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Abstract: Bael fruit is an abundant source of bioactive compounds that have importance in the food 

and pharmaceutical industries. The process of extraction of the bael fruit juice produced a higher 

percentage of bael fruit pulp waste (BFPW) (37.33 %), which was recycled for the extraction of 

bioactive compounds. Thus the bioactive compounds like polyphenols, flavonoids, and carotenoids 

were extracted from BFPW by using the ultrasound-assisted extraction (UAE) technique. The modeling 

and optimization of the extraction process were carried out by using the experimental design of response 

surface methodology (RSM). The ethanol concentration of 51.22 %, ultrasound amplitude of 51.45 %, 

and ultrasound treatment time of 6.11 minutes were obtained to be an RSM optimized values of 

extraction process variables. The lower values of root mean squared error (RMSE) and mean absolute 

error (MAE) and higher values of coefficient of determination (R2) indicated admissibility and 

acceptability of RSM. This extraction process of bioactive compounds has the potential to implement 

it on an industrial scale for the formulation of food additives and medicines.  

Keywords: Bael fruit pulp waste; bioactive compounds; ultrasound-assisted extraction; response 

surface methodology (RSM). 

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Bael (Aegle marmelos C.) is one of the most important indigenous medicinal fruit which 

grows in tropical and subtropical regions of Asia. Various parts of the bael tree, i.e., fruits, 

leaves, stem, roots, and bark, are found to be medicinally useful [1-4]. Among these parts, 

underutilized bael fruit possesses more nutritive values and can be processed to various 

products such as jam, jelly, juice, candy, squash, powder, capsules, toffee, wine, etc. The bael 

fruit is found to contain bioactive compounds, namely pectin, tannins, flavonoids, alkaloids, 

carotenoids, phenolic acid, terpenoids, and coumarins [5-7]. The presence of bioactive 

compounds imparts many health benefits in edible bael fruit and its products with antidiabetic 

activity, anticancer activity, antioxidant activity, antihistaminic activity, antiamoebic activity, 

antibacterial activity, antiulcer activity and, anti-inflammatory activity [8-10].   

The processing of fruits and vegetables produces industrial solid waste such as rind, 

skin, seed, core, pod, pomace, peels, etc. which are the potential source of bioactive and 

nutraceutical compounds. This solid waste has grabbed the attention of researches for the 

valorization or extraction of the essential compounds [11-13]. The recycling or reuse of 
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industrial food solid waste for the extraction of essential compounds is found to be useful as it 

helps to eradicate environmental pollution [14,15]. During the processing of bael fruit products, 

many waste material, i.e., hard rind or peel, fibers, seeds, etc. are obtained. They also contain 

bioactive and pharmaceutical compounds [16]. The delicious ‘sherbat’ or bael fruit juice has 

been reported to possess tonic, laxative, restorative, and digestive properties and can be used 

for preparing jam, jelly, wine, and squash [17-20]. Therefore, Singh et al. (2013) have 

commercialized the bael fruit into nutritious juice by using enzymatic hydrolysis of bael fruit 

pulp. The cake of fiber or retentate has been obtained in muslin cloth after the mechanical 

expression of juice. This cake of fibers or retentate is considered a byproduct of solid waste of 

the bael fruit juice extraction process and termed as a bael fruit pulp waste (BFPW) [7]. Various 

bioactive and pharmaceutical compounds can be recovered from BFPW as bael fruit pulp is an 

abundant source of many bioactive and pharmaceutical compounds such as β-carotene, 

marmelosin, luvangetin, aurapten, psoralen, marmelide, riboflavin, flavonols, flavonoid 

glycosides, leucoanthocyanins, umbelliferone, and anthocyanins [6,21]. These compounds 

cannot be available easily in any other fruits and have particular importance in the pharmacy 

for preparing the food additives and medicines. The extracted bioactive and pharmaceutical 

compounds also act as medicinal additives, which can be incorporated in some medicines 

[7,22,23]. So the BFPW can potentially be used for the extraction of bioactive and 

pharmaceutical compounds.  

