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Abstract: The global emergence and dissemination of multidrug-resistant fungal and bacterial 

pathogens is a serious public health threat. The development of novel highly active antimicrobial 

compounds simultaneously targeting several targets in bacterial or fungal pathogens could help to fight 

antimicrobial resistance. The four-component one-pot two-step facile synthesis of a new 2-

dithiocarbamate-N-(9,10-dioxo-9,10-dihydroanthracenyl)acetamides 3a-n by the interaction of 2-

chloro-N-(9,10-dioxo-9,10-dihydroanthracenyl)acetamide 1 or 2 with a series of in situ generated 

potassium salt of dithiocarbamic acids in DMF-H2O is presented. Evaluation of the antimicrobial 

activity of the synthesized compounds against bacteria strains Escherichia coli В-906, Staphylococcus 

aureus 209-Р, Mycobacterium luteumВ-917, and fungi Candida tenuis VKM Y-70, Aspergillus niger 

VKM F-1119 has been carried out by the diffusion in agar method and by the serial dilution technique. 

It has been established that synthesized compounds 3a, 3i, 3j have the good antibacterial activity against 

strain M. luteum at a concentration of 0.5% and the dithiocarbamates 3b, 3i, 3j, 3n  demonstrate 

antifungal effect against C. tenuis at the same concentration. The results of the serial dilution technique 

showed that compound 3j has high antibacterial action at MIC 3.9 μg/ml.   
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1. Introduction 

The global emergence and dissemination of multidrug-resistant (MDR) Mycobacterium 

tuberculosis, Staphylococcus aureus, and non-fermentative Gram-negative bacilli such as 

Pseudomonas aeruginosa is an increasingly important global public health concern [1-2]. 

Moreover, lack of active antifungal agents, rising antifungal resistance, and emergence of MDR 

fungal pathogens is a serious public health threat [3-9]. MDR organisms generated in clinical 

or veterinarian sectors can persist in the environment, are capable of colonizing hosts, and then 

spread outside primary sites (farms, hospitals). Once the colonized host immune system is 

impaired, MDR fungal and bacterial pathogens can cause devastating infections that are often 

non-responsive to standard and even last-line treatment options. Therefore, the development of 

novel highly active antimicrobial compounds simultaneously targeting several targets in 

bacterial or fungal pathogens could help to fight antimicrobial resistance. 
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Dithiocarbamates are valuable synthetic products [10] and are a class of perspective 

compounds with different types of biological activities. In particular, antibacterial and 

antifungal agents [11-18] were found among them. The functionalization of dithiocarbamates 

with biophore fragments has proven to be especially useful in creating combinatorial libraries 

for rapid screening [19] and drug design [20-22]. 

From the other side, the anthraquinone core is one of the key quinone molecular 

platforms, which has a strong synthetic, applied, and pharmacological potential [23-24]. The 

substances with a high antimicrobial effect were revealed among anthraquinone derivatives of 

both natural and synthetic origin [25-30].  

In the context of the above, the aim of our work was the synthesis of a new hybrid 

anthraquinone-dithiocarbamate derivatives and the investigation of their antibacterial and 

antifungal properties for identifying potential antimicrobial agents among them. 

2. Materials and Methods 

2.1. Materials. 

All chemicals were of reagent grade and used without further purification. The solvents 

were purified according to the standard procedures [31]. The initial 2-chloroacetamides 1,2 

were prepared from 1-amino-9,10-dioxo-9,10-dihydroanthracene (Sigma-Aldrich) and 2-

amino-9,10-dioxo-9,10-dihydroanthracene (Sigma-Aldrich) according to the method described 

in [26].  

2.2. Chemistry. 

Melting points were measured on a Boetius melting point-device and are uncorrected. 
1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded in DMSO-d6 solutions 

on a Varian Mercury-400 spectrometer with TMS as an internal standard. Mass spectra were 

recorded on an Agilent 1100 Series G1956BLC/MSD SL LCMS system using electrospray 

ionization at atmospheric pressure (70 eV). Elemental analysis was performed on a 

PerkinElmer CHN-analyzer Series 2400. The individuality of the obtained compounds was 

monitored by TLC on Silufol UV-254 plates. 

