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Abstract: The currently utilized neuroimaging and cerebrospinal fluid-based detection of Alzheimer’s 

disease (AD) suffer several limitations, including sensitivity, specificity, and cost. Therefore, the 

identification of AD by analyzing blood gene expression may ameliorate the early diagnosis of the AD. 

We aimed to identify common genes commonly deregulated in blood and brain in AD. Comprehensive 

analysis of blood and brain gene expression datasets of AD, eQTL, and epigenetics data was analyzed 

by the integrative bioinformatics approach. The integrative analysis showed nine differentially 

expressed genes common to blood cells and brain (CNBD1, SUCLG2-AS1, CCDC65, PDE4D, 

MTMR1, C3, SLC6A15, LINC01806, and FRG1JP). Analysis of SNP and cis-eQTL data showed 18 

genes; namely, HSD17B1, GAS5, RPS5, VKORC1, GLE1, WDR1, RPL12, MORN1, RAD52, 

SDR39U1, NPHP4, MT1E, SORD, LINC00638, MCM3AP-AS1, GSDMD, RPS9, and GNL2 were 

observed deregulated AD blood and brain tissues. Functional gene set enrichment analysis 

demonstrated a significant association of these genes in neurodegeneration-associated molecular 

pathways. Integrative biomolecular networks revealed dysregulation of several hub transcription factors 

and microRNAs in AD. Moreover, hub genes were observed associated with significant histone 

modification. This study detected common molecular biomarkers and pathways in blood and brain 

tissues in AD that may be potential biomarkers and therapeutic targets in AD.  

Keywords: Alzheimer’s disease; molecular signature; blood-brain common gene; differentially 

expressed genes; protein-protein interactions; epigenetics. 
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1. Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease common among 

elderly individuals that results in progressively severe cognitive impairment. In the USA, 5.7 

million people are currently living with Alzheimer’s, and this is expected to rise to 14 million 

by 2050 [1-3]. AD is diagnosed by the presence of extracellular amyloid plaques and 

intracellular neurofibrillary tangles in the brain and reacts the pathobiological processes that 

underlie the disease [3-4]. Although the pathogenesis of AD is multifactorial in nature, the 

application of molecular methods to improve diagnosis and assessment of AD has yet to 

provide substantiated results, and hence the quest for early AD biomarkers in peripheral blood 

has received increased attention [3,5]. Successful identification of such blood molecular 

biomarkers will have a high impact on AD diagnosis, care, and treatment [3].  

Positron emission tomography (PET) based neuroimaging techniques, and 

cerebrospinal fluids are both used in clinical practice to diagnose Alzheimer’s [6-7]. However, 

these procedures suffer serious limitations, including the invasiveness of collecting CSF as well 

as the sensitivity, specificity, cost, and limited access to neuroimaging [8]. Considering the 

shortcomings of available resources for the detection of neurodegenerative diseases, many 

studies have attempted to explore biomarkers in the blood of AD patients [1,3,6,9]. Circulating 

cells and proteins are easily accessible from fresh blood samples; the collection procedure is 

less invasive. Since central mechanisms underlying the progression of the disease is still not 

clear, much attention has been drawn to systems biology approaches as a new avenue to 

elucidate the possible roles of biomolecules in complex diseases such as AD [1,3,9-11]. For 

example, evidence of involvement of miRNA deregulation in the development of 

neurodegenerative diseases [10]. Consequently, biomolecules such as mRNAs, transcription 

factors (TFs), miRNAs (and mRNA gene transcripts targeted by such TFs and miRNAs) are 

increasingly being scrutinized for use as new biomarkers for AD. In addition, the role of 

epigenetic modifications is also a focus of much interest, with evidence for their importance in 

the development and progression of AD [12]. DNA methylation and histone modifications are 

common mechanisms for epigenetic regulation of gene expression [12]. It is well understood 

that factors such as lifestyle, age, environment, and co-morbid states effect epigenetic changes 

as well as the risk of AD and that gene methylation and histone modification may be implicated 

as mediators [12]. 