Several methods of bioactive and pharmaceutical extraction have been implemented in 

medicinal and food industries from plant material or food solid waste. These methods include 

solid-solvent extraction, supercritical fluid extraction, accelerated solvent extraction, soxhlet 

extraction, enzyme-assisted extraction, microwave-assisted extraction, ultrasonic-assisted, and 

ultrasound-assisted extraction (UAE) [24-32]. The conventional methods of extraction, such as 

heating, boiling of refluxing hydrolyze, degrade, ionize, and oxidize the targeted bioactive 

compounds leading to lower extraction efficiency [25]. The ultrasound-assisted extraction of 

bioactive compounds can be deemed as a novel, environment-friendly, low-cost technique with 

higher extraction efficiency [31,33,34]. The ultrasound-assisted extraction is a non-thermal 

technique that allows the more retention of bioactive compounds during extraction. The 

ultrasound cavitation produces shear stress in the cell wall. It results in the mechanical 

breakdown of cell walls, which allows more diffusion rate or material transfer across the cell 

wall [35,28,36,37]. The ultrasound-assisted extraction (UAE) technique has been reported in 

many plants, food, and waste materials for the extraction of bioactive or essential compounds. 

The previous works on the UAE of essential compounds have been shown in Table 1.  

The bioactive compounds present in fruits mainly comprise of polyphenols, flavonoids, 

and carotenoids [53-55,45]. The polyphenols, which are categorized as phenolic acids, 

stilbenes, flavonoids, and lignans, exhibit the antioxidant activity and can be useful for heart 

diseases. Flavonoids include flavanols, anthocyanidins, isoflavones, flavones, flavanones, etc., 

which can prevent oxidation, coronary heart disease, and cancer of membrane lipids [56,57]. 

The lutin, β-carotene, zeaxanthin, α- carotene, β-cryptoxanthin, etc. are included in carotenoid, 

which decreases the risk of cancer, chronic diseases, and other degenerative [58]. 

This paper includes the process of ultrasound-assisted extraction (UAE) of bioactive 

compounds from the bael fruit pulp waste (BFPW). The article also covers the modeling and 

optimization of the extraction process by using response surface methodology (RSM) for its 

Commercialization on an industrial scale. 
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Table 1. Extraction of bioactive compounds by using ultrasound treatment. 

Materials Analytes References 

Pomegranate wastes Carotenoids [38] 

Peaches and Pumpkins Phenolic compounds [39] 

Haskap berries (Lonicera caerulea L.) Anthocyanins [40] 

Spinach extract Polyphenols [41] 

Grapefruit (Citrus paradisi L.) solid wastes Flavonoids [42] 

Carrot (Daucus carota Linn) Carotenoids [43] 

Marjoram (Origanum majorana L.) Antioxidant compounds [44] 

Inula helenium Flavonoids [45] 

Mangifera pajang Kosterm. peels Phenolic compounds [46] 

Prunella vulgaris L. Flavonoids [47] 

Orange (Citrus sinensis L.) peel Polyphenols (flavanone glycosides) [31] 

Du Zhong Ye (Folium eucommiae) Flavonoids [48] 

Penggan (C. reticulate) Total phenolic content [49] 

Satsuma mandarin (C. unshiu Marc) Flavanone glycosides and phenolic acids [50] 

Pomegranate (Punica granatum L.) peel Phenolic compounds [51] 

Almond extract Phenolics, tannins, anthocyanin, and total flavonoids [52] 

2. Materials and Methods 

2.1. Process for bael fruit juice extraction and its byproduct.  

The Kagzi variety of Bael fruits were harvested from trees, which are located on the 

campus of the National Institute of Technology, Rourkela (Location: 22.2604° N, 84.8536° E). 

Fruits were stored in a deep freezer at -20 ± 2℃. The ripen fruits (orange-yellowish color) were 

broken by using the hammer, and pulp was scooped along with seeds and fibers. The scooped 

pulp was passed through an IC30 sieve to separate the seeds and large fibers from the pulp. 

The water was added to the fined texture sieved pulp in the proportion of 2:1 (water: pulp) to 

obtain bael fruit juice easily. The bael fruit juice was extracted enzymatically by using 

pectinase enzyme (EC-232-885-6) (activity: 8000-12000 units/g, commercial name: Himedia, 

Mumbai, India) of 0.20 mg per 100 g of pulp at 45℃ for 6 hours and then passing it through 

muslin cloth with the application of mechanical pressure. The byproduct of the bael fruit juice 

extraction process, i.e., cake or retentate or bael fruit pulp waste (BFPW), remained in the 

muslin cloth after extraction of juice. The collected BFPW was used as a primary sample for 

the extraction of bioactive compounds. The mass balancing of bael fruit juice and its byproduct, 

i.e., BFPW, was done for the calculation of percentage waste of bael fruit pulp. The moisture 

content of sieved bael fruit pulp and BFPW was determined gravimetrically at 105 ± 2℃ for 

24 hours [59].    