General procedure for the synthesis of 2-dithiocarbamate-N-(9,10-dioxo-9,10- 

dihydroanthracenyl)acetamides 3a-n. To 1 ml of water, 0.103 g (1.87 mmol) of KOH, 10 ml of 

dimethylformamide, 1.87 mmol of the corresponding secondary amine, and 0.12 ml (1.87 

mmol) of carbon disulfide were successively added and stirred at room temperature for 1 h 

(with dicyclohexylamine 12 h). Than 0.5 g (1.70 mmol) of 2-chloro-N-acetamide 1 or 2 in 40 

ml of dimethylformamide was added to the mixture, and stirred for 1 h. Then it was heated at 

70 °C for 5 hours. The reaction mixture was cooled, and 150 ml of water was added. The 

precipitate formed was filtered off, washed with water and dried. 

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl azepane-1-

carbodithioate 3a. Yield 74%; m.p.: 184 оС (decomposition). 1H NMR: δ = 12.48 (br. s, 1H, 

NH), 8.95 (dd, 1H, J = 17.1, 8.0 Hz, СНаr), 8.19-8.07 (m, 2H, СНаr), 7.94-7.81 (m, 4H, СНаr), 

4.34 (s, 2H, CH2), 4.16-4.06 (m, 4H, CH2), 2.04-1.88 (m, 2H, CH2), 1.81-1.71 (m, 2H, CH2), 

1.64-1.44 (m, 4H, CH2). 13C NMR: δ = 193.51 (C=S), 186.64, 182.45, 167.82 (C=O), 141.43, 

136.16, 135.10, 134.31, 134.02, 132.76, 127.25, 126.92, 125.66, 122.49, 118.31 (Car), 55.96, 

53.38, 41.42, 27.95, 27.29, 26.47, 25.91 (CH2). LC-MS: m/z = 439 [M+1] (100%). Anal. Calcd. 
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for C23H22N2O3S2, %: C 62.99; H 5.06; N 6.39; S 14.62. Found, %: C 63.03; H 5.01; N 6.43; 

S 14.69.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 

dibenzylcarbamodithioate 3b. Yield 75%; m.p.: 195 оС (decomposition). 1H NMR: δ = 12.64 

(br. s, 1H, NH), 9.01 (d, 1H, J = 8.3 Hz, СНаr), 8.12 (m, 2H, СНаr), 7.96-7.85 (m, 4H, СНаr), 

7.41-7.07 (m, 10H, СНаr), 5.32-5.23 (m, 4H, CH2), 4.40 (s, 2H, CH2). 13C NMR: δ = 197.03 

(C=S), 186.77, 182.48, 167.57 (C=O), 141.45, 136.38, 135.70, 135.30, 135.22, 135.10, 134.26, 

133.83, 132.65, 129.38, 128.82, 128.27, 127.76, 127.55, 126.92, 125.46, 122.57, 118.05 (Car), 

57.72, 55.46, 42.09 (CH2). LC-MS: m/z = 537 [M+1] (100%). Anal. Calcd. for C31H24N2O3S2, 

%: C 69.38; H 4.51; N 5.22; S 11.95. Found, %: C 69.43; H 4.46; N 5.27; S 11.91.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 

dibutylcarbamodithioate 3c. Yield 92%; m.p.: 197 оС (decomposition). 1H NMR: δ = 12.49 

(br. s, 1H, NH), 8.95 (dd, 1H, J = 15.0, 8.2 Hz, СНаr), 8.18-8.07 (m, 3H, СНаr), 7.97-7.81 (m, 

3H, СНаr), 4.34 (d, 2H, J = 9.2 Hz, CH2), 3.90 (s, 4H, CH2), 1.91-1.78 (m, 2H, CH2), 1.67-1.54 

(m, 3H, CH2), 1.50-1.38 (m, 2H, CH2), 1.27-1.17 (m, 1H, CH2), 1.00 (t, 3H, J = 7.4 Hz, CH3), 

0.77 (t, 3H, J = 6.9 Hz, CH3). 13C NMR: δ = 193.89 (С=S), 186.78, 182.51, 167.70 (C=O), 

141.28, 136.25, 136.20, 135.18, 134.27, 134.00, 132.69, 127.38, 127.28, 126.91, 125.58, 

122.49, 118.33 (Car), 57.19, 55.33, 41.79, 29.50, 28.27, 20.09, 19.93 (CH2), 14.15, 14.09 (CH3). 