We employed an integrative approach to identify molecular biomarker signatures that 

are expressed under similar genetic control in blood cells and the brain in AD using 

transcriptome and expressed quantitative loci (cis-eQTL). Gene over-representation analysis 

was performed on core DEGs followed by gene ontology (GO) analysis. Pathway analysis was 

then used to enrich the DEGs. Core DEGs were further analyzed to identify regulatory factors 

(TFs, miRNAs) that may affect the DEG in AD-affected tissues, as well as analysis to identify 

histone modification sites within the identified DEGs. This study specifically focused on 

biomarker signatures at both transcriptional (mRNAs and miRNAs), and translational levels 

(hub proteins and TFs) as our intention was to present valuable information that would clarify 

mechanisms in AD that may provide e_cacious potential biomarkers for early diagnosis and 

systems medicines (Figure 1). 
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Figure 1. The systems biology pipeline employed in this study. Gene expression datasets of 

the blood of AD were obtained from the GEO and GTEx portal. The datasets were analyzed 

using in Bioconductor environment in R to identify common DEGs between brain and blood 

tissue. The significantly enriched pathways, GO terms were identified through functional 

enrichment analyses. PPI network was constructed to identify hub proteins. TF-target gene 

interactions and miRNA-target genes interactions were studied to identify regulatory 

biomolecules. 

2. Materials and Methods 

 2.1 Identification of differentially expressed genes from microarray datasets. 

We obtained two gene expression microarray datasets GSE18309 (peripheral blood 

mononuclear cells (PBMCs) expression dataset) and GSE4757 (brain tissue) of AD patients 

from NCBI-GEO database [13]. The peripheral blood tissue datasets (PBMCs) contained 6 

samples where 3 samples were AD blood tissues of AD while 3 were matched control 

(excluded 3 mild cognitive impairment samples from analysis). The brain tissues dataset 
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GSE4757 had 20 samples where matched pair samples of AD from neurons were obtained. The 

gene expression profile of 10 mid-stage AD of the entorhinal cortex containing neurofibrillary 

tangles and 10 paired normal neurons (without neurofibrillary tangles). We applied a 

logarithmic transformation to both blood and brain microarray datasets to approximate the 

datasets to normality and to mitigate the effect of outliers. Following this, we applied linear 

Models for Microarray (limma) through the bioconductor platform in R in order to identify the 

DEGs from each dataset. The overlapping DEGs between the two datasets were considered for 

further analysis. We then screened for statistically significant DEGs that satisfied an adjusted 

p-value < 0:05 and absolute values of log2 fold for control>= 1:0. The Benjamini-Hochberg 

(BH) method was used to adjust p-values.  

2.2. Geneset enrichment analyses to identify gene ontology and molecular pathways. 

We performed gene set enrichment analysis via Enrichr [14] to identify GO and 

pathways of the overlapping DEGs. The ontology comprised of three categories: biological 

process, molecular function, and cellular component. The p-value< 0:05 was considered as the 

cut-off criterion for all enrichment analyses. 

2.3. Protein-protein interaction network analysis. 

We retrieved the PPI networks based on the physical interaction of the proteins of DEGs 

using STRING database [15]. A confidence score of 900 was selected in the STRING 

Interactome. Network visualization and topological analyses were performed through 

NetworkAnalyst [16]. Using topological parameters, the degree (greater than equal 18 degrees) 

was used to identify highly interacting hub proteins from PPI analysis. 

2.4. Identification of histone modification sites. 

Histone modification data for the hub genes were retrieved from the human histone 

modification database (HHMD) [17]. HHMD is a public repository that contains human histone 

modifications information obtained from experimental studies. 

2.5. Identification of transcriptional and post-transcriptional regulators of the differentially 

expressed genes. 

We used TF-target gene interactions from TRANSFAC [18] and JASPAR databases 

[19] to identify TFs. The miRNA-target gene interactions were obtained from miRTarBase 

[20]. We have considered statistically signi_cant miRNAs and TFs with (p < 0:05) computed 

by Fishers' exact test via Enrichr [14]. 

2.6. eQTL effects between blood and brain tissues. 

We used eQTL data of both blood and brain from the GTEx Portal, which is a database 

for Genetic Association data (https: //gtexportal.org/home/). These eQTL databases link gene 

SNPs to gene expression. We used them to identify genes with similar genetic control of 

expression in the two tissues using meta-analysis approaches. 