2.2. Extraction and separation of bioactive compounds.  

The homogeneous mixture of 50 mL of ethanol and 10 g of BFPW was allowed for 

ultrasound treatment. The solvent volume to sample ratio was kept constant throughout the 

experiment. A probe-type ultra‐sonicator (Model: Q700 Sonicator, Qsonica Sonicator, USA) 

with a maximum power rating of 700 Watt and a frequency of 20 kHz was used for ultrasound 

treatment. The power of ultrasound was controlled by its amplitude, which ranges from 1 to 

100%. A standard probe of ½” diameter was used to generate the ultrasounds with the pulse-

on time of 10 seconds and a pulse-off time of 10 seconds. The probe was dipped 1.5 times the 

diameter of the glass beaker, which contains the sample. The temperature of BFPW was 

maintained below 45℃ during ultrasound treatment [60,61]. After ultrasound treatment, the 

sample was centrifuged at 12000 rpm for 5 minutes at 25℃ in decanter centrifuge (Model: 

Sigma 2-16KL, Sigma Laborzentrifugen GmbH, Germany) to separate the solids of BFPW 
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from the extract of bioactive compounds. The separation of ethanol from the extract was carried 

out in a rotary vacuum evaporator at 130 mbar pressure and 45℃ for 30 minutes with a speed 

of 150 rpm [31,47]. The ethanol-free extract of bioactive compounds was stored at -20 ± 2℃ 

for further analysis. The conventional solid-liquid extraction method of the bioactive 

compound was performed to compare with the UAE [42]. The process of extraction of 

bioactive compounds from BFPW is shown in Figure 1. 

 
Figure 1. Process for ultrasound-assisted extraction of bioactive compounds. 

2.3. Experimental design.  

Three operational variables, i.e., ethanol concentration (X1), ultrasound amplitude 

(X2), and ultrasound treatment or process time (X3), were considered for the extraction of 

bioactive compounds. The lower (-1) and upper (+1) limits of operational variables were set 

by performing primary experiments. The coded values, i.e., -1 and +1, correspond to the lower 

and upper limits of actual values, respectively. The ethanol concentration was varied from 30 

(-1) to 90 (+1)% (%v/v) by dilution with distilled water. The ultrasound amplitude was varied 

across the range from 40 (-1) to 80 (+1)%. The Ultrasound treatment time was set from 4 (-1) 

to 10 (+1) minutes. The . Box–Behnken design of response surface methodology (RSM) was 

carried out to get the total runs (experimental trials) of different combinations in Design-Expert 

software 11.0. Box–Behnken design of three variables gives 17 experimental trials. 

2.4. Characterization of extracted bioactive compounds. 

After the separation of ethanol from the extracts of bioactive compounds, the remaining 

extracts were made up to the volume of 50 mL with distilled water to equalize their volumes 

for the determination and comparison of extracted bioactive compounds. The characterization 

comprised the determination of total phenol content, total flavonoids, total carotenoids, and 

DPPH scavenging activity.  

 Total phenol content (TPC) was measured spectrophotometrically by using the Folin-

Ciocalteu assay, which was described by Singleton and Rossi (1965) with slight modifications 

[62]. The Folin-Ciocalteu reagent was diluted 10-fold with distilled water. The extract of 125 

μL was then added to 1.8 mL diluted Folin-Ciocalteu reagent. The prepared solution was 
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allowed to stand for 5 minutes. The solution of 15% sodium carbonate was then added to the 

prepared solution. The absorbance was measured at 765 nm after 90 minutes of incubation time 

at room temperature. The TPC was expressed in mg of gallic acid equivalents per mL of extract 

after comparing the absorbance with the standard graph of gallic acid with the equation: y = 

1.4584x + 0.0629 (R2 = 0.9932). 

