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Abstract: The levels of protein tyrosine phosphorylation within a cell is regulated by protein tyrosine 

kinases and protein tyrosine phosphatases. These protein tyrosine phosphatases (PTP) can act both as 

positive and negative regulators during cell cycle progression and signal transduction. Phosphatase 

activity is shown by Phosphatase and Tensin homolog (PTEN) protein encoded by PTEN gene localized 

on human chromosome 10. Earlier findings established the role of PTEN as a tumor suppressor in 

Cowden’s disease, where PTEN mutations resulted in disease outcomes. Subsequent studies found the 

role of PTEN mutations in various human cancers, making it one of the vastly studied tumor suppressor 

genes. The current review has been planned to get a deeper insight into the potential role of PTEN in a 

variety of physiological processes involved in normal development like cell growth, migration, and 

differentiation along with the factors, regulation, and underlying mechanism.  

Keywords: PTEN; Cancer; cell proliferation; Cell Cycle regulation; intracellular; cytotoxic; tumor 

suppression; Phosphorylation. 

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Protein tyrosine kinase and protein tyrosine phosphatase regulate the level of protein 

tyrosine phosphorylation within a cell. These protein tyrosine phosphatases (PTP) can act both 

as a positive and negative regulator during cell cycle progression and signal transduction [1]. 

A large number of proteins are included in the PTP superfamily, which also comprises of dual 

specific phosphatases. Phosphatase activity similar to such dual phosphatases is shown by 

Phosphatase and Tensin homolog (PTEN) protein encoded by PTEN gene, which is localized 

on human chromosome 10. The role of PTEN as a tumor suppressor was initially found in 

Cowden’s disease, where PTEN mutations resulted in disease outcomes [2]. Subsequent studies 

had found the role of PTEN mutations in various human cancers, making it one of the vastly 

studied tumor suppressor genes [3].  

PTEN plays a major role in processes involved in normal development like cell growth, 

migration, and differentiation by inhibiting signals transduced by phosphotidylinositol-3-

kinase (PI3K) [4]. PI3Ks comprises of lipid kinases that activate various signaling pathways 

through phosphorylation. These are grouped in 3 classes on the basis of substrate preference 

and sequence homology [5]. Class I PI3Ks can either be activated by receptor tyrosine kinases 

(RTKs) or by G-Protein coupled receptors (GPCRs), which can further activate 
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serine/threonine kinase AKT and other downstream pathways. It had been found that genetic 

alteration in several proteins in PI3K pathway culminates into cancer. Some evidence 

suggested that constituents of PI3K pathway are highly suitable for pharmacologic intervention 

and one of the most alluring targets for therapeutic intervention in cancer. Further, the 

functioning of PTEN as PIP3 3’-phosphatase turns off PI3K pathway, thus renders its tumor 

suppressor activity (Fig.1). Therefore, the loss of PTEN activity could result in uncontrolled 

signaling through PIK3 pathway leading to cancer [6]. In addition to PTEN, SHIP-2 functions 

as PIP3 5’-phosphatase to negatively regulate PI3K and protein kinase B (PKB) pathway, as 

seen in glioblastoma multiform brain tumors [7,8]. Recently, many functions of PTEN 

independent of PI3K/AKT signaling pathway are also explored [9]. This review, therefore, 

covers the role of PTEN both as a tumor suppressor and metabolic regulator, including its 

downstream targets. Additionally, epigenetic regulation of PTEN is also discussed. 

 

 

Figure 1. The antagonistic function of PI3K and PTEN. 

The protein encoded by PTEN comprises of 403 amino acid residues with a structurally 

significant catalytic phosphatase domain and C2 domain. Both N and C-terminus of PTEN 

have crucial sequences as the N-terminus sequence is responsible for the binding of the protein 

to membrane lipids, and C-terminus contains a binding motif involved in protein-protein 

interaction [10]. PTEN possesses both lipid and protein phosphatase activity in-vitro [11], 

whereas, under in-vivo conditions, mostly lipid phosphatase activity is observed [12,13]. 