If we allow x˜ to be the estimated effect of the top-linked cis-eQTL for a gene, we can 

calculate x ˜  based on the method explained in [21]  and as below: 

x˜ = x + ǫ                  (1) 
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where x is the true effect, and ǫ is the estimated error. The covariance of the estimated cis-

eQTL effects between tissues i and j across genes can be partitioned into the co-variance of 

true cis-QTL effects and the co-variance of estimation errors. Thus we can estimate the 

correlation of true cis-eQTL effect sizes across genes between tissues i and j. 

2.7. Cross-validation of the differential expression of differentially expressed genes. 

We utilized an independent whole blood gene expression dataset of advanced AD cases 

and controls (GEO accession, GSE97760). The demographic summary and details of the 

patients are described in the respective publication (PMID: 25079797). However, the dataset 

had nine advanced AD cases and 10 age-matched healthy who are all females. The gene 

expression data were normalized by log-transformation and quantile normalization using the 

Limma package in the Bioconductor environment in R implemented in the RStudio. 

2.8. Statistical analysis. 

The data visualization of differential expression was done via GraphPad Prism 5. 

3. Results and Discussion 

3.1. Identification of common deferentially expressed genes between blood and brain tissues. 

We analyzed microarray gene expression datasets of the brain and blood samples of 

AD patients. The analysis revealed 9 (nine) common DEGs (CNBD1, SUCLG2-AS1, 

CCDC65, PDE4D, MTMR1, C3, SLC6A15, LINC01806, and FRG1JP) in blood and brain. 

We also identified AD-associated genes in the blood that mirror those in brain from eQTL. We 

used a meta-analysis approach to identify genes from GTEx database that display a similar 

expression pattern in both blood and brain tissues using eQTL database that link gene variants 

(SNPs) to gene expression. Thus, we identified 673 blood-brain co-expressed genes (BBCG) 

using the correlation and meta-analysis approach, as explained in the methods section. We 

identified 18 DEGs (HSD17B1, GAS5, RPS5, VKORC1, GLE1, WDR1, RPL12, MORN1, 

RAD52, SDR39U1, NPHP4, MT1E, SORD, LINC00638, MCM3AP-AS1, GSDMD, RPS9, 

and GNL2) that were commonly dysregulated between AD blood and brain compared to 

control tissues using SNP and cis-eQTL data of curated, gold-benchmarked OMIM and GWAS 

catalogs. In this way, we have identified 27 DEGs that were commonly dysregulated in blood 

and brain in AD from microarray and eQTL data analysis. To clarify the biological significance 

of the identified DEGs, we performed a gene set enrichment analysis. The significant GO terms 

were enriched in biological processes, molecular functions, and cellular components (Table 1). 

The pathways analysis revealed significant pathways in the Ribosome, Alternative 

Complement Pathway, Classical Complement Pathway, Lectin Induced Complement Pathway, 

and Cytoplasmic Ribosomal Proteins (Table 2). 

Table 1. Gene Ontology (biological process, cellular component, and molecular functions) of dysregulated 

genes common to blood cells and brain tissue of Alzheimer’s disease. 

Category GO ID Term Adjusted P-

value 

Genes 

Biological 

process 

GO:0045047 protein targeting to ER 0.014 RPS9;RPL12;RPS5 

GO:0006614 SRP-dependent cotranslational protein targeting 

to membrane 

0.014 RPS9;RPL12;RPS5 

GO:0000184 nuclear-transcribed mRNA catabolic process, 

nonsense-mediated decay 

0.014 RPS9;RPL12;RPS5 
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Category GO ID Term Adjusted P-

value 

Genes 

GO:0019083 viral transcription 0.014 RPS9;RPL12;RPS5 

GO:0019080 viral gene expression 0.014 RPS9;RPL12;RPS5 

Cellular 

component 

GO:0005840 ribosome 0.004 RPS9;RPL12;RPS5 

GO:0022626 cytosolic ribosome 0.01 RPS9;RPL12;RPS5 

GO:0044445 cytosolic part 0.014 RPS9;RPL12;RPS5 

GO:0022627 cytosolic small ribosomal subunit 0.015 RPS9;RPS5 

GO:0015935 small ribosomal subunit 0.015 RPS9;RPS5 

Molecular 

function 

GO:0019843 rRNA binding 0.0013 RPS9;RPL12;RPS5 

Table 2. The significant molecular pathways of common dysregulated genes between blood and brain tissue of 

Alzheimer’s disease. 

