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Abstract: For the first time, the possibility of the electrochemical synthesis and polymerization of some 

novel modified naphthoquinone compounds has been described. The correspondent mathematical 

model has been analyzed by means of linear stability theory and bifurcation analysis. It has been shown 

that the electro organic synthesis may serve as an interesting substitution for Suzuki reaction for the 

synthesis of ferrocenyl naphthoquinone and its polymer. The oscillatory and monotonic instability, in 

this case, will be more probable than in the general electropolymerization case.  
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1. Introduction 

Electrochemical polymerization is one of the most used conducting polymer synthesis 

techniques [1–10]. The electrosynthetized polymers have certain advantages, while compared 

to the chemically obtained macromolecules. These advantages include: enhanced conductivity, 

corrosion resistance,  facility in the modification, tunability.  

The most known conjugated conducting polymers contain alkine chains, carbo- and 

heterocyclic fragments in their moiety. While electrochemically synthesized, they are doped 

by a background electrolyte counter-ion or another counter-ion present in the solution. The 

monomer and electropolymerization techniques may be chosen according to the further use of 

the resulting polymer. 

Recently, the Organic Chemistry group of the Yüzüncü Yil University of Van has 

obtained a novel ferrocenyl-substituted naphthoquinone derivative [11–12] (Fig. 1). The novel 

derivative has shown sensitivity to the concentration of hydrogen peroxide and may readily be 

used as a sensor. Nevertheless, the novel derivative has been obtained by a Suzuki-Miyaura 

reaction, requiring expensive catalysts and reagents. An electro organic synthesis used to yield 
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not only polymers but also their monomers [13–17]. From 1970th on, the monomer 

electrosynthesis techniques are developed to yield monomers and their polymers.  
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Figure 1. Chemical synthesis of the compound. 

Nevertheless, the organic electrooxidation processes (including the 

electropolymerization) tend to be accompanied by electrochemical instabilities. These 

instabilities include the oscillatory changes in electrochemical potential and monotonic 

instabilities [18 – 25] and influence the polymer morphology and conductivity.  

Thus, in order to investigate the parameter values, correspondent to the most efficient 

monomer and polymer formation, like also verify the possibility and probability of the 

electrochemical instabilities in this system, an a priori theoretical observation of the 

electrochemical system is necessary.  

So, taking into account the above-mentioned statements, the goal of our work will be 

the theoretical description of the novel ferrocene naphthoquinones electrochemical synthesis 

as a substitute of the Suzuki reaction, with the further product polymerization.  

In order to realize it, we achieve specific objectives as:  

- to suggest the most probable mechanism for the sequence of chemical and electrochemical 

processes in the system; 

- to develop the mathematical model, correspondent to the mechanism,  

- by analysis of the model, to derive the steady-state stability conditions and oscillatory and 

monotonic instability requirements;  

to compare the behavior of this system with that of the similar ones [25 – 28]. 

2. Materials and Methods 

 2.1. System and its modeling. 

In the scheme of the electrochemical synthesis, 1,4-dihydroxynaphthalene is 

electrochemically oxidized in the presence of 2-chloroferrocene in the medium of carbonate 

buffer. By this, hydroquinone moiety is oxidized to the quinone one, and the ferrocenyl group 

integrates the naphthoquinone derivative, forming the monomer (Fig. 2).  
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Fig. 2. Monomer electrochemical synthesis 

H+ + OH-  → H2O                            (3) 

 

The carbonate buffer, added to the reaction medium, prevents the ferrocenyl moieties 

from acidolytic destruction during both synthesis and electropolymerization (both processes 
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expel protons and reduce the pH values) and also facilitates the hydroquinone to quinone 

oxidation.  

The chain propagation is thus realized by cation-radical formation in the active 

ferrocenyl moiety and the non-substituted ring of the naphthoquinone fragment, yielding a 

highly conducting macromolecule, capable of being used in electroanalytic. The polymer 

morphological and magnetic properties have to be similar to those obtained in [29], but with 

enhanced conductivity.  

Thus, in order to describe the electrochemical behavior of this system in galvanostatic 

mode, we introduce three variables:  

f – chloroferrocene concentration in the pre-surface layer;  

m – monomer concentration in the pre-surface layer;  

q – anode charge density.  

  To simplify the modeling, we assume that: 

- the background electrolyte is taken in excess so that we can neglect the migration flow and 

the oxidizing dopant oxidation change; 

- the reactor is intensively stirred so that we may neglect the convection flow; 

- the pre-surface layer concentration profile is linear, and its thickness is constant, equal to δ.  

