins [31], and cyclodextrins 

[32], have been explored for their stabilizing properties towards PdNps. 

Calixarenes [33] are well-known cone-shaped molecules with an inherent hollow cavity 

to encapsulate nano-sized metals in its reorganized structure [34]. We developed nano-silver 

[35-37], nano-gold [38, 39], and nano-palladium [25, 40, 41] compounds having compatible in 

both reducing and stabilizing nature. Many other Calix platforms have been explored to get 

desirable size PdNps [42]. Calix[4]pyrroles are from hetero-calixarene class. To our 

knowledge, there are several attempts found in the literature for calix[4]pyrroles based tiny-

stable nanoparticles. Some groups in India have developed silver, and gold nanoparticles using 

calix[4]pyrroles hydrazide but differ in parent moiety. Earlier groups also concluded 

calix[4]pyrroles tetra hydrazide(CPTH) as reducing as well as a stabilizing agent for PdNps 

[43]. Here, we synthesized PdNps with the help of Pd(OAc)2 and calix[4]pyrroles 

octahydrazide(CPOH) in aqueous media without using any guest reducing agent. 

Herein this work, we have octahydrazide derivative of calix[4]pyrroles, CPOH to 

synthesize PdNps, and have shown them as potent and recyclable nanocatalyst for various 

cross-coupling reactions. The present study also addresses the stability as well as pH studies of 

fine PdNps. CPOH is an electron-rich ligand, which is capable of reducing as well as 

encapsulate the metal ions because of the availability of four pyrrole groups, which can form 

non-covalent hydrogen bonding and another one is the presence of electrons on amino groups 

of hydrazide functional group of ligand [40]. Calix hydrazide possesses electron-withdrawing 

amino groups over the periphery of PdNps, so it undergoes stronger web-like capping on 

palladium compare to simple hydrazine or other reducing agents [40]. Similarly, CPOH-PdNps 

are aqueous and air-stable; besides, prove to be a usual, facile, and low-cost alternative for the 

synthesis of stable PdNps. Moreover, encapsulating the periphery of PdNPs using CPOH 

enhances its activity and selectivity. Which indicates the association of physical properties of 
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ultrafine PdNps and the potent capping of CPOH can explore new edges of numerous 

promising applications towards the efficient catalytic activity. 

2. Materials and Methods 

2.1. Chemicals and Reagents. 

All chemicals (AR) were purchased from local commercial suppliers, and they are 

further used without any other purification method. Palladium acetate, 4-formyl boronic acid, 

phenylboronic acid, bromobenzene, and all other aryl halides were bought from Sigma‐

Aldrich. Fluorescence active TLC plates (F‐2009) were taken from Merck- Germany. Water 

for the experiment was prepared by using the Millipore water system with a resistance of 18 

MΩ cm@25˚C. 

2.2. Instrumentation. 

Melting points were measured by VEEGO (Model: VMP-DS- Mumbai, India) 

(uncorrected) in a single capillary tube. REMI (Model: C-24BL) laboratory centrifuge was 

used for centrifugation of the colloidal solutions. UV- absorption spectra were recorded by 

JASCO (Model: V-570, Tokyo, Japan) UV- Visible spectrophotometer in the range of 200-800 

nm. ESI-MS was taken by a mass spectrometer (Model: micro mass Quarter2-Utah, USA) at 

3000V capillary voltage & source temperature 120˚C. Proton NMR and 13C NMR spectra 

were obtained on a Bruker (Model: AV-(III) - Frequency-400 MHz) spectrometer using a 

BBFO probe. TEM&SAED pattern was recorded on a JEOL (Model: JEM 2100) microscope 

using 200 kV of an accelerated voltage. The particle size and zeta potential were obtained by 

the Malvern Zeta sizer (Model: ZEN3600) as such without dilution, and at the end of the 

centrifugation presence of Pd were checked by ICP-AES (Inductively Coupled Plasma-Atomic 

Emission Spectrophotometer) (Model: JY 2000-2) in the supernatant liquid collector. 

 
Figure 1. Synthesis of CPOH. 