Total flavonoids (TF) were determined as per the procedure described by Woisky and 

Salatino (1998) with slight modification [63]. The extract of 0.5 mL was added to 0.5 mL of 

2% AlCl3 and 2.5 mL of 99 % methanol. After incubation for 15 min at room temperature, the 

absorbance was measured by UV-vis Spectrophotometer (Model: AU 2701, Systronics, India) 

at 420 nm. The TF was expressed in μm of rutin equivalents per mL of extract as rutin was 

used as the standard for obtaining the curve of the equation: y = 1.4784x + 0.0471 (R2 = 

0.9882).   

Total carotenoid (TC) was determined according to the method of Hess et al. (1991) 

with some modifications [64]. The extract of 300 μL was added to 300 μL of water and 600 μL 

of ethanol to make an ethanolic solution. Then it was extracted to 600 μL of n-hexane. The 

absorbance was measured at 450 nm in UV-vis Spectrophotometer (Model: AU 2701, 

Systronics, India). The results were expressed in μg of β-carotene equivalents per mL of 

extract. The standard curve of β-carotene has shown the equation: y = 2.0051x + 0.0693 with 

R2 of 0.9835. 

The method of Liu et al. (2009) was implemented for the determination of DPPH (2,2-

diphenyl-1-picrylhydrazyl) scavenging activity with some modifications [65]. The DPPH 

solution was prepared daily with a concentration of 0.4 mmol/L of DPPH in 95% ethanol. The 

extract of bioactive compounds was diluted with distilled water at a dose of 1 mL of extract 

per 4 mL of water. The 2 mL diluted extract was added to 2 mL of DPPH solution and 2 mL 

of 95% ethanol each. Then the mixtures were shaken vigorously and allowed for 30 minutes of 

incubation time at ambient room temperature in a dark place. The absorbance was taken at 517 

nm against the blank. The DPPH scavenging activity was calculated by the following equation. 

DPPH scavenging activity (%) =  [1 −  
(Ai−Aj)

Ac
] × 100   (1) 

where Ac= 2 mL of DPPH solution + 2 mL of 95% ethanol, Ai= 2 mL of diluted extract + 2 

mL of DPPH solution and Aj= 2 mL of diluted extract + 2 mL of 95% ethanol.  

The results of TPC (mg), TF (mg), and TC (μg) were determined per mL of the extract 

of bioactive compounds from their respective standard curve equations and finally represented 

per 100 mL of the extract of bioactive compounds. All analyses were performed in triplicates 

for every run, further taking the mean values along with the standard deviation. 

2.5. RSM model and optimizations. 

The responses, namely TPC (Y1), TF (Y2), TC (Y3), and DPPH scavenging activity 

(Y4), were taken into account in RSM as the main targeted parameters. The effect of variables 

such as ethanol concentration (X1), ultrasound amplitude (X2), and ultrasound treatment time 

(X3) on responses was performed and studied by developing different mathematical regression 

equations, which may contain linear, quadratic, and interaction terms. The second-order 

polynomial regression equation of RSM was used to express the responses as a function of 

variables, as shown in equation 2 [46,66].  
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Y =  β0 + ∑ b1X1 + ∑ b2X2 + ∑ b3X3 + ∑ b12X1X2  + ∑ b13X1X3 + ∑ b23X2X3 +

∑ b1
2X1

2 + ∑ b2
2X2

2 + ∑ b3
2X3

2           (2) 

where Y is predicted response, b1, b2, and b3 are the linear coefficients, b12, b13, and b23 are the 

interaction coefficients, whereas b12, b22, and b32 are the quadratic coefficients. The RSM 

models or equations of responses were validated by using an analysis of variance (ANOVA) 

of Design-Expert software 11.0. Three-dimensional plots (response surfaces) were obtained by 

using RSM polynomial equations to study the effect of variables on responses [67].   

All four responses, i.e., TPC, TF, TC, and DPPH scavenging activity, were assigned as 

maximum parameters to obtain the optimized values of variables for the extraction of bioactive 

compounds. The RSM optimization was carried out in the numeric optimization tool of Design-

Expert software 11.0. The corresponding values of responses were determined from the 

optimized values of variables for RSM optimization [39]. 

2.6. Validation of the RSM model. 

The coefficient of determination (R2), mean absolute error (MAE), and root mean 

squared error (RMSE) was calculated for the validation of developed RSM models or 

equations. The formulae of R2, MAE, and RMSE are given below [68,69]. 