Category Pathways Adj. P-value Genes 

KEGG Ribosome 0.021 RPS9;RPL12;RPS5 

BioCarta Alternative Complement Pathway 0.02 C3 

Classical Complement Pathway 0.02 C3 

Lectin Induced Complement Pathway 0.02 C3 

WikiPathways Cytoplasmic Ribosomal Proteins 0.005 RPS9;RPL12;RPS5 

3.2. Protein-protein interaction analysis to identify hub proteins. 

A protein-protein interaction network was constructed, encoded by the DEGs to reveal 

the central protein, the so-called hub proteins considering the degree measures (Figure 2). 

RPS5, RPL12, RPS9, GNL2, PDE4D, and WDR1 were identified as the hub proteins. These 

are potential biomarkers and may lead to new AD therapeutic targets. 

 
Figure 2. Protein-protein interaction network of the differentially expressed genes (DEGs) in Alzheimer’s 

disease. The nodes indicate the DEGs and the edges indicate the interactions between two genes. 
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3.3. Epigenetic regulation of the differentially expressed genes. 

In order to identify the probable epigenetic regulation of the hub genes, histone 

modification data for six of eight hub genes (Table 3) were retrieved from HHMD. Table 3 

shows that all the hub genes were associated with several histone modification sites. 

Table 3. Histone modification of hub genes in neurodegenerative diseases. 

Official Symbol 

of DEGs and 

Hub Genes 

RefSeq ID Histone modification sites already known in  neurodegenerative diseases 

H3K27 H3K4 H3K9 H3K9/H4K20 H4R3 

RPS5 NM_001009 ✓    ✓    ✓    ✓    ✓    

PDE4D NM_001104631 ✓    ✓    ✓    ✓    ✓    

RPL12 NM_000976 ✓    ✓    ✓    ✓    ✓    

RPS9 NM_001013 ✓    ✓    ✓    ✓    ✓    

GNL2 NM_013285 ✓    ✓    ✓    ✓    ✓    

WDR1 NM_017491 ✓    ✓    ✓    ✓    ✓    

3.4. Identification of post-transcriptional regulator. 

We identified TFs and miRNAs interacted with DEGs to reveal regulatory 

biomolecules that may regulate the expression of DEGs at transcriptional and post-

transcriptional levels (Figure 3 and Table 4-5). The analysis revealed signi_cant TFs (SREBF2, 

NR1H2, NR1H3, 138 PRDM1, and XBP1) and miRNAs (miR-518e, miR-518a-3p, miR-518b, 

miR-518c, miR-139 518d-3p, and miR-518f) played signi_cant roles in the regulation of the 

DEGs identi_ed this study. 

 
Figure 3. Interaction networks of gene with regulatory biomolecules (transcription factors and miRNAs). 
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Table 4. Biomolecules comprising transcription factors and MicroRNAs may regulate commonly dysregulated 

genes in Alzheimer’s disease. 

Biomolecules Target Genes P-value 

Transcription Factor 

SREBF2 GSDMD;C3;WDR1;HSD17B1;RPL12;NPHP4 0.008 

NR1H2 GLE1;GSDMD;SORD 0.02 

NR1H3 GSDMD;VKORC1;GLE1;SORD;GNL2 0.03 

PRDM1 MTMR1;WDR1;PDE4D;SLC6A15;MT1E 0.04 

XBP1 RPS9;PDE4D;SORD 0.04 

MicroRNA 

miR-518e RPS9;WDR1;HSD17B1 0.01 

miR-518a-3p RPS9;WDR1;HSD17B1 0.02 

miR-518b RPS9;WDR1;HSD17B1 0.02 

miR-518c RPS9;WDR1;HSD17B1 0.02 

miR-518d-3p RPS9;WDR1;HSD17B1 0.02 

miR-518f RPS9;WDR1;HSD17B1 0.02 

Table 5. A list of biomolecules proposed in the present study for Alzheimer’s disease. 