2. Diverse roles of PTEN in relation to cancer 

2.1. Role of PTEN in cell cycle regulation. 

A cell cycle is a coordinated event consisting of four distinct phases (G1, S, G2, and 

M). PTEN plays a significant role in normal cell cycle regulation as it controls the re-entry of 

cells in cell cycle phases resting in G0 stage. Moreover, it also acts as a regulatory switch from 

G1/S and G2/M transition. Various studies marked PTEN as an important component of 

multiple checkpoints to prevent uncontrolled proliferation (Fig. 2). Abnormal development of 

the cephalic region was found in PTEN mutant embryos [14-16]. In addition to this, PTEN 

mutants also showed decreased sensitivity to apoptosis.  

 
Figure 2. Schematic representation of PTEN involved in cell signaling through the participation of 

other tumor suppressors such as TP53, MDM2, and BRCA1 performing a variety of physiological 

functions such as cell proliferation, DNA repair, and regulation of cell cycle, etc. 
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2.1.1. Role in G1-S transition. 

Entry and progression through G1 depend upon cell type and context where each cell 

undergoes different signals and developmental programs with differential risk of 

transformation [17]. Progression of the cell through different stages of the cell cycle is mediated 

by cyclin-CDK complex. Cyclin dependant kinase (CDK) requires cyclin for catalytic 

competence and different cyclin-CDK complex works during different stages of the cell cycle. 

In addition to the role of small inhibitory proteins like Inhibitors of CDK4 (INK4), CDK 

interacting protein/Kinase inhibitory protein (CIP/KIP) [18], and ubiquitin-mediated 

proteolysis mechanism[19], PTEN also regulates G1 progression and G1/S transition. 

Progression of the cell cycle with accelerated G1/S transition was seen due to the loss of PTEN 

in embryonic stem cells[20].  Expression of p27 Kip1 induced by PTEN showed a reduction in 

CDK2 activity inhibiting G1/S transition[21]. This was further proved that PTEN induced G1 

arrest requires p27 Kip1. Collateral deletion of PTEN and p27Kip1 led to the development of 

prostate cancer, highlighting their importance in tumor suppression [22,23]. Besides PTEN- 

p27 Kip1 pathway, certain other regulators are also involved in PTEN mediated control of G1 

phase[24]. The role of PTEN in cell cycle regulation has been elucidated in Figure 3. 

 
Figure 3. Role of PTEN in cell cycle regulation. PTEN signaling at the nuclear and cytoplasmic levels has been 

shown with a coordinating role in the facilitation of diverse mechanisms in cell cycle regulation. The PTEN 

localization at the subcellular levels is a determinant of its functional aspects. At the cytoplasmic level, there is a 

downregulation of AKT, along with an increase in the levels of other associated components leading to apoptosis. 

While at the nuclear level, PTEN downregulates ERK, increasing the cyclin D1 levels leading to cell cycle arrest, 

overall genomic stability, and increased apoptosis.  

Along with cytoplasmic localization, PTEN is also found in the nucleus to induce G1 

arrest independently [25]. Oxidative stress causes PTEN phosphorylation resulting in nuclear 

accumulation by inhibiting nuclear export[26]. Regulation of G1 phase by PTEN is mediated 

by the upregulation of p27 Kip1 by cytoplasmic PTEN and downregulation of cyclin D1 by 

nuclear PTEN [27]. Nuclear PTEN can further cause acetylation of p53 in response to DNA 

damage resulting in G1 arrest[28]. G1 arrest can also be mediated by nuclear PTEN in 

combination with SPRY2 (Sprouty RTK Signaling Antagonist 2)[29]. Thus, PTEN inhibits 

premature progression to S phase and also regulates DNA fork progression during S phase. 