2.3. Synthesis. 

2.3.1. Synthesis of CPOH. 

Octaacetatemeso-tetra(methyl) meso-tetra(3,5-diphenoxy acetate) calix[4] pyrroles 

(ECP) (2 g (w/v)), 1.3 mmol) was dissolved in 120 mL of fresh distilled methanol: toluene 

(50:50) and refluxed for 2 hrs then hydrazine hydrate (1.3 g (w/v), 20.8 mmol) were added and 

reaction mass further stirred reflux for 72 hrs. The solvent was removed in vacuum, and the 

white solid was transferred in dichloromethane (50 mL). The suspension was filtered and 

washed with DCM (3X 20 mL). The crude compound was recrystallized in hot water to give 

pure white solid compound CPOH (46% yield) [36, 44, 45] Fig.01. 
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2.3.2. Synthesis of CPOH caped palladium nanoparticles. 

The present experiment was carried out by rapidly adding 10 mL (1.0 mmol) aqueous 

CPOH solution into the 10 mL (1.0 mmol) aqueous palladium acetate solution at 70 °C for 60 

minutes with vigorous stirring and heating. The confirmation of the formation of palladium 

nanoparticles is done by the visual color change of the solution from brownish to colloidal 

black and also after surface plasmon resonance band. The final yield of the recyclable 

nanocatalyst, CPOH‐PdNps, obtained after centrifugation is 5.46 mg and water-soluble CPOH 

amount in CPOH-PdNps is 3.90 mg with the 0.96 mg loading of Pd. So, attempted strategy 

found to be the most facile and one-pot synthesis of CPOH-PdNps by using only two reagent 

and eco-friendly reaction conditions [28, 43, 46]. 

2.3.3. General procedure for coupling reactions. 

2.3.3.1. Suzuki- Miyaura reaction. 

Suzuki coupling reaction was performed by charging CPOH-PdNps (0.01mmol) with 

aryl halide (1 equiv.), aryl boronic acid (1.2 equiv.) and sodium carbonate (1.7 equiv.) in a RBF 

furnished with a stirrer with oil-bath in 10 mL mixture of 1,4‐dioxane‐water (1:1) as a solvent 

at 40°C for 10 min after that product was extracted from reaction mass with the help of ethyl 

acetate (3 ×10 mL) followed by water wash (3 ×10 mL), dried out over MgSO4 and 

concentrated on getting solid product [46, 47]. 

2.3.3.2. Heck reaction. 

10 ml of NMP + water (1:1) as a solvent, aryl halide (1 mmol), olefinic compound (2 

mmol), Na2CO3 (2 mmol), and CPOH-PdNps (0.01mmol) were added mixture in RBF. Then 

the reaction mixture was refluxed and stirred at 80˚C. After cooling the reaction mass, it was 

treated with ethyl acetate (3 X 15 mL) + water (50 mL). Then the organic phase was dried out 

over Na2SO4, filtered, and concentrated on getting crude products, and then it was purified by 

column chromatography using hexane or ethyl acetate (2–4%)/hexane solvent system [48, 49]. 

2.3.3.3. Negishi Couplings reaction.  

A 50 mL RBF was charged with CPOH-PdNps catalyst (0.30mmol) and dioxane (7 

mL). The aryl halide (0.5 mmol, 1 equiv) was added. Alkyl zinc halide (0.5 M in THF, 0.75 

mmol, 1.5 equiv) was then added dropwise at 0˚C. The resulting mixture was stirred at room 

temperature for 4-5hrs, and the reaction was monitored by TLC. The reaction mass was 

quenched with saturated NH4Cl solution, and extracted with EA (3 × 15 mL). The organic layer 

was dried out over Na2SO4, and concentrated on getting crude followed by column 

chromatography in Ethyl acetate (2-4%)–hexane system [50, 51]. 

2.3.3.4. Stille reaction. 

In 50 mL RBF, 100 mg (0.5 mmol) of 4-iodobenzoic acid and 685 mg (2.5mmol) of 

phenyltintrichloride (PhSnCl3) were dissolved in 6mL of 3M aqueous KOH and 2mL of H2O.  