LC-MS: m/z = 470 [M+1] (100%). Anal. Calcd. for C25H28N2O3S2, %: C 64.08; H 6.02; N 5.98; 

S 13.68. Found, %: C 64.02; H 6.06; N 5.93; S 13.75.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 

dipropylcarbamodithioate 3d. Yield 69%; m.p.: 199 оС (decomposition). 1H NMR: δ = 12.49 

(br. s, 1H, NH), 8.95 (d, 1H, J = 8.0 Hz, СНаr), 8.09 (d, 2H, J = 6.7 Hz, СНаr), 7.90-7.86 (m, 

4H, СНаr), 4.33 (d, 2H, J = 6.7 Hz, СН2), 3.90-3.85 (m, 4H, СН2), 1.92-1.85 (m, 2H, СН2), 

1.69-1.62 (m, 2H, СН2), 1.02 (t, 3H, J = 6.9 Hz, СН3), 0.80 (t, 3H, J = 7.1 Hz, СН3). 13C NMR: 

δ = 193.25 (C=S), 186.66, 182.52, 167.71 (C=O), 141.37, 136.20, 135.16, 134.29, 134.01, 

132.71, 127.39, 127.22, 126.92, 125.58, 122.50, 118.36 (Car), 57.09, 54.68, 41.79, 20.88, 19.47 

(СН2), 11.57, 11.37 (СН3). LC-MS: m/z = 442 [M+1] (100%). Anal. Calcd. for C23H24N2O3S2, 

%: C 62.70; H 5.49; N 6.36; S 14.55. Found, %: C 62.76; H 5.42; N 6.31; S 14.62.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 

dicyclohexylcarbamodithioate 3e.  Yield 71%; m.p.: 243 оС (decomposition). 1H NMR: δ = 

12.45 (br. s, 1H, NH), 8.94 (dd, 1H, J = 24.2, 7.3 Hz, СНаr), 8.16-8.05 (m, 2H, СНаr), 7.89-

7.81 (m, 3H, СНаr), 4.33 (s, 2H, СН2), 4.29-4.22 (m, 4H, СН2), 2.05-1.15 (m, 20H, СН2). 13C 

NMR: δ = 193.89 (C=S), 186.74, 182.46, 167.69 (C=O), 141.28, 136.20, 135.18, 135.13, 

134.23, 133.96, 132.70, 132.65, 127.37, 126.90, 125.56, 125.49, 122.49, 118.26 (Car), 56.46 

(СН), 41.80, 35.10, 26.01, 24.73  (СН2). LC-MS: m/z = 522 [M+1] (100%). Anal. Calcd. for 

C29H32N2O3S2, %: C 66.89; H 6.19; N 5.38; S 12.31. Found, %: C 66.94; H 6.15; N 5.43; S 

12.39.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 

diethylcarbamodithioate 3f. Yield 78%; m.p.: 201 оС (decomposition). 1H NMR: δ = 12.57 (br. 

s, 1H, NH), 9.00 (m, 1H, СНаr), 8.16 (m, 2H, СНаr), 7.93 (m, 4H, СНаr), 4.33 (d, 2H, J = 6.7 

Hz, СН2), 3.97 (m, 4H, СН2), 1.42 (t, 3H, J = 7.0 Hz, СН3), 1.14 (t, 3H, J = 7.1 Hz, СН3). 13C 

NMR: δ = 192.72 (C=S), 186.62, 182.45, 167.78 (C=O), 141.40, 136.15, 135.13, 134.30, 

134.00, 132.75, 127.27, 126.92, 125.66, 122.49, 118.32 (Car), 50.13, 47.50, 41.40 (СН2), 12.92, 

11.68 (СН3). LC-MS: m/z = 414 [M+1] (100%). Anal. Calcd. for C21H20N2O3S2, %: C 61.14; 

H 4.89; N 6.79; S 15.54. Found, %: C 61.20; H 4.81; N 6.83; S 15.61.  
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2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl 1H-imidazole-1-

carbodithioate 3g. Yield 75%; m.p.: 187 оС (decomposition). 1H NMR: δ = 12.32 (br. s, 1H, 

NH), 8.90-8.80 (m, 1H, СНаr), 8.08-7.95 (m, 3H, СНаr+imidazole), 7.88-7.62 (m, 6H, 