PTEN recruits damage response proteins in case of replication stress [30]and further interacts 

with single-strand DNA binding protein and DNA helicase for stabilization of the replication 
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fork [31]. The loss of PTEN, therefore, results in replication errors enhancing genomic toxicity 

[32]. 

2.1.2. Role in G2-M transition. 

The involvement of PTEN in G2-M transition was found in PTEN deficient cells, which 

showed the accelerated transition from G2/M to G1 in response to radiation-induced DNA 

damage [33]. This was further validated as PTEN null embryonic stem cells showed premature 

exit from G2 on radiation treatment [34]. Phosphorylation of PTEN by CHK1 (Checkpoint 

kinase 1) can cause cells with hindered DNA replication to enter G2/M[35]. Inhibition of Notch 

signaling and dephosphorylation of PTEN can result in prometaphase arrest preventing the 

progression of the cell cycle [36]. PTEN can also be dephosphorylated by TOPK (lymphokine-

activated killer T cell-originated protein kinase) to control mitotic entry [37]. PTEN further 

interacts with TOP2A (DNA topoisomerase IIα) at the decatenation checkpoint in G2 phase 

for removal of entangled DNA before mitotic entry [38]. During mitosis, loss of PTEN affects 

the integrity of centrosomes and mitotic spindle, resulting in misalignment of chromosomes, 

variable ploidy, and tumorigenesis [39]. These mitotic defects can be mediated by increased 

expression and phosphorylation of PLK1 (polo-like kinase) having oncogenic potential. PTEN 

controls the expression and phosphorylation level of PLK1, thereby protecting cell division 

and polyploidy [40,41]. Mutual interaction is set between PTEN and PLK1, where they control 

each other’s phosphorylation to mediate their function during mitotic exit. Similarly, reciprocal 

regulation between PTEN and APC/CCDH1 (Anaphase promoting complex) promotes the 

transition from mitotic exit to the next cell cycle. CDH1 causes APC/C induced ubiquitination 

of PTEN, resulting in PTEN degradation and mitotic exit [42]. 

2.2. PTEN as a tumor suppressor.  

PTEN is one of the most frequently mutated genes in human cancers, and germ-line 

mutations in PTEN can result in rare autosomal dominant inherited cancer syndromes [43]. 

Somatic mutations occur throughout PTEN gene along with specific hotspots [44]. These 

mutations can result in increased cell proliferation, reduced cell death, and tumor development. 

Mutations also lead to loss of PTEN function or reduced levels of PTEN in most of the cases. 

Genetic inactivation of PTEN is frequently found in glioblastoma, melanoma, endometrial, 

prostate, colon, and bladder cancer, whereas reduced expression is observed in lung and breast 

cancer[45-47]. Analysis of PTENhy/+ mouse model revealed that even subtle reduction in PTEN 

expression could promote cancer susceptibility in mice, highlighting the importance of PTEN-

controlled pathways for tumor development [48]. In addition to genetic mutations in PTEN, 

epigenetic silencing, transcriptional repression, and post-translational modifications can result 

in loss of PTEN function. 

3. Metabolic activities 

Though PTEN is globally accepted as a potent tumor suppressor gene its role in 

metabolic regulation has recently been highlighted by genetic studies. The phosphatase activity 

of PTEN reduces the level of PIP3 that functions as a critical secondary messenger[49]. Studies 

on C. elegans and Drosophila showed the involvement of PTEN in growth control and 

metabolism.  
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3.1. Regulation of glucose metabolism. 

Binding of Insulin and Insulin-like growth factors (IGF-1 and IGF-2) to insulin and IGF 

receptors can either result in direct activation of PI3K or can phosphorylate insulin receptor 

substrate (IRS) for PI3K activation [50]. Activation of PI3K/AKT results in elevated insulin 

levels that are sensed by adipocytes and myocytes to initiate glucose uptake. Insulin/PI3K 

signaling induces membrane trafficking of GLUT4 through phosphorylation of AS160 at 

Thr642 by serine/threonine kinase AKT in adipocytes [51]. AKT further phosphorylates other 

targets that are indulged in regulating glucose metabolism. Phosphorylation and inhibition of 

GSK3 activate glycogen synthase in addition to the regulation of β-catenin and cell cycle.  