CPOH-PdNps (0.1mol) catalyst was added to the reaction mixtures. The reaction mass was 

stirred for 24hrs at room temperature. After successful completion of the reaction confirmed 

by TLC, the reaction mass was quenched with 50.0 mL of 5% aqueous HCl. The product of 

the reaction was extracted from the aqueous mixture using diethyl ether (3 X 30.0 mL). The 
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organic layer was treated with a saturated NaCl solution (2 X 20.0 mL), dried with anhydrous 

Na2SO4, and filtered. The organic layer was dried out over Na2SO4, and concentrated on getting 

crude followed by column chromatography in Ethyl acetate (2-4%) – hexane system [52, 53]. 

2.3.3.5. Sonogashira reaction 

In 50 mL RBF, iodobenzene(5.4 mmol), phenylacetylene (0.5 gm., 4.9 mmol), CPOH-

PdNps catalyst (0.01mmol), Na2CO3 (6mmol),(NMP):Water, were loaded and stirred for 20hrs 

at 60˚C. The reaction was monitored by TLC. The reaction mixture was treated with water and 

extracted with EA (3 × 15 mL). The combined organic phase was washed with saturated NaCl 

aqueous solution two times and dried out over anhydrous MgSO4 to get crude product followed 

by column chromatography in Ethyl acetate (2-4%) - hexane solvent system to obtain pure 

compound [54-56]. 

2.3.3.6. Fukuyama reaction. 

Here in this reaction, solvent acetone 1 mL thioester (1 mmol) and 1.2 eq. aryl zinc 

halide was added to0.02mmolof CPOH-PdNps at room temperature, After stirring for 1 h at 

room temperature, the catalyst was filtered off, and the reaction mass was concentrated and 

separation on column chromatography (2-4% EA/hexane) gave the desired aldehyde or ketone 

in 94% yield [57]. 

2.3.3.7. Hiyama reaction. 

For the successful completion of the Hiyama coupling reaction mixture of aryl bromide 

and aryl siloxane in water was stirred at 100˚C in oil bath in the presence of a small amount of 

CPOH-PdNps, and NaOH (3 M) for less than 20 minutes [58-61]. 

2.3.3.8. Kumada reaction. 

CPOH-PdNps catalyst (0.01 mmol), THF: water (5 mL), and aryl chloride (1.0 mmol), 

to the solution formed was added a solution of phenyl magnesium bromide in THF (1.2 mmol, 

1 M) in it at room temperature and allowed to stir for 24 hrs. The reaction was ceased by the 

addition of excess water. The mixture was extracted with ethyl acetate (3 × 10 mL). The organic 

layer was dried out over MgSO4. The filtrate was concentrated by rotary evaporator, and the 

product was further purified by column chromatography (2-4% EA/hexane) to obtain the 

desired product [62-64]. 

3. Results and Discussion 

3.1. Characterization of CPOH-PdNPs. 

Thus the one-pot PdNps formation was investigated by UV–Vis spectrophotometry, 

TEM, and Energy-dispersive X-ray spectroscopy (EDX).  The primarily color change of the 

solution from brownish yellow to black while adding palladium acetate into CPOH solution 

suggests the successful formation of CPOH-PdNps(Fig.2). UV–Visible spectrum clearly shows 

the formed CPTH-PdNps. In palladium acetate solution UV–Vis spectra show a broad 

absorption band near 400 nm, which indicates the state of palladium is +2 [65]. The 

disappearance of the band at 400 nm was found due to the reduction of Pd+2 to Pd0 oxidation 

state, confirming the formation of PdNps (Fig. 3b). The obtained black colloidal nanoparticles 
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were imaged to characterize their size using TEM [66]. Fig. 3a & 3b shows TEM images that 

visualize the presence of roughly spherical shaped CPTH-PdNps of an average size range of 

5–9 nm. High-resolution TEM (HRTEM) image, as shown in Fig. 3c, reveals the atomic lattice 

fringe, demonstrating the crystalline nature of the nanoparticles. Energy-dispersive X-ray 

spectroscopy (EDX) analysis spectrum giving the elemental composition of CPTH-PdNps was 

collected from TEM data. Strong signals from Pd atoms while weaker signals from Si and Cu 

atoms were observed (Fig. 2d). The invariable presence of copper signals in the EDX spectra 

is due to copper in the TEM grid.  