СНаr+imidazole), 4.39 (d, 2H, J = 7.3 Hz, СН2). 13C NMR: δ = 194.17 (C=S), 186.70, 182.30, 

167.55 (C=O), 141.29, 140.74, 136.07, 135.09, 134.27, 133.93, 132.69, 127.49, 127.35, 

126.87, 125.81, 125.72, 122.95, 122.46, 118.36 (Car), 44.06 (СН2). LC-MS: m/z = 408 [M+1] 

(100%). Anal. Calcd. for C20H13N3O3S2, %: C 58.96; H 3.22; N 10.31; S 15.74. Found, %: C 

58.91; H 3.25; N 10.35; S 15.69.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl morpholine-4-

carbodithioate 3h. Yield 89%; m.p.: 226 оС (decomposition). 1H NMR: δ = 12.50 (br. s, 1H, 

NH), 8.99-8.94 (m, 1H, СНаr), 8.18-8.10 (m, 2H, СНаr), 7.89 (m, 4H, СНаr), 4.37 (d, 2H, J = 

17.2 Hz, СН2), 4.21-4.16 (m, 4H, СН2), 3.81-3.70 (m, 4H, СН2). 13C NMR: δ = 194.15 (C=S), 

186.89, 182.64, 162.77 (C=O), 136.24, 135.21, 132.81, 127.32, 126.98, 125.59, 125.51, 122.57 

(Car), 66.10, 66.02, 52.21, 51.27, 42.07 (СН2). LC-MS: m/z = 428 [M+1] (100%). Anal. Calcd. 

for C21H18N2O4S2, %: C 59.14; H 4.25; N 6.57;  S 15.03. Found, %: C 59.18; H 4.21; N 6.62;  

S 15.09.  

2-((9,10-Dioxo-9,10-dihydroanthracen-1-yl)amino)-2-oxoethyl pyrrolidine-1-

carbodithioate 3i. Yield 80%; m.p.: 210 оС (decomposition). 1H NMR: δ = 12.40 (br. s, 1H, 

NH), 8.98-8.88 (m, 1H, СНаr), 8.24-8.08 (m, 2H, СНаr), 8.00-7.80 (m, 4H, СНаr), 4.38 (s, 2H, 

СН2), 3.94-3.76 (m, 4H, СН2), 2.19-2.09 (m, 2H, СН2), 2.04-1.92 (m, 2H, СН2). 13C NMR: δ 

= 189.81 (C=S), 186.70, 182.45, 167.68 (C=O), 141.38, 136.06, 135.09, 134.39, 134.13, 

132.83, 127.27, 126.92, 125.81, 122.53, 118.56 (Car), 55.90, 51.35, 39.75, 26.21, 24.32 (СН2). 

LC-MS: m/z = 412 [M+1] (100%). Anal. Calcd. for C21H18N2O3S2, %: C 61.44; H 4.42; N 6.82; 

S 15.62. Found, %: C 61.49; H 4.37; N 6.76; S 15.69.  

2-((9,10-Dioxo-9,10-dihydroanthracen-2-yl)amino)-2-oxoethyl azepane-1-

carbodithioate 3j. Yield 90%; m.p.: 175 оС (decomposition). 1H NMR: δ = 10.82 (br. s, 1H, 

NH), 8.41-8.39 (m, 1H, СНаr), 8.14-8.10 (m, 3H, СНаr), 8.01 (d, 1H, J = 8.4 Hz, СНаr), 7.88-

7.85 (m, 2H, СНаr), 4.31 (s, 2H, СН2), 4.13-4.09 (m, 2H, СН2), 3.97-3.92 (m, 2H, СН2), 1.84-

1.74 (m, 4H, СН2), 1.53-1.49 (m, 4H, СН2).  13C NMR: δ = 194.39 (C=S), 182.79, 181.70, 

166.93 (C=O), 144.88, 134.96, 134.62, 134.56, 133.54, 133.50, 128.93, 128.41, 127.15, 

127.07, 124.14, 116.25 (Car), 55.69, 53.12, 41.80, 27.25, 26.57, 26.39, 25.99 (СН2). LC-MS: 

m/z = 440 [M+1] (100%). Anal. Calcd. for C23H22N2O3S2, %: C 62.99; H 5.06; N 6.39; S 14.62. 

Found, %: C 62.92; H 5.11; N 6.31; S 14.54.  