Liver-specific PTEN null mutation in mice caused phosphorylation of GSK3 and accumulation 

of glycogen in hepatocytes [52]. Additionally, AKT mediated phosphorylation of FOXO in 

hepatocytes blocked transcription of glucose-6-phosphatase (G6Pase) and 

phosphoenolpyruvate carboxykinase (PEPCK) involved in gluconeogenesis [53]. These two 

enzymes are also transcriptionally repressed through phosphorylation of peroxisome 

proliferator-activated receptor-gamma co-activator (PGC-1α) by AKT [54]. Regulation by 

AKT and blockage by PTEN mediates the response of metabolic organs like liver, muscle, and 

adipose tissue to elevated insulin levels [55]. A similar response was seen in mice where PTEN 

deletion in the liver caused strong down-regulation of PEPCK and moderate down-regulation 

of G6Pase. Similarly, the deletion of PTEN in mice adipose tissues showed increased insulin 

sensitivity, increased membrane localization of GLUT4, and resistance to streptozotocin-

induced diabetes [55,56].   

3.2. Regulation of lipid metabolism. 

Lipid metabolism is also controlled through PTEN-regulated PI3K signaling. 

PTEN/PI3K/AKT signaling controls the expression of sterol receptor element-binding protein 

(SREBP) at multiple levels. SREBP functions as a critical master regulator involved in 

lipogenesis by binding to the promoter of lipogenic enzyme genes. The transcription of SREBP 

is repressed by the forkhead transcriptional factor, FoxO1 that is a downstream target of AKT 

[57]. A study demonstrated that induction of SREBP1 transcription is also dependant on 

TORC1 activity by using rapamycin and siRNA to inhibit mTORC1 [58,59]. But contradictory 

results were seen in TSC1-deficient mice having a defect in mTORC1 signaling [60,61]. 

SREBP cleavage-activating protein (SCAP) and insulin-induced gene (Insig) controls the 

processing of SREBP. SCAP mediates cleavage and movement of mature SREBP to the 

nucleus in response to sterol demand. This action is inhibited by the binding of Insig to SCAP. 

Interaction of Insig and SCAP is blocked either by inhibition of PI3K/AKT activity or by 

oxysterols that suppress the expression of Insig-1 [62]. This results in the processing of SREBP 

that is both mTORC1-dependent and mTORC1-independent [63]. Both TORC1 and FoxO1 

are downstream targets of PTEN/PI3K/AKT signaling control SREBP expression and 

lipogenesis. Additionally, the expression of Fasn by SREBP is inhibited by the binding of Maf-

1 to the promoter of Fasn. The expression of MAF-1 is itself regulated by PTEN through AKT2 

and mTOR [64,65]. These signaling responses were validated in PTEN deficient mice. Loss of 

PTEN in mice liver resulted in heightened de novo lipogenesis through SREBP induction and 

Fasn expression. Activation of AKT2 caused elevated lipogenesis, which is both mTOR 

dependant and independent, and this effect was reversed by the deletion of Akt2 [66]. 

Additionally, the gain of function of FOXO1 induced lipid synthesis [67]. 
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3.3 Regulation of mitochondrial metabolism. 