 
Figure 2. TEM and EDX images of CPOH-PdNps. 

The particle size analysis shows the successful formation of CPTH-PdNps of 16±2 nm. 

The extended size of the palladium nanoparticles core is observed due to the organic layer of 

stabilizing ligand (CPOH) on the surface of PdNps depending on the density of surface 

coverage [67].  

 
Figure 3. PSA and SPR spectra of CPOH-PdNps. 

According to Debye–Scherrer equation [68], the average size of CPTH-PdNps 

calculated from the Pd(111) peak was 7.9 nm, which falls in line with the TEM observations. 

FT-IR study was carried out to investigate the existence of stabilizing ligand (CPOH) on the 

surface of the PdNps. The bands for (a) CPOH and (b) CPOH-PdNps at 3325 cm-1 and 1680 

cm-1which clearly indicate the free –NH and –CONH groups, respectively. It means there was 

no direct bonding between CPOH and PdNps. However, the broadening of the band around 

1680 cm-1 [69] may consist of some other chemical interactions. 
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3.1.1. PdNPs for C-C coupling reaction. 

Palladium-catalyzed Homogeneous reactions widely explored C-C coupling reactions 

like Suzuki, Buchwald-Hartwig, Stille, Heck, and Sonogashira reaction. Pd properties depend 

upon ligand organization. The major drawback of homogeneous is the recyclability of catalyst 

result in the erosion of expensive metal also generates many impurities. To overcome the above 

complexity created by homogeneous catalysis, researchers are diverted to the heterogeneous 

alternate. Here, in the present case, OHCP cage is found ideal recognition partner for Pd, which 

can be easily separated after the successful completion of catalysis. But the fact is that the 

contribution of OHCP-PdNPs in catalysis controversial that the catalysis is homogeneous or 

heterogeneous [25, 70]. 

3.1.2. General synthesis method for catalytic activity. 

3.1.2.1. Suzuki coupling reaction. 

Suzuki-Miyaura coupling reaction was performed by charging OHCP-PdNPs (0.01 

mmol) with iodobenzene (1 equiv.), 4- formyl boronic acid (1.2 equiv.) and sodium carbonate 

(1.7 equiv.) in a RBF furnished with a stirrer with oil-bath in 1,4‐dioxane‐water (1:1)(15 mL) 

mixture at 45°C for 10 min. After that product was extracted from reaction mass with the help 

of ethyl acetate (3 ×10 mL) followed by 2-3 water wash and dried by MgSO4 and evaporate to 

dryness to get solid compound [25, 47].Fig.04. 

 
Figure 4. Suzuki coupling reaction. 

3.1.2.2. Heck reaction. 

In 10 ml of methanol + water (1:1) solvent, styrene (2 mmol), iodobenzene (2.5 mmol), 

Na2CO3 (2.5 mmol) as a base, and OHCP-PdNPs (0.01 mmol) nanocatalyst was taken in RBF. 

Then the reaction mass was refluxed with continuous stirring at 50˚C. Then after the mixture 

was cooled down and treated with 3 wash of ethyl acetate + water and then the organic medium 

dried, filtered, and evaporate to dryness to get the crude product. The crude was passed through 

the column using ethyl acetate/hexane in a slightly polar medium [40, 48].Fig.05. 

 
Figure 5. Heck coupling reaction. 

3.1.2.3. Stille coupling. 

In 50 mL RBF, 685 mg (1.7 mmol) of phenyltintrichloride (PhSnCl3) and 100 mg (1.8 

mmol) of iodobenzene was taken by adding aqueous (KOH 6 mL, 3M) and 2 mL water.  

OHCP-PdNPs (0.1 mol) catalyst was introduced to the reaction mixtures followed 24 hrs RT 
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stirring. The entire process was observed by TLC. In the end, the mixture was poured into 50 

mL aqueous HCl (5 percent). The product extraction was carried out by diethyl ether (3 wash) 

followed by saturated sodium chloride treatment and dried over Na2SO4. Crude passed through 

a moderate polar EA-hexane gravity column [53, 71].Fig.06. 