Biomarker 

Candidate 

Name Relevance with AD and neurodegenerative 

diseases 

Novelty  

Differentially Expressed Genes  

CNBD1 Cyclic Nucleotide Binding Domain  

Containing 1 

Associated with alcoholism and Diabetes mellitus 

type 2 

Novel  

SUCLG2-AS1 SUCLG2 Antisense RNA 1 Associated with gastric cancer according Novel  

CCDC65 Coiled-Coil Domain Containing 65 Associated with ciliary dyskenesia Novel  

PDE4D Phosphodiesterase 4D PDE4D, which in preclinical research has been 

suggested to be of particular importance for 

cognition, in the hippocampus of a patient with AD 

Known  

MTMR1 Myotubularin Related Protein 1 Diseases associated with include Charcot-Marie-

Tooth Disease 

Novel  

C3 Complement C3 Macular Degeneration, Hip, Cholesterol, 

Echocardiography 

Novel  

SLC6A15 Solute Carrier Family 6 Member 15 Diseases associated include Major Depressive 

Disorder 

Novel  

LINC01806 Long Intergenic Non-Protein  

Coding RNA 1806 

a  liated with the non-coding RNA class Novel  

FRG1JP FSHD Region Gene 1 Family 

Member J, Pseudogene 

Pseudogene Novel  

HSD17B1 Hydroxysteroid 17-Beta 

Dehydrogenase 1 

Diseases associated with Acute T Cell Leukemia and 

Acute Closed-Angle Glaucoma 

Novel  

GAS5 Growth Arrest Speci c 5 Diseases associated with GAS5 include 

Autoimmune Disease and Malignant Pleural 

Mesothelioma 

Novel  

RPS5 Ribosomal Protein S5 Involved in retinitis pigmentosa Novel  

VKORC1 Vitamin K Epoxide Reductase  

Complex Subunit 1 

Genetic polymorphism is associated with 

cardiovascular and neurodegenerative disease in AD 

Novel  

GLE1 GLE1, RNA Export Mediator GLE1 mutations cause lethal congenital contracture 

syndrome, a severe autosomal recessive fetal motor 

neuron disease, and more recently, have been 

associated with amyotrophic lateral sclerosis. 

Known  

WDR1 WD Repeat Domain 1 associated with adaptive immunity highlighting its 

central role immunologic synapses 

Novel  

RPL12 Ribosomal Protein L12 Gene Ontology annotations related to gene RPS12 

include structural constituent of ribosome 

Novel  

MORN1 MORN Repeat Containing 1 Diseases associated with MORN1 include 

Hemangioma of Lung 

Novel  

RAD52 RAD52 Homolog, DNA Repair 

Protein 

high concentrations of amyloid-beta inhibit the 

expression and DNA damage response of RAD52 

known  

SDR39U1 Short Chain 

Dehydrogenase/Reductase  

Family 39U Member 1 

Gene Ontology (GO) annotations related to this gene 

include oxidoreductase activity and coenzyme 

binding 

Novel  

 