The involvement of PI3K/AKT signaling in mitochondrial function has been 

discovered while elucidating molecular signals underlying “Warburg effects” [50]. The 

involvement of AKT is found in the inner and outer mitochondrial membrane along with the 

mitochondrial matrix. Binding of hexokinase II to mitochondrial voltage-dependent anion 

channel (VDAC) is promoted by AKT that causes phosphorylation of glucose molecules and 

conversion to ATP at the mitochondrial outer membrane [68,69]. Localization of AKT in the 

inner mitochondrial membrane [70] whereas within the mitochondrial matrix, AKT causes 

phosphorylation of GSK3β and pyruvate dehydrogenase (PDH) to regulate mitochondrial 

respiration [71]. Mitochondrial localized AKT further regulates transcription of mitochondrial 

DNA as a promoter of HMG-CoA contains FOXO-3 response element [72]. Members of PGC-

1 family function as transcriptional co-activator by binding to estrogen-related receptors 

(ERRs) for mitochondrial function. ERRα is the best-characterized isoform of ERRs that is 

abundantly expressed in high oxidative organs [73]. The activity and expression of ERRα are 

increased by the binding of PGC-1α [49]. Activation of AKT causes phosphorylation and 

activation of CREB transcription factor, which in turn induces transcription of PGC-1 upon 

activation. PGC-1 as a co-activator increases transcription of ERRα to initiate transcription of 

mitochondrial genes [74]. 

Additionally, NRF1, which is also involved in the transcription of mitochondrial genes, 

contains a substrate consensus sequence of AKT where phosphorylation of NRF1 by AKT 

induced Tfam expression in hepatoma cells [75]. Thus, AKT controls mitochondrial gene 

transcriptional networks either by direct phosphorylation of FOXO and NRF1 or indirectly by 

inducing expression of ERRα. Similarly, overexpression of NRF1 and AKT imitated the effect 

of TFAM to overrule ion-induced mitochondrial damage confirming the involvement of 

PI3K/AKT/FOXO signaling pathway in the regulation of mitochondrial gene transcription 

[76,77]. 

4. Regulation of PTEN at the post-translational level 

The activity of PTEN can be regulated at genetic, epigenetic, and post-translational 

levels [78]. PTEN function can be lost partially or completely by genetic alterations occurring 

due to allelic loss, point, or truncation mutations [79]. Epigenetic alteration includes gene 

silencing due to promoter hypermethylation [80]. Post-translational modification of PTEN 

includes phosphorylation, ubiquitination, sumoylation, acetylation, and oxidation (Fig. 4).    

 

Figure 4. Post-translational regulation of PTEN. Post-translational regulation of PTEN commands its detailed 

cellular and biological functions; at cellular levels, specific PTM’s/interactions generate biochemically distinctive 

subpopulations of PTEN, which is having certain biochemical and cellular properties for diverse and dedicated 

cellular and biological functions.  
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4.1. Phosphorylation. 

Phosphorylation targets C2 and C-terminal domains of PTEN to modulate its activity 

[81-82]. Phosphorylation leads to a closed conformational state of PTEN, resulting in 

inactivation and increased stability. Increased phosphorylation causes reduced expression of 

PTEN, as seen in the case of gastric cancer [83,84]. PTEN in non-phosphorylated open state 

conformation shows increased association with the membrane [85]. So, dephosphorylation of 

PTEN is necessary before binding to membrane proteins. PTEN phosphorylation can be caused 

by multiple kinases that target specific sites. Abnormal regulation of PTEN by multiple cancer-

specific kinases is shown in Table 1.  

Table 1. Abnormal PTEN regulation by multiple cancer-specific kinases. 

Specific 

Kinases 

Sites of PTEN targeted through 

phosphorylation  

Abnormal Effects Tumor Type  

CK2 Ser 370, Ser 380,Ser 385, Thr 382, Decrease in phosphatase 

activity 

Lymphoblastic Leukaemia, 

Endometrial carcinoma  

RAK  Tyr 336 Irregularity in function and 

degradation of PTEN 

Breast Cancer 

PLK1  Thr 366,Ser 370,Ser 380, Inactivation and 

degradation of PTEN 

Prostate Cancer 

LKB1  Ser 380,Ser 385, Thr 382, Thr 383 Inactivation of PTEN  Lung Squamous cell 

carcinoma, Ovarian cancer 

PTEN is phosphorylated by glycogen synthase kinase-3β (GSK3β) at Ser362 and 

Thr366. GSK3β mediated phosphorylation of PTEN can function as a negative feedback loop 