R2   =   (∑ (Yipre −  Yiobs)2n
i=1 )/ ∑ (Yipre − Y̅ )2n

i=1        (3) 

MAE =  
1

n
∑ ∣ (Yiobs −  Yipre) ∣n

i=1       (4) 

RMSE =   √
1

n
∑ (Yiobs −  Yipre)2n

i=1
       (5) 

where Yiobs is an observed value of the response, Yipre is RSM predicted value of the response, 

Y̅ is the average value of the observed responses, and n is the number of data points for a single 

response. 

3. Results and Discussion 

3.1. Mass balancing of the bael fruit juice extraction process. 

The moisture content of sieved bael fruit pulp was found out to be 68.25±1.25% (wet 

basis). The mass balancing was done on the basis of weights. The sieved bael fruit pulp of 3 

kg and 6 kg of water (1:2 ratio of pulp to water) were mixed thoroughly and then allowed for 

enzymatic extraction of juice. The clear bael juice of 7.74 kilograms (juice yield of 58%) was 

extracted from 9 kg homogeneous mixture of sieved pulp and water with handling losses of 

0.14 kg. The bael fruit pulp waste (BFPW) was recovered from the muslin cloth after extraction 

of juice and weighed to be 1.12 kg. The percentage of waste obtained from sieved bael fruit 

pulp during the juice extraction process was determined to be 37.33 %. The presence of fibers 

contributes to the complex nature of bael fruit pulp, which produces a higher percentage of 

waste, i.e., BFPW, along with bioactive compounds [70]. The BFPW was found to have a 

moisture content of 62.45±1.22% on the wet basis, and this confirmed the higher water holding 

capacity of fibers (cellulose), which are present numerously in the bael fruit pulp [71].  
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3.2. Conventional extraction versus UAE.  

The bioactive compounds were extracted by the conventional method of solid-liquid 

extraction from BFPW. The conventional solid-liquid extraction methods involved the addition 

of water to the BFPW, and heating of water added BFPW for some time. The water-added 

sample of BFPW was heated to 60℃ for 30 minutes [42]. The conventional extraction of 

bioactive compounds has shown the values of TPC, TF, TC, and DPPH scavenging activity as 

37.25±1.45 mg/100 mL, 15.78±1.04 mg/100 mL, 2.54±0.96 μg/100mL, and 41.47±1.27% 

respectively. These values were found to be effectively lower than the ultrasound-assisted 

extracted bioactive compounds. The superiority of UAE over conventional extraction has been 

reported in many food types of research [31,42,72,41,73,39]. The conventional solid-liquid 

extraction process gives less extraction efficiency of bioactive compounds as it comprehends 

higher temperature and extraction time, which degrade or denature the polyphenols, flavonoids, 

and carotenoids. Consequently, it reduces overall antioxidant activity or free radical scavenging 

activity [74-78,38]. In contrast, ultrasound-assisted treatment gives higher extraction efficiency 

of bioactive compounds, as it is a non-thermal processing technology that works on the 

principle of cavitation [47,72,79,80,73,45,44]. Many pharmaceutical industries, therefore, have 

been using ultrasound-assisted extraction technique by coupling with other non-thermal 

extraction techniques for obtaining the higher extraction efficiency of bioactive compounds.     

3.3. RSM analysis. 

The Box–Behnken design of response surface methodology (RSM) has developed the 

quadratic equations (models) for every response. The predicted values of responses, namely 

TPC, TF, TC, and DPPH scavenging activity, were determined by the RSM quadratic equation, 

which was in the form of equation 2. The observed values with their standard deviation and 

RSM predicted values of responses are given in Table 2. The developed models of quadratic 

equations have given the values of regression coefficients. The regression coefficients of linear, 

interaction, and quadratic terms with their significance are shown in Table 3.  The significance 

of quadratic models, as well as lack of fit, were determined by ANOVA. F-values of 57.61, 

39.55, 29.99, and 40.25 for TPC, TF, TC, and DPPH scavenging activity respectively have 

indicated that the developed models are significant (p < 0.0001).  

The lack of fit for all models was found out to be insignificant as F-values of lack of fit 

were 2.45, 1.92, 0.5267, and 3.45 for TPC, TF, TC, and DPPH scavenging activity, 

respectively. The insignificancy of a lack of fit is desirable and acceptable for the model to fit 

[60,81]. The coefficient of determination (R2) value should be higher than 0.80 for the best fit 

model [82]. The R2 values of all developed models were determined to be more than 0.80, as 

mentioned in Table 3. This indicates that the developed RSM models are the best fit models. 

