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Abstract: Superparamagnetic nanoparticles contain unique magnetic properties that differ from the 

bulk materials and are able to function at a cellular level due to their size, shape, and surface 

characteristics. These features make them attractive candidates for drug delivery systems, thermal 

mediators in hyperthermia, and magnetic resonance imaging (MRI) contrast agents. This review 

provides an up-to-date overview of the application of iron oxide nanoparticles in cancer diagnosis, drug 

delivery, treatment, and safety concerns related to these materials are considered, as well. Furthermore, 

the general principles and challenges of the magnetic behavior of nanoparticles in the field of oncology 

are also discussed. Firstly, the basic requirements for magnetic nanoparticles for biomedical 

applications are outlined. The close link between structure, shape, size, and magnetic characterization 

are described, which is considered essential for non-invasive imaging modality, innovative magnetic-

driven nanocarriers, and treatment based on the overheating. In conclusion, investigation of the toxicity 

profile of novel nanoparticles is provided, as well. 

In the current review, the attention is focused on the role of magnetic nanoparticles, especially iron 

oxide nanoparticles in some bioapplications such as magnetic resonance imaging (MRI) contrast agents, 

targeted drug delivery, and magnetic hyperthermia systems.  

Keywords: cancer; diagnosis; drug delivery; superparamagnetic iron oxide nanoparticles; MRI; 

biomedicine; toxicity; hyperthermia. 
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1. Introduction 

Magnetic nanoparticles (MNPs) like nickel, cobalt, iron, and their chemical compounds 

are used in various medical applications [1, 120, 123, 124, 130-131]. Among these MNPs, iron 

oxide nanoparticles; magnetite (Fe3O4), maghemite and hematite (α-Fe3O4) are prevalent 

materials of common use [2, 100, 102, 104, 105]. It is conspicuous because of its large 

surface area to volume ratio, quantum confinement effect, remarkable magnetic properties, and 

poor toxicity [3, 4]. Typical magnetic characteristics of Fe3O4 nanoparticles include controlled 

orientation and arrangement through a strong magnetic field [128, 133 and according to these 

benefits, these materials could be used as objects of cancer diagnosis and treatment, drug 

delivery systems.  

The diagnosis is a valuable issue in order to detect cancer disease in advance or/and 

imagination the smallest feasible amount of tumor cells. Currently, there are only several 

imaging modalities available in modern medicine: ultrasound (US) [6], computed tomography 

(CT) [5], magnetic resonance imaging (MRI) [7], single-photon emission computed 
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tomography (SPECT) [8], optical imaging [9], etc. A distinctive feature of MRI method is it is 

an extremely accurate method of disease detection. Additionally, the development of the 

synthesis and modification processes of MNPs has already guided to a variety of novel 

opportunities in the design of MRI contrast agents [10, 11]. The hydrodynamic size of MNPs, 

which is established as the overall size of the particle, assuming a hydration layer on it, is highly 

depended on the ability of particles to overcome the biological defense system, penetrate via 

the vascular barriers and get to the location of the lesion [12]. Accordingly, MNPs as drug 

vehicles for targeting drug delivery is an efficient approach that should not be neglected [13]. 

It is a highly promising approach that involves the use of non-ionizing radiation with no 

restriction on their penetration depth across biological tissues. In general, MNPs are used as 

drug carriers by binding antibodies [14-16] and chemotherapeutic drugs [17-19]. Furthermore, 

a number of nanoparticles and traditional/herbal medicines conjugates have been developed 

for targeted delivery purposes in order to increase its anticancer performance and to lessen side 

effects as well. As sub-class materials, MNPs are used in cancer therapy, as well. Recently, a 

number of techniques based on various designs of MNPs are applied in the realm of tumor 

therapy: magnetic hyperthermia (MHT) [22, 23], photodynamic therapy (PDT) [24, 25, 119], 

photothermal therapy [26], etc. In parallel to their increasing use for biomedical applications, 

safety concerns on human organisms have enhanced, as well [81]. Moreover, the accumulation 

of MNPs in cell cultures and in vivo, their effect on proliferation and viability, toxicity studying 

are the main research areas in terms of their clinical activity [82, 83]. 