2-((9,10-Dioxo-9,10-dihydroanthracen-2-yl)amino)-2-oxoethyl 

diethylcarbamodithioate  3k. Yield 79%; m.p.: 210 оС (decomposition). 1H NMR: δ = 10.76 

(br. s, 1H, NH), 8.43-8.41 (m, 1H, СНаr), 8.17-8.15 (m, 2H, СНаr), 8.14-8.13 (m, 1H, СНаr), 

8.04 (d, 1H, J = 8.5 Hz, СНаr), 7.89-7.86 (m, 2H, СНаr), 4.32 (s, 2H, СН2), 3.98-3.83 (m, 4H, 

СН2), 1.24 (s, 6H, СН3).  13C NMR: δ = 193.62 (C=S), 182.81, 181.72, 166.95 (C=O), 144.89, 

134.98, 134.64, 134.59, 133.55, 133.52, 128.96, 128.42, 127.16, 127.08, 124.14, 116.24 (Car), 

49.84, 47.28, 41.80 (СН2), 12.91, 11.82 (СН3). LC-MS: m/z = 414 [M+1] (100%). Anal. Calcd. 

for C21H20N2O3S2, %: C 61.14; H 4.89; N 6.79; S 15.54. Found, %: C 61.19; H 4.95; N 6.83; 

S 15.48.  

2-((9,10-Dioxo-9,10-dihydroanthracen-2-yl)amino)-2-oxoethyl 4-methylpiperazine-1-

carbodithioate 3l. Yield 80%; m.p.: 147 оС (decomposition). 1H NMR: δ = 10.91 (br. s, 1H, 

NH), 8.37-8.35 (m, 1H, СНаr), 8.09-8.04 (m, 3H, СНаr), 7.99 (d, 1H, J = 7.9 Hz, СНаr), 7.83-

7.81 (m, 2H, СНаr), 4.32 (d, 2H, J = 11.9 Hz, СН2), 4.17-3.93 (m, 4H, СН2), 2.41-2.39 (m, 4H, 
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СН2), 2.20 (s, 3H, СН3).  13C NMR: δ = 194.93 (C=S), 182.72, 181.62, 166.86 (C=O), 144.87, 

134.89, 134.55, 134.49, 133.48, 128.85, 128.35, 127.10, 127.02, 124.10, 116.23 (Car), 54.45, 

54.43, 51.54, 50.21 (CH2), 45.55 (CH3), 41.91 (CH2). LC-MS: m/z = 441 [M+1] (100%). Anal. 

Calcd. for C22H21N3O3S2, %: C 60.12; H 4.82; N 9.56; S 14.59. Found, %: C 60.18; H 4.76; N 

9.59; S 14.62.  

2-((9,10-Dioxo-9,10-dihydroanthracen-2-yl)amino)-2-oxoethyl morpholine-4-

carbodithioate 3m. Yield 78%; m.p.: 232 оС (decomposition). 1H NMR: δ = 10.88 (br. s, 1H, 

NH), 8.42-8.38 (m, 1H, СНаr), 8.16-8.09 (m, 3H, СНаr), 8.02 (d, 1H, J = 8.4 Hz, СНаr), 7.90-

7.84 (m, 2H, СНаr), 4.35 (s, 2H, СН2), 4.20-4.01 (m, 4H, СН2), 3.71-3.68 (m, 4H, СН2).  13C 

NMR: δ = 195.36 (C=S), 182.81, 181.73, 166.80 (C=O), 144.86, 134.98, 134.63, 134.60, 

133.56, 128.96, 128.46, 127.16, 127.09, 124.16, 116.27 (Car), 66.06, 51.91, 51.03, 41.60 (CH2). 

LC-MS: m/z = 428 [M+1] (100%). Anal. Calcd. for C21H18N2O4S2, %: C 59.14; H 4.25; N 6.57; 

S 15.03. Found, %: C 59.19; H 4.19; N 6.59; S 15.00.  