of the PI3K signaling pathway [86]. Mutation at one of the phosphorylation sites (Ser385) 

promoted dephosphorylation events to regulate PTEN function. In addition to this, the 

interaction between COOH-terminal and CBRIII motif of the C2 domain was identified, and 

the auto-inhibitory role of COOH-terminal on PTEN membrane recruitment and phosphatase 

activity was suggested [87]. Moreover, RhoA-associated protein kinase (ROCK) mediated 

phosphorylation can lead to membrane translocation of PTEN [88]. The catalytic subunit of 

PI3K, p110 inactivates PTEN via RhoA and ROCK pathway through increased tyrosine 

phosphorylation of PTEN [89].  

Similarly, Src family tyrosine kinase, FRK (Fyn-related kinase), promotes 

phosphorylation on Tyr336, causing PTEN stability [90]. The activity and stability of PTEN 

depend upon the site of phosphorylation and kinase involved. Phosphorylation of C2 domain 

of PTEN causes increased membrane affinity with decreased degradation. On the other hand, 

phosphorylation of the C-terminal domain caused a conformational change and increased 

stability with decreased activity and membrane targeting [79]. 

4.2. Ubiquitination and Sumoylation of PTEN. 

PTEN levels can also be affected by downregulation through the ubiquitin/proteasome 

pathway. Loss of PTEN function due to ubiquitin-mediated degradation is considered to be the 

cause of non-small cell lung carcinoma [91]. Overexpression of NEDD4-1 induces 

ubiquitination of PTEN at Lys13 and 289 causing ubiquitin-mediated PTEN degradation [92]. 

Some reports indicated NEDD4-1 mediated PTEN regulation in the bladder, gastric, and 

colorectal cancers, but the deletion of NEDD4-1 in mice and cultured cells does not prevent 

ubiquitination of PTEN [93]. This indicated role of additional E3 ligases like WWP2 (WW 

domain-containing protein 2) and X-linked inhibitor of apoptosis protein (XIAP) in regulating 

PTEN protein levels [94]. Polyubiquitination of PTEN results in degradation and loss of tumor 
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suppressor activity, whereas monoubiquitination causes nuclear transport and genomic 

stability. PTEN contains two PEST sequences that are a unique mark of ubiquitin-mediated 

degraded proteins [95]. Recently additional ubiquitination site (Lys66) was found in PTEN, 

which showed a major role in PTEN stability [96]. Inhibition of proteasome-mediated PTEN 

degradation is considered as a therapeutic approach for PTEN stability [97]. Deubiquitylase 

HAUSP/USP7 (Herpesvirus associated ubiquitin-specific protease) can reverse the 

monoubiquitination of PTEN, preventing nuclear import [98]. Mislocalization of PTEN is 

considered as a cause of central nervous system tumors and lymphomas [99].  

Similarly, sumoylation mediated by SUMOs (Small ubiquitin-like modifiers) regulates 

PTEN activity through covalent attachment to the C2 domain of PTEN at Lys254 and 266. 

Sumoylation facilitates the binding of PTEN to the plasma membrane and downregulation of 

PI3K/AKT pathway, suppressing tumor progression [100]. An additional common site (K289) 

for SUMO mediated modification and monoubiquitination was found on PTEN. 

Monoubiquitination results in nuclear localization, whereas sumoylation results in recruitment 

to the plasma membrane. The exclusion of sunoylated PTEN from the nucleus made cells 

hypersensitive to DNA damage [101].  