The review includes advancements in the development of MNPs for targeted drug 

delivery systems, tumor diagnosis, and application in treatment issues. Moreover, several 

questions related to their toxicity, adverse effects, and acting mechanism on the living system 

were examined. Additionally, the physical principles of the magnetic behavior of nanoparticles 

applied in biomedical applications are also reviewed. 

2. Basic requirements to MNPs for biomedical applications 

 There are some demands for biomedical applications of MNPs, such as high saturation 

magnetization (HS) and good magnetic response () [27-30]. It is known that diamagnets 

exhibit  negative susceptibility (=-10−6   -10−3). However, paramagnets show small positive 

susceptibility (=-10−1  -10−6). But for biomedical applications ferromagnet materials, that 

exhibit a large, positive susceptibility are more effective[31. It is clear that when the external 

magnetic field is removed, the diamagnets and paramagnets are not able to save their magnetic 

responsibility, while ferromagnetic materials pose stable magnetic properties. Furthermore, for 

biomedical applications, temperature dependency of the magnetic properties of the materials 

plays a significant role, as well. Ferromagnetic and ferromagnetic materials 

become paramagnetic only above Curie temperature (TC), in which the change in the direction 

of the intrinsic magnetic moments can occur. In addition, magnetic anisotropy is also one of 

the most important properties of ferromagnets for health issues. It is the property that gives a 

preferred direction on the spin of materials that may not be aligned with an external magnetic 

field [32-34]. Whereas for a magnetically isotropic material (i.e., a superparamagnetic material) 

there is no preferential direction of the magnetic moment. In contrast, a magnetically 

anisotropic material will align its magnetic moment in one direction, which is called an easy 

axis [35, 125, 127, 129. 
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Brief information about the characteristic magnetic behavior of MNPs in diagnostic and 

therapeutic applications in the area of cancer issues will be discussed in the following sections. 

3. Iron oxide nanoparticles in cancer diagnosis (Magnetic Resonance Imaging) 

Diagnosis of cancer by using nanotechnology is a novel realm that allows us to visualize 

the tumor cells at an early stage. Moreover, detecting cancer noninvasively could eliminate the 

necessity for tissue sampling through a biopsy, which is characterized as a traumatic procedure, 

and consequently, the patient could benefit from it. In addition, MNPs have been proposed as 

a contrast agent for magnetic resonance imaging (MRI). Generally, the role of contrast agents 

in MRI is the determination of pathological tissues and clarifies their localization against the 

background of normal (unchanged) tissues. In other words, the effect of the contrast agent is 

based on the resonance features of the tissue, which directly depend on the changes of the local 

magnetic field that applied to the body. This change is coordinated by interactions among the 

protons of the tissue that can be characterized by two various types of relaxation time being 

longitudinal (T1) and transverse (T2), which are used to generate the magnetic resonance image 

[36, 37]. The relaxation is the process during which the protons that have been excited with 

radio-frequency pulse first align in one direction under the external magnetic field, and then 

return to the equilibrium state. The proton relaxation time depends on the surrounding 

molecules and atoms, and its value for healthy and tumor cells differ from each other. 

Generally, a contrast medium is required to improve the clarity of the images of genetically 

modified cells on the background of healthy ones.  Most contrast agents with paramagnetic 

substances that are commercially available in MRI are characterized by many unpaired 

electrons and the higher magnetic moment [38, 107. Moreover, the ability to produce an 

enhanced proton relaxation makes them valuable candidates for MRI assay with more 

diagnostic accuracy. In fact, iron oxide superparamagnetic nanoparticles that are characterized 

by the absence of residual magnetization are already in clinical use as T2 contrast agents [39]. 

The face-centered cubic packing of oxygen in magnetite Fe3O4, allows the electrons to jump 

between iron ions occupying interstitial tetrahedral and octahedral sites, thus giving the 

molecules half-metallic properties that are suitable for MRI [40, 109, 110. Moreover, iron 

oxide nanoparticles fulfill several prerequisites such as chemical stability and low toxicity in a 

physiological environment, and adequate high magnetic moments as well [41. 