It is possible to prove that the differential equations´ set, describing the system may be 

described as: 

{
 
 

 
 
𝑑𝑓

𝑑𝑡
=

2

𝛿
(
𝐷

𝛿
(𝑓0 − 𝑓) − 𝑟𝐸𝑆 )

𝑑𝑛

𝑑𝑡
=

1

𝑁
(𝑟𝐸𝑆 − 𝑟𝑝 )

𝑑𝑞

𝑑𝑡
= 𝑖 − 𝑖𝐹

                           (4) 

Herein, D is the diffusion coefficient, f0 is the ferrocene halide bulk concentration, N is 

the monomer maximal surface concentration iF is the Faraday current and the parameters r are 

the monomer electrosynthesis and polymerization rates, capable to be calculated as:  

 𝑟𝐸𝑆 = 𝑘𝐸𝑆𝑓
2(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
)                              (5)  

𝑟𝑝 = 𝑘𝑝𝑛
𝑚 exp (

(2𝑚−2)𝐹𝜑0

𝑅𝑇
)                                (6) 

The Faraday current may be calculated as:  

𝑖𝐹 = 4𝐹𝑟𝐸𝑆 + (2𝑚 − 2)𝐹𝑟𝑝            (7) 

Where the parameters k are correspondent reaction rate constants, m is the number of 

the monomer units in the polymer, F is the Faraday number, φ0 is the potential slope, related to 

the zero-charge potential, R is the universal gas constant, and T is the absolute temperature of 

the solution.  

Comparing to the potentiostat mode, described for the similar systems in [26], the 

behavior of this system will be a bit more dynamic. The polymerization kinetics and resulting 

polymer properties will be affected by this, according to the exposed below. 

3. Results and Discussion 

In order to investigate the galvanostatic electrosynthesis and electropolymerization of 

the novel ferrocenyl-substituted naphthoquinone, we analyze the equation-set (4) by means of 

the linear stability theory. The steady-state Jacobian matrix may be exposed like (8):  
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(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                 (8) 

In which:  

𝑎11 =
2

𝛿
(−

𝐷

𝛿
− 2𝑘𝐸𝑆𝑓(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
) )                   (9) 

𝑎12 =
2

𝛿
(𝑘𝐸𝑆𝑓

2 exp (
4𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘𝐸𝑆𝑓

2(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
) ) (10) 

𝑎13 =
2

𝛿
(−𝑝𝑘𝐸𝑆𝑓

2(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
) )            (11) 

𝑎21 =
1

𝑁
(2𝑘𝐸𝑆𝑓(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
) )                   (12) 

𝑎22 =
1

𝑁
(−𝑘𝐸𝑆𝑓

2 exp (
4𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝐸𝑆𝑓

2(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
) − 𝑚𝑘𝑝𝑛

𝑚−1 exp (
(2𝑚−2)𝐹𝜑0

𝑅𝑇
) −

𝑗𝑘𝑝𝑛
𝑚 exp (

(2𝑚−2)𝐹𝜑0

𝑅𝑇
) )                   (13) 

𝑎23 =
1

𝑁
(𝑝𝑘𝐸𝑆𝑓

2(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
) − 𝑝𝑘𝑝𝑛

𝑚 exp (
(2𝑚−2)𝐹𝜑0

𝑅𝑇
) )                   (14) 

𝑎31 = −8𝐹𝑘𝐸𝑆𝑓(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
)                                       (15)  

𝑎32 = 4𝐹 (𝑘𝐸𝑆𝑓
2 exp (

4𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘𝐸𝑆𝑓

2(1 − 𝑛) exp (
4𝐹𝜑0

𝑅𝑇
)) + (2𝑚 −

2)𝐹(𝑚𝑘𝑝𝑛
𝑚−1 exp (

(2𝑚−2)𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘𝑝𝑛

𝑚 exp (
(2𝑚−2)𝐹𝜑0

𝑅𝑇
)                             (16) 

𝑎33 = −4𝐹 (𝑝𝑘𝐸𝑆𝑓
2(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
)) − (2𝑚 − 2)𝐹 (𝑝𝑘𝑝𝑛

𝑚 exp (
(2𝑚−2)𝐹𝜑0

𝑅𝑇
))  (17) 

In order to derive the steady-state stability requirement, we apply the Routh-Hurwitz 

criterion to the equation-set (4). Avoiding the cumbersome equations, we introduce new 

variables, and the Jacobian determinant will be described as:  

2𝐹

𝛿𝑁
|

−𝜅 − 𝛬1 𝛺 −𝛴
𝛬1 −𝛺 − 𝛯 𝛴 − 𝛵
−4𝛬1 2𝛺 + (𝑚 − 1)𝛯 −2𝛴 − (𝑚 − 1)𝛵

|       (18) 

Opening the brackets and applying the Det J<0 conditions, salient from the criterion, 

we obtain the steady-state stability condition, exposed as (19):  