NPHP4 Nephrocystin 4 Diseases associated with NPHP4 include 

Nephronophthisis 4 

Novel  

MT1E Metallothionein 1E related pathways are Metallothioneins bind metals 

and Metabolism 

Novel  
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Biomarker 

Candidate 

Name Relevance with AD and neurodegenerative 

diseases 

Novelty  

Differentially Expressed Genes  

SORD Sorbitol Dehydrogenase Diseases associated include Cataract and 

Microvascular Complications of Diabetes 

Novel  

LINC00638 Long Intergenic Non-Protein Coding 

RNA 638 

the non-coding RNA class Novel  

MCM3AP-

AS1 

MCM3AP Antisense RNA 1 Diseases associated with MCM3AP-AS1 include 

Glioblastoma 

Novel  

GSDMD Gasdermin D related pathways are Apoptosis and Autophagy and 

Innate Immune System 

Novel  

RPS9 Ribosomal Protein S9 Gene Ontology annotations related to gene RPS9 

include structural constituent of ribosome 

Novel  

GNL2 G Protein Nucleolar 2 GNL2 plays a role in the neurogenesis of retina Novel  

Transcription Factors  

SREBF2 Sterol Regulatory Element Binding 

Transcription Factor 2 

Increased expression at mRNA levels in AD Known  

NR1H3 Nuclear Receptor Subfamily 1 

Group H Member 3 

The genetic variant was studied to determine the e 

ects of rs7120118 variation in the NR1H3 gene 

 on the progression of AD 

Known  

NR1H2 Nuclear Receptor Subfamily 1 

Group H Member 2 

The genetic polymorphism in NR1H2 may 

contribute to the pathogenesis of AD 

Novel  

PRDM1 PR/SET Domain 1 The exome sequencing and functional studies 

revealed the genetic variants of PRDM1 in Crohn’s. 

associated with 

 systemic lupus erythematosus 

Novel  

WDR1 WD Repeat Domain 1 WDR1 is associated with adaptive immunity 

highlighting its central role immunologic synapses  

Novel  

GNl2 G Protein Nucleolar 2 GNL2 plays a role in the neurogenesis of retina in 

Zebra sh 

Novel  

XBP1 X-Box Binding Protein 1 The role of XBP1 in neurodegeneration remains 

controversial and appears to be disease-specific 

Novel  

MicroRNAs  

miR-518e MicroRNA 518 roles have been suggested for miR-518e and miR-

518a-3p in AD 

Known  

miR-518a-3p MicroRNA 518a roles have been suggested for miR-518e and miR-

518a-3p in AD 

Known  

miR-518b MicroRNA 518b dysregulated in esophageal carcinoma Novel  

miR-518c MicroRNA 518c biomarker for Parkinson’s disease Known  

miR-518d-3p MicroRNA 518d Predicted as a therapeutic target in Huntington’s 

disease 

Known  

miR-518f MicroRNA518f RNA gene an icted with RNA class Novel  

3.5. Cross-validation of the differentially expressed genes in independent blood gene 

expression data. 

The differential expression of identified genes that show common deregulation in blood 

and brain gene expression dataset GSE97760, we performed cross-validation with an 

independent gene expression data of advanced AD patients compared to a matched control. 13 

DEGs were consistently identi_ed in this independent advanced stage AD dataset overlapped 

with our results (Figure 4 and Table 6). 

3.6. Discussion. 

The lack of peripheral blood biomarkers for AD has led to a race to identify much-

needed evidence for the early diagnosis of this debilitating disease. The identification of 

peripheral biomarkers may also shed light on molecular mechanisms of AD and enable the 

monitoring of treatment. Advances in biomedical technology have spurred discoveries in 

numerous research areas. Microarray analysis is widely used in biomedical research and is 

considered the main resource for candidate biomarkers. Microarray databases contain a wealth 

of untapped genomic information. We analyzed two gene expression datasets from peripheral 
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blood and brain of the AD patients in an attempt to identify potential biomarker candidates.  

Our analysis revealed 27 DEGs common dysregulated to the blood and brain of AD patients. 

We cross-compared the differential expression of these identified DEGs in available blood 

gene expression from advanced AD cases compared to controls. The comparison showed 13 

DEGs were consistently deregulated in the cross-validation dataset suggesting the reliability of 

the identified candidate biomarkers and corroborates the employed approach.  

Gene set enrichment analyses also revealed AD-associated molecular signaling 

pathways that included the ribosome and complement systems. Employing protein-protein 

interaction networks, we also identified dysregulated central hub proteins that control many 

cellular processes. These hub proteins are considered key drivers in the mechanisms underlying 

the disease [22]. Therefore, we reconstructed the protein interaction network focusing on the 

DEGs in an attempt to identify related hub proteins. Such proteins have the potential to 

contribute to the formation and progression of AD. Of the DEGs we identified, mRNA levels 

of RPS5, a ribosomal protein, has been shown to be increased in the frontal cortex of AD 

subjects and AD transgenic mice [23]. 