Kim et al. [42 synthesized superparamagnetic iron oxide nanoparticles by the 

sonochemical method for MRI contrast agents. Firstly, oleic acid was used as a coating agent 

for the spherical nanoparticles. In the next step, these particles were dispersed in chitosan (to 

make ferrofluids), which is considered as an appropriate carrier for bio-applications. 

Comparison of the MRI images received via ferrofluids and Resovists (a commercially 

available contrast agent for MRI) in vitro was carried out. It was realized that ferrofluids 

exposed improvement of the MRI contrasts compared to Resovists. In another study, 

Smolensky et al. [43 demonstrated that Fe3O4@organic@Au core-shell structure represented 

high magnetism and high relaxivity. This characteristic of plasmonic behavior makes these 

effective materials as effective agents for cell imaging. Another example [44, in which MNPs 

were used as a contrast agent in MRI were obtained by decoration the surface of them with 

mesoporous silica nanoparticles that were also medicated with dye. Silica that conjugated with 

magnetite nanocrystals through its surface area exhibited remarkable enhancement of MR 
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signal. This development is believed to be related to the synergistic magnetism, while the dye 

molecule of the system provided optical imaging modality. 

4. Targeted drug delivery 

 Magnetic drug delivery is a rather efficient treatment method of delivering a drug to a 

disease location by exerting an external field, and it allows reducing the side effects of 

conventional chemotherapy. However, it decreases a significant amount of the medication in 

the non-target tissues [97, 101,103, 106, 111-118.  

In a targeted magnetical drug delivery system, the drug can be either conjugated on the 

surface of the magnetic substance or encapsulated into a sphere. When the magnetic carrier is 

intravenously administered, it gathers in the areas that the magnetic field is applied (Scheme 

1). 

 
Scheme 1. Magnetically targeted drug delivery system using drug-loaded magnet nanoparticles. 

The gathering process of the magnetic carrier at the target site allows them to deliver 

the drug locally. The efficiency of the accumulation of magnetic carrier, depends on several 

features such as particle size, its surface properties, applied field strength, and blood flow rate. 

It is worth noting that the targeted drug delivery system value of Ms is very important, and not 

only this variable, but also all magnetic properties (Mr, Hc, etc.) directly depend on the size of 

the particles [45-47]. However, after crossing the superparamagnetic value limit, the Hc and Mr 

increase as a result of growing particle size. According to some references, the d<70 nm 

limitation is given as a size range for the transition from a multi-domain to a single-domain 

state [48-50. However, it is also known that the ferromagnetic nanoparticles smaller than this 

size limit demonstrate superparamagnetic features [126.  Above this critical size, the Hc and 

Mr values decrease with a further increase in the particle size. However, the values of Ms 

increases with increasing particle size. Thus, one of the main issues is to achieve a reduction 

in the size of nanoparticles without variation of the value of the saturation magnetization. Even 

though this should be the “ideal” expectation, in practice, the decrease of the saturation value 

is observed when the size is strongly reduced. Actually, for drug delivery applications, the 

nanoparticles should be steered from outside the body using magnetic fields [40, 51. In order 
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to be managed by an external magnetic field, the value Ms should be correlated with the value 

of the magnetic field. That is why literature analysis shows that threshold or limitation value 

of Ms for successful targeting drug delivery is absent information [27-29, 35, 45, 52]. However, 

except for the value of the saturation magnetization (Hs), the saturation field (magnitude of the 

field needed to reach Ms) is a rather important parameter, as well [53, 98, 99. 

Ease of synthesis, superparamagnetic properties, and ability to readily respond to the 

external magnetic field makes iron oxides a more effective applicant compared to other 

magnetic nanoparticles [108. On the other hand, such MNPs possess high surface energies, 

and consequently, the process of agglomeration is inevitable. Additionally, the naked iron 

oxide nanoparticles are characterized by high chemical activity and could readily oxidize in 

air. In turn, these aspects are provided with a loss of magnetism and dispersibility. Accordingly, 

providing suitable surface coating methods and developing effective protection strategies for 

ensuring the stability of MNPs are rather important issues. These strategies mostly contain 

coating using polymers such as silica [54, dextran [55chitosan [56, or PVA [57, PEG [58, 

or metals such as gold [59 to which functional groups can be attached via cross-linkers. 