The difference of less than 0.20 agreed to the reasonable relation between adjusted and 

predicted R2 for all models. The values of mean absolute error (MAE) and root mean squared 

error (RMSE) are shown in Table 3. These values were found out to be within the acceptable 

limits corresponding to their observed and predicted values of responses [83,18].  
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Table 3. Regression coefficients of the RSM model. 

Regression coefficients TPC TF TC DPPH scavenging activity 

β0 68.39 41.82 6.89 76.21 

b1 -6.44*** -6.73*** -0.35*** -3.57** 

b2 -3.05*** -2.29** -0.11* 2.35* 

b3 0.71* -1.61** -0.03 0.10* 

b1b2 -1.29* 0.27 0.00 -2.02 

b1b3 0.61 -0.21 -0.16* 3.74** 

b2b3 1.09 0.37 -0.21* -0.05 

b1
2 -7.78*** -5.51*** -0.53*** -19.82*** 

b2
2 0.93 3.71*** -0.91*** -0.60 

b3
2 -1.28* 3.78*** -0.53*** -0.88 

R2 0.99 0.98 0.97 0.98 

Adjusted R2 0.97 0.96 0.94 0.96 

Predicted R2 0.85 0.81 0.86 0.77 

MAE 0.6600 0.7282 0.0870 1.30 

RMSE 0.7398 0.8744 0.1094 1.47 

            (*Significant at p < .1; **Significant at p < .05; ***Significant at p < .001). 

3.4. Effect of variables on the extraction of bioactive compounds.  

The effect of operational variables, i.e., ethanol concentration, ultrasound amplitude, and 

ultrasound treatment time on the TPC, TF, TC, and DPPH scavenging activity, was studied by 

the responses surfaces (three-dimensional graphs) which were obtained from the equations of 

developed models. The operational variables showed a greater effect on the extraction process 

of bioactive compounds because all models were significant (p > .05) as per the results of 

ANOVA [84].  

The total phenol content (TPC) ranged from 49.73 to 70.79 mg gallic acid equivalent per 

100mL of extract for the extraction process. Figure 2 (i-a) shows the highest TPC at a lower 

amplitude and in the middle range of ethanol concentration. The ultrasound treatment time has 

shown a negligible effect on the extraction of polyphenols (Figure 2 (i-b and c)). The ethanol 

concentration and ultrasound amplitude had a negative significant linear impact on TPC; in 

contrast, the ultrasound treatment time had a positive significant linear effect on TPC. Higher 

amplitude may increase the cavitation, which can cause the degradation of polyphenols [39]. 

The ethanol enhances the diffusivity and solubility of polyphenols by lowering the dielectric 

constant of BFPW. The higher concentration of ethanol makes the diffusion very difficult by 

denaturing the protein cell wall [85]. Similar kinds of the effect of ethanol concentration on 

TPC were obtained by Hossain et al. (2012), Prasad et al. (2011), and Altemimi et al. (2015), 

which showed a similar trend of TPC extraction for ultrasound treatment. 

The total flavonoids (TF) were found to be ranged from 30.28 to 52.48 mg rutin 

equivalent per 100mL of extract. Figure 2 (ii-a) represents the higher extraction of flavonoids 

in the middle range of ethanol concentration and at either lower or higher amplitude of 

ultrasound treatment. Similarly, in Figure 2 (ii-b and c), the extraction process has given the 

highest flavonoid content, either lower or a higher range of ultrasound treatment time. The 

ethanol concentration, ultrasound amplitude, and ultrasound treatment time have shown a 

negative significant linear effect on the extracted TF. The moderate concentration of ethanol 

for higher extraction of TF may indicate the medium polar components present in the BFPW, 

whereas middle ranges of ultrasound amplitude and treatment time may attain saturation 

condition for denaturation of flavonoids, which is not favorable for higher extraction of 

flavonoids [74]. The results of TF supports the findings of Garcia-Castello et al. (2015), Wang 

et al. (2012) and Altemimi et al. (2015). 
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The total carotenoids (TC) is the major targeted bioactive compounds for UAE. TC had 

an extraction range from 7.09 to 4.92 μg β-carotene equivalents per 100 mL of extract. The 

middle ranges of ethanol concentration, ultrasound amplitude, and ultrasound treatment time 

have given the highest content of extracted carotenoids, as shown in Figure 3 (iii). The negative 

significant linear effect has been shown by ethanol concentration and ultrasound amplitude on 

the TC, whereas ultrasound treatment time had a linear non-significant impact on TC. The 

results of ethanol concentration on TC are in agreement with the results of Goula et al.  (2017).  