Epigenetic alterations are present in different tissues during aging, as well as in 

neurodegenerative disorders such as AD. AD-related genes exhibit epigenetic changes, 

indicating that epigenetics might contribute to pathogenic changes observed in dementia. 

Epigenetic modifications are reversible and may potentially be targeted by pharmacological 

intervention [24]. We have identified epigenetic changes in hub genes (Table 3) and have 

investigated histone modification patterns of DEGs. Histone modifications are 

posttranslational modifications of the amino-terminal tails of histone proteins that affect 

nucleosome structures and gene accessibility to TFs. Histone modification thus affects 

downstream molecular interactions, thereby affecting patterns of gene expression. We report 

several histone modification sites present within the hub genes, many of which are already 

known to be associated with several neurodegenerative diseases [25]. The identification of 

these known modifications in genes further validates the discovery of the novel DEGs and hub 

genes that we have identified in this investigation. Our analysis also revealed that differentially 

expressed DEGs, regulatory TFs, and miRNAs that strongly influence gene expression at the 

transcriptional and post-transcriptional levels (Table 4-5). 

The SREBF2 is a cholesterol regulating genes and significantly increased mRNA levels 

expression were observed in the late-onset AD in the brain and blood microarray observations 

suggesting SREBF2 as biomarkers of AD at pathological and gene expression levels [26]. In 

another study evaluated the SREBF2 mRNA level expression in neurodegenerative prion 

disease. Significantly increased expression of SREBF2 was in prion-infected neuron cells 

suggesting cholesterogenic upregulation as a neuronal response to prion infection, emphasizing 

cholesterol biosynthesis critical pathways in prion disease [27]. The genetic variant was studied 

to determine the effects of rs7120118 variation in the NR1H3 gene on the progression of AD. 

A significant increase in the mRNA levels of NRIH3 among the AD patients was found by 

qPCR analysis. Overall, these data suggest that the CT genotype of rs7120118 associated with 

increased mRNA levels of NR1H3, but the disease severity does not affect NR1H3 expression 

[28]. Additionally, association analysis of common variants in NR1H3 identified rs2279238 

conferring a 1.35-fold increased risk of developing progressive MS. Protein expression analysis 

revealed that mutant NR1H3 alters gene expression profiles, suggesting a disruption in 

transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Novel 

medications based on NR1H3 models are expected to provide symptomatic relief and halt 
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disease progression by reducing the inflammatory response and promoting remyelination [29]. 

The genetic polymorphism in NR1H2 may contribute to the pathogenesis of AD [30]. The 

exome sequencing and functional studies revealed the genetic variants of PRDM1 in Crohn’s 

disease [31]. PRDM1 was associated with systemic lupus erythematosus (SLE) [32]. There is 

a link between cerebral inflammation and degeneration in SLE [33], but inverse relations 

suggested for SLE and Parkinson’s disease patients since SLE had a decreased risk of 

subsequent Parkinson’s disease [34]. However, the study indicates that the risk of dementia 

may be elevated in individuals with SLE, an autoimmune disease affecting a range of systems 

including the peripheral and central nervous system concluding SLE is significantly associated 

with dementia [35]. WDR1 is associated with adaptive immunity highlighting its central role 

in immunologic synapses [36] and cardiovascular diseases [36, 37]. GNL2 plays a role in the 

neurogenesis of retina in Zebrafish [38]. Gene Ontology (GO) annotations related to gene RPS9 

and RPS12 include structural constituent of ribosome according to genecards database, but the 

role of these ribosomal proteins in the neurodegenerative disease is obscure. The role of XBP1 

in neurodegeneration remains controversial and appears to be disease-specific. XBP1 

occupancy was observed on the promoters of genes linked to neurodegenerative pathologies, 

including AD [39], although the relevance of these events remains speculative. Indeed, XBP1 

activates a plethora of target genes involved in a variety of physiological functions, including 

neuronal plasticity [39, 40, 41], suggesting an important role during the branching and 

maturation of developing neurons. Accumulation of unfolded or misfolded proteins in the ER 

leads to an ER stress response, which is characteristic of cells with a high level of secretory 

activity and is implicated in a variety of disease conditions such as AD [42]. Hub protein 

PDE4D was particularly noteworthy since recent studies have suggested that 

phosphodiesterases are promising therapeutic drug targets in AD [43]. 

miRNAs play important roles in gene regulation, and there is emerging evidence 

demonstrating their potential for use as biomarkers for AD and other diseases; it is likely, 

therefore, that miRNAs play significant roles in the pathogenic process underlying AD [44, 

45]. Indeed, such roles have been suggested for miR-518e and miR-518a-3p in AD [45,46]. 