Moreover, the coating is also required to achieve effective medicine loading profiles and make 

these nanoparticles water-soluble in order to improve their circulation time [60, 61. The drug 

loading is generally carried out in two various ways: drug could be dissolved in an organic 

phase (non-aqueous phase) and in an aqueous phase containing the MNPs [62, 63. 

Furthermore, the drug cargo and the drug release pace are significant parameters that should 

be considered. Drugs in a low therapeutic dose but with a strong electrostatic affinity towards 

MNPs can be loaded just by adsorption onto the surface of nanoparticles. In contrast, drugs 

that are characterized with high therapeutic doses should be embodied in the organic/inorganic 

shell generated over the magnetic core [64, 65.  

Gang et al. [66 via emulsion-diffusion method prepared superparamagnetic Fe3O4 poly 

ε-caprolactone core/shell nanoparticles with the size of approximately 160 nm that were 

conjugated with the gemcitabine (Gem). Under the influence of an external magnetic field, 

these magnetically guided nanoparticles showed significantly higher (15-fold) antitumor 

activity in human pancreatic adenocarcinoma cells compared to the free anticancer drug Gem 

in vivo. In another research, anticancer drug (DOX) incorporated in the cross-linked polymer 

coating layer of superparamagnetic iron oxide nanoparticles (SPIONs). Positively charged 

DOX and negatively charged polymer layers connected via electrostatic interactions [67. The 

study discovered that despite the higher dose (8-fold) of free DOX than the DOX@polymer-

superparamagnetic nanoparticle system, the free drug showed poor antitumor activity (38% 

and 63% respectively). Moreover, the toxicological investigation revealed that the 

therapeutically active dose of free anticancer drug DOX caused several health problems such 

as lymphatic damage, hepatic impairment, and reduced white blood cell amount, whereas the 

nano formulated system was founded to be harmless. 

5. Magnetically induced hyperthermia for cancer treatment 

 Magnetic hyperthermia is an experimental treatment for cancer based on the 

overheating of cells at certain temperatures [68, 121, 122. This treatment method is classified 

into three types, according to the temperature value: thermal ablation (tumor subjected to 

temperatures > 46ºC), moderate hyperthermia (41ºC<T<46ºC), and diathermia (T<41ºC) [69. 

Accurate temperature control is presently impossible, so there is always the risk of overheating 
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the surrounding healthy tissue. Accordingly, the most prevalent strategy is ““moderate”” 

hyperthermia, carried out between 41ºC and 46ºC temperatures. In broad terms, the procedure 

involves dispersing magnetic particles throughout the target tissue and then applying an AC 

magnetic field of sufficient strength and frequency to cause the particles to heat, which causes 

the rapid death of tumor cells while surrounding normal tissues are stayed unaffected (Scheme 

2). Regarding the physical principles of this process, it could be explained in the following 

way: the heat absorbed by the biological tissues is supplied by the dissipative oscillations of 

the nanoparticles’ magnetic moments induced by an external oscillating magnetic field.  

 
Scheme 2. Therapy process via hyperthermia using magnet nanoparticles. 

In other words, in this case, either magnetic moment of nanoparticle or nanoparticle 

itself rotates in an external magnetic field. In the superparamagnetic particles, the heat is 

induced by susceptibility losses having Néel relaxation (τN) and Brownian rotation (τB) times. 

It is worth noting that the relaxation process is accompanied by heat dissipation. The identical 

size particles̕ susceptibility loss at low frequencies of the variable magnetic field caused by the 

Brownian rotation that is higher compared to Néel relaxation [70-73. Hysteresis loss that 

occurs for larger magnetic nanoparticles is addressed to magnetic anisotropy. Thus, the 

produced heat is the function not only of the size, shape, and composition of nanoparticles but 

also their interactions, surface/interface effects as well. Moreover, in this case, the amplitude 

and frequency of the applied magnetic field also play a significant role. [70, 74-77. So particle 

size is an essential argument in hyperthermia since the application of a magnetic field (AC) 

will conduct a heating process that emerges from either Neel or Brownian relaxation processes 

or hysteresis losses.  