 
Figure 6. Stille coupling reaction. 

3.1.3. Recovery and recyclability of nanocatalyst. 

After the successful completion of every attempt of C-C reaction, the reaction mass was 

centrifuged at 2500 rpm for 20 min to obtain used OHCP-PdNPs followed by 1,4‐

dioxane+water wash to discard organic reagents and it kept for drying overnight at 50 °C before 

the second attempt. OHCP-PdNPs used for further five cycles without performing any 

activating process, and it was showing a trivial decrement in efficiency at the end of the last 

cycle. So, OHCP-PdNPs found a facile and repeatable productive catalyst [72,73] for Stille 

coupling, Suzuki-Miyaura, and Heck reaction over five cycles with remarkable yielding of 90% 

in 15 min of reaction times at 40 °C. 

3.1.4. Stability and pH study of nanocatalyst. 

Here in the present experiment, the stability of derived fine PdNps has been done by 

observing changes in their SPR band data at various pH. Derived fine OHCP-PdNPs indicates 

tiny change at different pH (excluding pH=7) for initial 2-3 days then after coagulation 

occurred, but it is avoided by simple sonication for 10-15 min to obtain their original form 

without any notable deviation in their size and SPR band (Figure 3.3-a)  but slightly decrement 

observed in fluorescent intensity. At pH 7 OHCP-PdNPs remain unchanged in SPR band up to 

90 days. Thus, OHCP-PdNPs found to be most stable at pH 7 so, all further experiments were 

carried out at pH 7. 

3.2. Recyclability of nanocatalyst. 

After the successful completion of Suzuki reaction via the mentioned condition(table1) 

the reaction mass was centrifuged at 3000 rpm for 15-20 min to obtain used CPOH-PdNps 

followed by  1,4 dioxane and water wash to remove organic reagents and it kept for drying 

overnight at 50 °C before the second attempt. CPOH-PdNps used for further five cycles without 

performing any activating process, and it was showing trivial decrement in efficiency at the 

end of the last cycle. So, CPOH-PdNps found a facile and reusable productive catalyst for 

Suzuki-Miyaura coupling reaction over five cycles with remarkable yielding of 93% in 15 min 

of reaction times at 40 °C. 

3.3. Stability and pH studies. 

Here in the present experiment, the stability of derived fine PdNps has been done by 

observing changes in their SPR band and fluorescence data at various pH.  
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Table 1. Nano-catalyst based coupling reactions. 
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Derived fine CPOH-PdNps indicates tiny change at different pH (excluding pH=7) for 

initial 2-3 days then after coagulation occurred, but it is avoided by simple sonication for 10-

15 min to obtain their original form without any notable compromise in their SPR band and 

size (Fig. 3a)  but slightly decrement observed in fluorescent intensity. At pH 7 CPOH-PdNps 

shows no changes in SPR band as well as fluorescence intensity up to 150 days. Thus, CPOH-

PdNps found to be most stable at pH 7 so, all further experiments were carried out at pH 7. 

4. Conclusions 

 A simple and facile one-pot chemical reduction method using a novel, octahydrazide 

derivative of calix[4]pyrrole (CPOH) for the preparation of tiny palladium nanoparticles is 

described in this work. The effective reduction of Pd(II) to nano-palladium Pd(0) could be 

possible by reducing the nature of hydrazide groups available on the Calix system, which also 

stabilizes the nanoparticles. This novel nanocatalyst showed high catalytic performance for 

Suzuki-Miyaura,Heck coupling reactions, Negishi reaction, Stille coupling, Sonogashira cross-

coupling reaction, Fukuyama coupling reaction, Hiyama coupling reaction, and Kumada 

coupling reaction and could be reused maximum five times without considerable loss in its 

catalytic activity. Thus, CPOH-PdNps can become a key tool in a synthetic approach to 

synthesize numbers of organic compounds in the future in comparison with other Pd catalysts. 

Also, the antibacterial nature of the PdNpscan explores its capability in biological fields. We 

are further looking forward to checking this nanocatalyst in a different condition to achieve the 

most concordant synthetic route for each reaction and its environmental applications. 
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