2-((9,10-Dioxo-9,10-dihydroanthracen-2-yl)amino)-2-oxoethyl pyrrolidine-1-

carbodithioate 3n. Yield 95%; m.p.: 206 оС (decomposition). 1H NMR: δ = 10.84 (br. s, 1H, 

NH), 8.40 (s, 1H, СНаr), 8.16-8.11 (m, 3H, СНаr), 8.04-8.01 (m, 1H, СНаr), 7.89-7.86 (m, 2H, 

СНаr), 4.32 (s, 2H, СН2), 3.77 (t, 2H, J = 6.7 Hz, СН2), 3.69 (t, 2H, J = 6.7 Hz, СН2), 2.08-

2.03 (m, 2H, СН2), 1.95-1.91 (m, 2H, СН2). 13C NMR: δ = 193.49 (С=S), 182.19, 181.69, 

166.87 (С=О), 138.59, 135.11, 133.69, 133.42, 133.34, 132.12, 130.42, 128.11, 127.42 (Car), 

57.39, 51.48, 41.81, 26.55, 24.12 (CH2). LC-MS: m/z = 412 [M+1] (100%). Anal. Calcd. for 

C21H18N2O3S2, %: C 61.44; H 4.42; N 6.82; S 15.62. Found, %: C 61.39; H, 4.48; N 6.85; S 

15.59.  

2.3. Antimicrobial activity. 

2.3.1. Methodology of the diffusion method.  

Antibacterial activity of compounds was evaluated by diffusion in peptone on nutrient 

medium (meat-extract agar for bacteria; wort agar for fungi). The microbial loading was 109 

cells (spores)/cm3. The required incubation periods were as follows: 24 h at 35 °C for bacteria 

and 48–72 h at 28–30 °C for fungi. The results were recorded by measuring the zones 

surrounding the disk. Control disk contained Vancomycin (for bacteria) or Nystatin (for fungi) 

as a standard. 

2.3.2. Methodology of the serial dilution method.  

Testing was performed in a flat-bottomed 96-well tissue culture plate. The tested 

compounds were dissolved in dimethyl sulfoxide (DMSO) to the necessary concentration. The 

exact volume of the solution of compounds was brought in a nutrient medium. The inoculum 

of bacteria and fungi was in a nutrient medium (meat-extract agar for bacteria; wort agar for 

fungi). The duration of incubation was 24–72 h at 37 °C for bacteria and 30 °C for fungi. The 

results were estimated according to the presence or absence of microorganism growth. 

3. Results and Discussion 

3.1. Chemistry.  

In continuation of our research on the molecular design and the search of new 

biologically active derivatives of 9,10-anthracenedione [32-36], the new 2-((9,10-dioxo-9,10-
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dihydroanthracenyl)amino)-2-oxoethyl-carbodithioates 3a-n were synthesized by the four-

component one-pot two-step reaction of 2-chloro-N-(9,10-dioxo-9,10-

dihydroanthracenyl)acetamide 1 or 2 with a series of in situ generated potassium salt of 

dithiocarbamic acids in DMF-H2O medium at heating for 5 h (Scheme 1). 

 
Scheme 1. Synthesis of 2-((9,10-dioxo-9,10-dihydroanthracenyl)amino)-2-oxoethyl-carbodithioates 3a-n. 

The structure of the synthesized 9,10-dioxoanthracenyldithiocarbamates 3a-n is clearly 

confirmed by the results of the NMR study. In particular, the 1H NMR spectra of 

dithiocarbamates 3a-n contain the resonance signals of the CH2 group of the oxoethyl fragment 

represented as a doublet of two protons at the range of 4.31-4.39 ppm. The proton of the 

secondary amino group, depending on the substitution position in the 9,10-anthracenedione 

fragment, is characterized by a broad singlet signal at the range of 12.40-12.64 ppm for 3a-i 

and 10.76-10.91 ppm for 3j-n. The dithiocarbamate substituent in the 13C NMR spectra is 

represented by a signal of thiocarbonyl carbon in a weaker field in the range of 189.81-197.03 

ppm, while the signals of two carbonyl groups of anthracene ring hydrocarbons are located at 

the range of 181.62-186.89 ppm.  
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3.2 Investigation of antimicrobial activity. 

Antibacterial and antifungal activities of the synthesized dithiocarbamates 3a-n were 

evaluated in vitro against the strains of Escherichia coli В-906, Staphylococcus aureus 209-Р, 

Mycobacterium luteumВ-917, Candida tenuis VKM Y-70, and Aspergillus niger VKM F-1119 

by the diffusion technique [37] and by the serial dilution technique (determination of minimal 

inhibition concentrations MIC) [38]. Antibacterial agent Vancomycin and antifungal agent 

Nystatin were used as control (C). 