The cancer cells are destroyed if the temperature of 42oC is maintained for 30 minutes. 

Therefore, the intensity and frequency properties of the external AC magnetic field should be 

appropriate to generate enough energy for reaching the required temperature. However, there 

is also another issue that, according to the international standards, maximum field-frequency 

products applied to live organisms should not exceed the upper limit of the Atkinson-Brezovich 

criterion [17 which is, H × f ≤ 4.85 × 108A m−1s−1. Thus, the appropriate frequency that applied 

should be between 30 kHz–300 kHz, while the permissible limit of the magnetic field should 

be H≤ 15 kA/m that is accepted as a rather low field. The majority of ferromagnetic materials 
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require a high field for magnetization, while superparamagnetic nanoparticles have the ability 

to magnetize at mentioned low fields. Since the superparamagnetic particles can generate large 

amounts of heat at the lower fields, the specific absorption rate (SAR) for them, which 

characterizes the efficiency of heating for magnetic materials will be high [70-73, 76, 77. 

As it is mentioned in previous sections, iron oxide nanoparticles, as one of the most 

outstanding materials with unique magnetic properties, are being investigated in various 

branches of medicine almost in hyperthermia. Jin H. et al. [78 discovered the potential benefit 

of iron oxide nanoparticles in human breast cancer cells. Study results have shown that the 

particles coated with gold and having the sizes of 10-30 nm are heated comparatively well. In 

other research, the treatment process of rabbit liver tumors was carried out through 

hyperthermia at ~42ºC for 20 minutes. [79. It was discovered that the growth of liver tumors 

was completely stopped after 2 weeks, compared to controls that grew in size about 20 times 

over the same time period. In another study, Kossatz et al. [80 provided the magnetic 

hyperthermia experiments in vivo. The superparamagnetic iron oxide nanoparticles were 

functionalized with either peptide and doxorubicin (DOX) or both via electrostatic binding. All 

samples showed an excellent heating potential in the alternating magnetic field. Moreover, a 

considerable tumor growth reduction was noticed after in vivo injection of the magnetic 

nanoparticles 

6. Parameters of iron oxide NPs leading to toxicity 

 Iron oxide ’nanoparticles’ (NPs) biocompatibility with the target organ is the first 

premise for clinical transfer, and these particles have long been believed to have low toxicity, 

and they are biocompatible with the human body. However, recently a great deal of works has 

been done to develop superparamagnetic iron oxide nanoparticles for applications in 

biomedicine, and due to this fact, there is an extreme necessity to carry out researches regarding 

their toxicity issue. Toxic effects caused by these ultra-fine particles have been reported in vitro 

and in vivo studies and still remain as a controversial issue [84-86. Factors inherent to 

nanosystems, including iron oxide nanoparticles such as size, charge, surface functionalities, 

hydrophobicity, and other properties, tend to directly influence their toxicity [87. Holding 

structure–performance relationship studies for iron oxide nanoparticles, however, is challenged 

by the fact that a change in one parameter (e.g., particle size) frequently leads to a variation in 

other parameters (e.g., magnetic properties), that in its turn intricates results. Moreover, the 

challenge to realize the interconnection of toxicity and structure–performance issues of iron 

oxide nanoparticles is the shortage of systematic approaches. Since the majority of 

implemented researches focus on short-dated approaches. In this case, toxicity in several cell 

lines is not able to display a potential variation in the living system’s function and viability 

accurately.  

Nanoparticle size issue was discovered to play an essential role in cell toxicity. 