Similarly, miR-518c may also be a useful biomarker for Parkinson’s disease [46], while miR-

518b is dysregulated in esophageal carcinoma [47]. 

3.6.1. Limitation of the study. 

Due to various bioinformatics analyses in the data provided in this report, consideration 

should be given in the interpretation of these findings. Probably, in future clinical trials with 

samples from patients with AD, the findings achieved are therefore, will be validated. Such 

specimens are sadly not available at present. Furthermore, considering the nature of this study 

relies on information gathered at different sites, site-to-site disparities are likely to affect the 

results like differences in microarray platforms, blood gathering, and RNA extraction 

techniques. Because the population is different in both datasets, they may influence the results. 

Although none of the studies documented mixed pathologies, comorbidities diseases and the 

use of drugs may also have affected the findings. 
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Figure 4. Fig shows significant differential expression of proposed candidate blood and brain genes in an 

independent blood gene expression data (GSE97760) of advanced Alzheimer’s disease (p-value < 0:05). Note: 

Con=control, AD=Alzheimer's disease, A=CNBD1, B=CCDC65, C=PDE4D, D=MTMR1, E=SLC6A15, 

F=GAS5, G=WDR1, H=MORN1, I=RAD52, J=SDR39U1, K=NPHP4, L=MT1E, M=GSDMD. 

Table 6. Cross-validation of proposed candidate blood and brain genes in an independent blood gene expression 

data (GSE97760) of advanced Alzheimer’s disease. 

Gene Symbol P-value in GSE97760 (blood AD data) Log2 Fold Change 

CNBD1 0.0202 -1.004 

SUCLG2-AS1 - - 

CCDC65 0.0002 2.454 

PDE4D 0.0043 0.992 

MTMR1 0.0027 0.789 

C3 - - 

SLC6A15 0.0441 0.290 

LINC01806 - - 

FRG1JP - - 

HSD17B1 0.0577 -0.438 

GAS5 0.0003 1.424 

RPS5 0.3599 0.157 

VKORC1 0.4937 0.230 

GLE1 0.7641 -0.046 

WDR1 0.0118 1.229 

RPL12 0.6454 0.054 

MORN1 0.0009 -1.487 

RAD52 0.0088 1.661 

SDR39U1 0.0484 -0.371 

NPHP4 0.0012 -1.518 

MT1E 0.0138 -1.0481 

SORD 0.7501 0.102 

LINC00638 - - 

MCM3AP-AS1 0.0703 0.505 

GSDMD 0.0456 -1.0147 

RPS9 0.2854 -0.320 

GNL2 0.1440 0.381 
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4. Conclusions 

 In the present study, we analyzed blood and brain transcriptomic and eQTL data to 

identify common DEGs between these two tissues in Alzheimer’s disease. We integrated these 

common DEGs into pathway analysis for protein-protein interactions, TFs, and miR-NAs. Nine 

common DEGs were identified from microarray data of blood and brain. We also identified 18 

eQTL genes common to blood cells and brain cells. Neurodegeneration associated molecular 

signaling pathways and several miRNAs were identified as putative transcriptional and post-

transcriptional regulators of the DEGs we identified. In addition, several histone modification 

sites of hub proteins were also identified. Thus, we have identified potential biomarker 

transcripts that are commonly dysregulated in both blood cells and brain tissues. We propose 

that these biomarkers may enable the rapid and cost-effective assessment of blood sample 

analysis for the diagnosis of AD. This novel approach to identify markers can be employed in 

easily accessible tissue (blood) to assess its expression in an inaccessible tissue (brain) and is 

one that could be applied to other related clinical problems. We now propose a more detailed 

validation of this approach and of the putative biomarker transcripts we have identified with 

clinical-based investigations. 
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