The bacterial strains of E. coli and S. aureus appeared to be insensitive to the action of 

the dithiocarbamate derivatives of 2-chloro-N-acetamides 3a-n investigated by the diffusion 

technique in agar at concentrations of 0.1 and 0.5% (Table 1). Dithiocarbamates 3a, 3i, and 3j 

showed their antibacterial effect against the bacteria M. luteum at a concentration of 0.5% with 

a diameter of the inhibition zone d = 19, 20, and 18 mm, respectively. The test culture of C. 

tenuis appeared to be sensitive to the derivatives 3a, 3i, 3j, and 3n at a concentration of 0.5% 

(the diameters of the growth inhibition zone were 17-26 mm). The strain S. aureus to be low 

sensitive to the action of compound 3n at concentrations of 0.1 and 0.5% (Table 1). 

Table 1. Antibacterial and antifungal activities of the synthesized compounds determined by the diffusion 

technique.* 

Compound 
Concentration, 

% 

Inhibition diameter of microorganism growth, mm 

Bactericidal activity Fungicidal activity 

E. coli S. aureus M. luteum C. tenuis A. niger 

3a 
0.5 0 0 19.0 17.0 7.0 

0.1 0 0 12.0 10.0 0 

3b 
0.5 0 0 15.0 19.0 7.0 

0.1 0 0 10.0 10,0 0 

3c 
0.5 0 0 12.0 0 9.0 

0.1 0 0 0 0 7.0 

3f 
0.5 0 0 10,0 15.0 7.0 

0.1 0 0 0 8.0 0 

3i 
0.5 0 0 20.0 20.0 7.0 

0.1 0 0 13.0 14.0 0 

3j 
0.5 0 0 18.0 20.0 15.0 

0.1 0 0 10.0 15.0 7.0 

3l 
0.5 0 0 10.0 0 7.0 

0.1 0 0 0 0 0 

3m 
0.5 0 0 12.0 17.0 15.0 

0.1 0 0 0 15.0 7.0 

3n 
0.5 0 12.0 15.0 26.0 15.0 

0.1 0 9.0 10.0 17.0 7.0 

Control 0.5 14.0 15.0 18.0 19.0 20.0 

* only compounds with positive results are included in the table 

Table 2. Antibacterial and antifungal activities of the synthesized compounds determined by the serial dilution 

technique.* 

Compound 
Cultures of microorganisms / MIC, μg/ml 

E. coli S. aureus M. luteum C. tenuis A. niger 

3a + + 250.0 62.5 125.0 

3i + 125.0 62.5 500.0 500.0 

3j 125.0 125.0 3.9   125.0 62.5 

3n 250.0 250.0 31.2 500.0 250.0 

Control 31.2 62.5 7.8 31.2 7.8 

“+” – growth of microorganisms 

* only compounds with positive results are included in the table 

An in vitro studies of the antibacterial and antifungal effect using the serial dilution 

technique showed the following (Table 2). The test culture of bacteria M. luteum was highly 
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sensitive to the dithiocarbamate 3j with MIC = 3.9 μg/ml. Dithiocarbamate 3n caused an 

antibacterial effect against the strain of M. luteum at a concentration two times lower (MIC = 

31.2 μg/ml) than its isomeric analog 3i (MIC = 62.5 μg/ml). The compounds 3i, 3j, and 3n 

showed the antibacterial effect against strains of bacteria E. coli and S. aureus with MIC 125-

250 μg/ml. Strains of fungi C. tenuis and A.niger to be sensitive to the action of the 

dithiocarbamate derivatives 3a, 3i, 3j, and 3n at MIC 62.5-500 μg/ml.  

4. Conclusions 

 Therefore, in this work, we carried out the four-component one-pot two-step facile 

synthesis of a new 2-dithiocarbamate-N-(9,10-dioxo-9,10-dihydroanthracenyl)acetamides 3a-

n and their antibacterial and antifungal effects were investigated. The outcomes of our in vitro 

antimicrobial screening revealed the compounds with good antibacterial activity against strain 

M. luteum and antifungal effect against C. tenuis. The dithiocarbamate 3j showed higher 

antibacterial action at MIC 3.9 μg/ml in comparison with control. The obtained results show 

the perspective of further in-depth investigations of selected dithiocarbamates as antimicrobial 

agents. 
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