However, investigation of a harmful impact on DNA and other cells in the Ames test 

demonstrated that small (~10 nm) iron oxide nanoparticles coated with polyethylene glycol 

have stronger mutagenic potential compared to their larger (~30 nm) counterparts [88]. L. Yang 

and others [89] studied the size subject in vivo distribution, toxicity, and gene term changes of 

carboxyl coated iron oxide nanoparticles with various diameters in the range of 10-40 nm. It 

was discovered that on the first day of post-injection, iron oxide nanoparticles with different 

sizes mainly accumulated in the organs like liver and spleen. Moreover, it was observed that 
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the small iron oxide nanoparticles (10 nm) exhibited the highest uptake by the liver, whereas 

the largest ones showed the highest accumulation primarily in the spleen. In addition, blood 

biochemistry, hematological, and histological analyses revealed that obvious severe toxicity 

related to the iron oxide nanoparticles was absent. However, iron oxide nanoparticles with the 

size 10 and 20 nm demonstrated a significant influence on the metabolic process and apoptosis.  

J.H. Lee [90] and others discovered that along with the size of iron oxide nanoparticles, 

the shape issue is also a major factor that promotes the particle toxicity. It was investigated that 

the degree of tumor necrosis that is correlated with a great degree of membrane damage was 

higher for the rod-shaped Fe2O3 nanoparticles compared to the spherical ones. Obtained results 

could be accompanied by the growth of surface area because this feature for spherical particles 

differs from particles with other shapes. 

The utilization of nanoparticles in medicine requires their controlled interactions with 

biosystems [91]. In this case, for instance, surface structures of nanoparticles are able to 

transmit increased cellular internalization ability, non-cytotoxicity, and developed payload 

binding capacity necessary for effective intracellular delivery. The role of the surface 

functionalities for magnetic nanoparticles is essential due to the ability to reduce 

’nanoparticles’ aggregation tendency that, in its turn, can improve these materials’ 

dispersibility, colloidal stability, and protect their surface from oxidation, as well. Polyethylene 

glycol (PEG) is one of the most commonly used shielding material because it is cheap and 

presently is considered as a safe substance. Moreover, PEGylation [93] is able to increase the 

blood circulation time by avoiding clearance by the reticuloendothelial system. It also modifies 

nanoparticles by giving them biocompatibility and reduces their adverse interactions, thus 

lessens their toxicity [92, 94], albeit some studies indicate opposite statements on the issue 

regarding the toxicity of this coating material.  Genotoxicity of magnetite iron oxide 

nanoparticles with the identical diameter and various surface chemical structures such as poly 

(ethylene glycol) and poly (ethylene imine) were estimated using assays like Salmonella 

typhimurium reverse mutation assay, the in vitro mammalian chromosome aberration test, and 

the in vivo micronucleus assay [88]. It was revealed that iron oxide nanoparticles coated with 

poly (ethylene glycol) showed a mutagenic performance that was supposed to be related to the 

dose value in all samples, while coated particles exhibited toxicity characteristics only in 

metabolic activation. In another study [95], the effect of genotoxicity of functionalized 

superparamagnetic nanoparticles with three various coating materials such as chitosan, poly 

(ethylene imine), and aminopropyl-triethoxysilane on human endothelial and keratinocytes 

cells were assessed through the DNA damage. The results showed that in endothelial cells, 

with the exception of poly (ethylene imine)-superparamagnetic iron oxide nanoparticles, all 

iron oxide nanoparticles caused significant DNA damage. 

7. Conclusions 

 MNPs that are characterized by unique properties could play an important role in 

biomedical applications. In this review, the centers of interest are cancer diagnoses, such as 

MRI, cancer therapy, the magnetic delivery of drugs, and treatment, such as magnetic 

hyperthermia.  

Despite the fact that investigation for novel routes of applications in the biomedical 

realm of MNPs has been done and many achievements have been obtained, there is a lack of 

general guidelines for their assessment. First of all, the new synthesis methods or approaches 

are still needed to be improved to prepare novel MNPs with appropriate colloidal stability and 
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biocompatibility. Secondly, the toxicity issue of MNPs should not be ignored, either. The 

benefit-to-risk ratio balance needs further evolution according to the intended application 

character. Thirdly, more in vivo experiments are necessary to realize despite numerous studies 

have carried out in cell culture and/or small models, a significant part of MNPs formulations 

cannot satisfy the clinical requirement.  

Although huge achievements have been implemented, there is still a long way to go not 

only for a more profound understanding of the properties of MNPs but also using them as a 

tool that could dramatically impact the challenges related to the cancer diagnosis and treatment. 
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