4.3. Acetylation of PTEN. 

Stimulation by growth factors initiates acetylation of PTEN at Lys125 and 128 (K125 

and K128) by lysine acetyltransferase 2B (KAT2b)/PCAF (p300-CREB binding protein), 

reducing catalytic activity of PTEN [102]. PTEN can also be acetylated at the PDZ binding 

domain (Lys402) by CREB binding protein, which affects the interaction of PTEN with PDZ 

domain-containing partners. Acetylation of PTEN can be reversed by deacetylase sirtuin 1 as 

Sirt-1 deficient cells contained hyper-acetylated PTEN  [103].  

4.4. Oxidation of PTEN. 

The activity of PTEN depends on the presence of highly reactive cysteine residue in the 

catalytic site that functions as protein tyrosine phosphatase sensitive to oxidation [104]. The 

catalytic activity of PTEN is inactivated by oxidation as a result of environmental stress or 

cellular strategy. Reactive oxygen species (ROS) in the form of H2O2 can oxidize cysteine to 

inactivate PTEN. This is done by the formation of a disulfide bond between Cys124 and Cys71 

[105,106]. The role of ROS in PTEN inactivation was studied [107], where treatment of murine 

macrophage cell line with lipopolysaccharide and phorbol acetate increased the percentage of 

inactive oxidized cellular PTEN. Thioredoxin prevents oxidation mediation inactivation of 

PTEN [105]. Interaction between peroxiredoxin 1 (PRDX1) and PTEN forms the PTEN-

PRDX1 complex that prevents oxidation of PTEN by inhibition of disulfide bond formation 

[108]. This was evident as incubation of cells with thioredoxin reductase inhibitor (2,4-dinitro-

1-chlorobenzene) delayed the reduction of oxidized PTEN and overexpression of thioredoxin 

reductase promoted resumption of tumor suppressor activity of PTEN. Additionally, the 

activity of PTEN can also be affected by the oxidation of PTEN-binding partners [109]. 

Increased ROS levels in tumor cells can initiate PTEN inactivation through oxidation and 

subsequent activation of the PI3K/AKT signaling pathway. The use of ROS scavengers as an 

approach can enhance PTEN activity against lymphoblastic leukemic cells [79].   
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5. Transcriptional and post-transcriptional regulation of PTEN 

The regulation of PTEN is also undertaken at transcriptional and post-transcriptional 

levels. Transcription of PTEN is regulated by several transcriptional factors that include p53, 

early growth response protein 1 (EGR-1), peroxisome proliferation-activator receptor γ 

(PPARγ) [50], and active transcription factor 2 (ATF2) [110]. Transcriptional repression of 

PTEN is promoted by SNAIL and SLUG [111], where these two compete with p53 to bind to 

the promoter of PTEN. Additionally, transcription of PTEN is regulated by binding of nuclear 

kappa B (NFkB), AP-1 transcription factor subunit c-Jun, and Notch signaling co-regulatory 

CBF-1 (C-promoter binding factor-1) to promoter region [112,113]. 

6. RNA mediated regulation of PTEN 

Recently, RNA mediated regulation of PTEN is reported through RNA-RNA 

interaction by microRNAs and long non-coding RNAs. Several miRNAs were found to bind 

to 3’-UTR of PTEN mRNA. This is supported by the fact that the reduction in PTEN mRNA 

levels is observed by a simultaneous increase in levels of various miRNAs [114-116]. A 

sequence similar to PTEN mRNA is shared by long non-coding RNA encoded by PTEN 

pseudogene transcript PTENP1 [117]. This transcript stabilizes PTEN mRNA by binding to 

PTEN targeting miRNAs. Negative PTEN regulation is promoted by binding of an antisense 

transcript of this pseudogene to PTEN promoter [118,119]. 