−𝜅(2𝛯𝛺 + (𝑚 − 1)𝛺𝛵 + 𝛯(𝑚 − 1)𝛺𝛵 + 2𝛴𝛵 + 𝛯(𝑚 − 1)𝛴 + (𝑚 − 1)𝛯𝛵) − 𝛬(2𝛯𝛺 +

𝛯(𝑚 − 1)𝛺𝛵 + 2𝛴𝛵 + 2𝛯(𝑚 − 1)𝛴 + (𝑚 − 1)𝛯𝛵 + 4(−𝛺𝛵 − 𝛯𝛴)) < 0  (19) 

Describing a more dynamic system, while compared to those observed for potentiostat 

mode [25]. Taking into account the strong influences of both of the electrochemical processes 

on double electric layer (DEL) capacitance, ionic force and conductivity, like also the surface 

resistance, the cyclic changes of which may compromise the steady-state stability, the steady-

state stability topological area will be more narrow than for the potentiostat mode.  

If in [25], depending on the electrode size and monomer modifier concentration, the 

system could be only diffusion or only kinetically controlled, in galvanostatic mode, either 

diffusion or kinetics will influence the electrosynthesis process by equal manner.  

Despite the above-mentioned factors, the monomer tends to be formed efficiently, as 

the topological stability area remains vast. The steady-state is easily stabilized. Nonetheless, 

the macromolecule morphology will be more dendritic and crystalline than film-shaped.  

The monotonic instability for this system is possible. It is defining the margin between 

stable steady-states and unstable states, and its conditions of appearance will be depicted as 

(20): 
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−𝜅(2𝛯𝛺 + (𝑚 − 1)𝛺𝛵 + 𝛯(𝑚 − 1)𝛺𝛵 + 2𝛴𝛵 + 𝛯(𝑚 − 1)𝛴 + (𝑚 − 1)𝛯𝛵) − 𝛬(2𝛯𝛺 +

𝛯(𝑚 − 1)𝛺𝛵 + 2𝛴𝛵 + 2𝛯(𝑚 − 1)𝛴 + (𝑚 − 1)𝛯𝛵 + 4(−𝛺𝛵 − 𝛯𝛴)) = 0  (20) 

The oscillatory instability for this system, as in the similar ones [25 – 28] is possible. 

Moreover, it is even more probable than in [25], due to the presence of more than one factor 

defining the DEL capacitance.  

As known, the Hopf bifurcation is realized if the Jacobian matrix main diagonal 

elements have positive elements, responsible for the positive callback. In these systems, 

elements, which may be positive are:  

𝑗𝑘𝐸𝑆𝑓
2(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
) > 0 if j>0, describing the positive callback, observed during the 

monomer synthesis. By this, the structure of the surface compound is changed with the enhance 

of its conductivity, leading to a favorable effect in a double electric layer;  

−𝑗𝑘𝑝𝑛
𝑚 exp (

(2𝑚−2)𝐹𝜑0

𝑅𝑇
) > 0 if j<0, describing the analogous effect during the 

electrochemical polymerization process, which is enhanced by the formation of charged 

intermediates (cation-radicals). 

Other elements, capable of being positive are −4𝐹 (𝑝𝑘𝐸𝑆𝑓
2(1 − 𝑛) exp (

4𝐹𝜑0

𝑅𝑇
)) −

(2𝑚 − 2)𝐹 (𝑝𝑘𝑝𝑛
𝑚 exp (

(2𝑚−2)𝐹𝜑0

𝑅𝑇
)) > 0, if p<0, describing the similar effects of the anode 

resistance.  

We should mention that this model is only suitable for the polymerization in alkaline 

media, capable of neutralizing the pH decay, observed during the monomer synthesis and 

polymerization. If the pH is neutral or acidic, the ferrocene monomer and polymer suffer partial 

destruction, influencing the system’s behavior and polymer morphology. This aspect will be 

described in one of our next works. 

4. Conclusions 

 From the system with the new ferrocene naphthoquinonic derivative electrochemical 

synthesis and polymerization, it is possible to conclude that: The electrochemical synthesis of 

the novel ferrocene derivative of naphthoquinone may be a suitable substitution for the Suzuki 

reaction; n galvanostatic mode, the behavior of the system will be more dynamic than in 

potentiostat mode, due to double electric layer capacitance, ionic force, and conductivity, like 

surface resistance influences of both electrochemical stages; Also, in galvanostatic mode, the 

electrosynthesis will be either diffusion or kinetically controlled; The oscillatory instability will 

be more probable than for potentiostat mode, being caused by DEL influences of both 

electrochemical stages; Another factor responsible for this type of behavior will be the 

influence of both electrochemical stages on the anodic resistance. 
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