 
Figure 2. Response surfaces of TPC and TF. 

The DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity represents the overall 

antioxidant activity of extracted bioactive compounds. The ethanol concentration between 50 

to 70% has given the highest DPPH activity, as shown in Figure 3 (iv-a). From Figure 3 (iv-b), 
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the DPPH scavenging activity is increasing with an increase in ultrasound amplitude. The 

ultrasound treatment time appeared to have very negligible effects on DPPH scavenging 

activity, as shown in Figure 3 (iv-b and c). The ethanol concentration showed a significant 

negative impact, whereas ultrasound amplitude and ultrasound treatment time had a significant 

positive effect on DPPH scavenging activity. The DPPH scavenging activity always may not 

be directly proportional to total phenol content as scavenging activity is shown by the many 

compounds such as polyphenols, carotenoids, flavonoids, polysaccharides, etc. [46]. The 

results of DPPH scavenging activity were found to similar to the outcomes of Altemimi et al. 

(2016), Goula et al.  (2017), and Altemimi et al. (2015).  

 

Figure 3. Response surfaces of TC and DPPH scavenging activity. 
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3.5. Optimization of operational variables. 

RSM optimization of variables has been carried out by numerical method. The ethanol 

concentration of 51.21%, ultrasound amplitude of 51.45%, and ultrasound treatment time of 

6.11 minutes were found out to be optimized values of operational variables. Similar kinds of 

optimal values have been reported by Altemimi et al. (2016), Hossain et al. (2012), Khan et al. 

(2010), Prasad et al. (2011), and Wang et al. (2012). The optimized values of TPC, TF, TC, 

and DPPH scavenging activity were calculated at optimized values of variables and tabulated 

in Table 4. The desirability bar graph of variables and responses has shown in Figure 4. The 

overall desirability of the numerical optimization process was found out to be 0.843, which is 

acceptable [86].  

Table 4. RSM-optimized values of variables and responses. 

Parameters RSM optimized values 

1. Variables  

Ethanol concentration (%) 51.22 

Ultrasound amplitude (%) 51.45 

Ultrasound treatment time (minutes) 6.11 

2. Responses  

TPC (mg gallic acid equivalent/100mL) 70.79 

TF (mg rutin acid equivalent /100mL) 45.85 

TC (mg β-carotene equivalent /100mL) 6.75 

DPPH scavenging activity (%) 74.40 

 
Figure 4. The desirability of variables and responses for the optimization of the extraction process. 

4. Conclusions 

 The process of bale fruit juice extraction has shown the higher production of bael fruit 

pulp waste (BFPW) (37.33%), and it was then recycled for the extraction of bioactive 

compounds to reduce solid food waste and, consequently, the environmental pollution through 

dumpings. The ultrasound-assisted extraction (UAE) was concluded to have the capability to 

increase the extraction efficiency of bioactive compounds than conventional solid-liquid 
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extraction. RSM analysis of Box–Behnken design for the extraction process revealed that the 

ethanol concentration, ultrasound amplitude, and ultrasound treatment time were statistically 

significant for the process of extraction of bioactive compounds. Although, ultrasound 

treatment time had the least influence on the extraction of bioactive compounds than ethanol 

concentration and ultrasound amplitude. The values of RMSE and MAE were found to be 

within the acceptable limits and also validated the effectiveness of RSM for the process of 

ultrasound-assisted extraction of bioactive compounds from BFPW. The RSM analysis showed 

the ethanol concentration of 51.22%, ultrasound amplitude of 51.45%, and ultrasound 

treatment time of 6.11 minutes as an optimized value of operational variables for the extraction 

process of bioactive compounds such as polyphenols, flavonoids, carotenoids, etc. The present 

study revealed the richness of BFPW in terms of essential compounds that can be recovered 

efficiently by the ultrasound extraction method. Recovered or extracted compounds may be 

used either directly in liquid or as a lyophilized powder for its potential use in food and 

pharmaceutical medicines. 
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