7. Regulation of PTEN by protein-protein interactions  

PTEN activity can be affected by interacting proteins. Most of these interactions are 

mediated by PTEN C-terminal PDZ-BD and involves interaction with scaffold proteins. These 

interactions can alter the role of PTEN as a tumor suppressor by causing a change in its 

conformation, location, and stability [78]. Binding of interacting protein, melanocortin-1 

(MC1R) prevents ubiquitination and degradation of PTEN [120]. Similarly, the ubiquitination 

of PTEN by NEDD4-1 is inhibited by binding of FRK (Fyn-related kinase) to PTEN. PTEN 

localization can be regulated by interacting proteins that can influence its function and activity. 

Increased membrane localization of PTEN is influenced by scaffold proteins like β-arrestins 

and membrane-associated guanylate kinase inverted 2 (MAGI2). This causes the activation of 

the phosphatase activity of PTEN [121,122]. PTEN interacts with the adaptor protein NHERF 

(Na+/H+ exchanger regulatory factor) through the PDZ domain to form a ternary complex that 

prevents activation of the PI3K/AKT pathway [123]. Movement of PTEN towards the cellular 

membrane is regulated by motor protein myosin V which enhances its phosphatase activity 

[124]. Similarly, tumor suppressor activity and stability of PTEN is enhanced after its 

interaction with mammalian DLG1 (discs large homolog 1) [125]. The lipid phosphatase 

function of PTEN can also be activated after interaction with p85 [126]. Disruption in p85-

PTEN binding through mutation in the p85 gene increased PIP3 levels and AKT 

phosphorylation [127]. Binding of microtubule-associated Ser/The kinase 2 (MAST2) to PDZ 

motif of PTEN increased PTEN phosphorylation [128]. The lipid phosphatase activity of PTEN 

is also influenced by other regulators, including PREX2a (PIP3 dependent RAC exchanger 

factor 2a) [129], SIPL1 (Shank-interacting protein-like 1) [130], and MAN2C1 (α-mannosidase 

2C1) [131].  
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8. Epigenetic alteration of PTEN 

The role of epigenetics in PTEN expression has been proposed where promoter 

methylation suppressed PTEN expression in various types of cancer  [132]. Methylation is 

mostly related to transcriptional repression, but PTEN transcription is not downregulated by 

promoter methylation under all conditions. This condition was discovered in patients with 

Cowden syndrome (CS) and Cowden like syndrome (CLS) lacking PTEN mutations [133]. 

PTEN promoter hyper-methylation showed no detectable effect on PTEN expression in such 

patients. However, the expression of another gene, KILLIN sharing PTEN promoter and 

transcribing in the opposite direction, was affected. This KILLIN gene is the target of p53 and 

is responsible for p53 induced apoptosis [134]. In addition to this, an important finding showed 

predominant methylation of PTEN pseudogene (psiPTEN) rather than PTEN in cell lines and 

tumors [135]. Their investigation showed 98% identity between both genes, which also covers 

the subsequent part of PTEN promoter. As a result, such an enormous level of homology 

challenges the methylation study of the PTEN gene. So, nucleotide differences between both 

sequences should be critically considered for performing PTEN methylation analysis as results 

obtained might not reflect the exact methylation status of PTEN. 

9. Conclusion 

The detailed insight into the various regulatory components of the PTEN pathway 

reveals its multifaceted potential in a variety of physiological processes involved in normal 

development like cellular growth, migration, and differentiation, along with the factors and 

regulation. Owing to its tumor suppression, PTEN is a commonly mutated gene, reported in 

several types of cancers. This gene plays a significant role in the regulation of cell growth, 

survival, proliferation, genomic stability, and cell motility as well. Loss of PTEN activity is a 

major troublesome that hinders in identifying the clinical aspects of its activity. Still, a number 

of studies are going on in developing PTEN inhibitors, which look promising and be 

biologically active. A specific inhibitor or activator can target PTEN, resulting in its 

inhibition/activation at pharmacological levels, which can be helpful in the treatment of Breast 

Cancer. A thorough insight into the PTEN pathway can further help us in the exploration of 

more developed and updated cancer therapies. 
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