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Abstract: The structure of β-coronavirus MERS-CoV S1-CTD demonstrated an interesting subject of 

how two structurally similar viral RBDs recognize different protein receptors. Same as SARS-CoV, the 

S1-CTD, MERS-CoV S1-CTD viruses also contains two subdomains, but, in contrast to the loop-

dominated MERS-CoV, RBM contains a 4-stranded antiparallel β-sheet, showing a relatively flat 

surface to bind DPP4. The protein sequences were obtained from NCBI web sites, and the proteins of 

COVID-19, such as protein sequences, were applied for analyzing the conserved domain. Some proteins 

were also utilized for constructing 3-D structures via homology modeling.  We also show that N-

terminal deletions of alpha 2 that no longer block STAT1 nuclear import. Covid-19 spike protein 

structures, along with peptide-like inhibitor structure of the SARS-CoV-2 spike glycoprotein, including 

small-molecule inhibitors, have been simulated via Molecular dynamic and docking methods. Several 

genomes of various coronaviruses using BAST and MAFFT software have been evaluated, and a few 

genomes have been selected.  
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1. Introduction 

One of the important part of SARS-CoV-2, as well as several other COVID  viruses, 

are the presence of spike proteins which allow these viruses for penetrating host cells and 

consequently cause infection (figure 1). The S-proteins are trans-membrane proteins 

glycosylated, which are made up of 1200 to 1500 amino acids, based on a variety of viruses 

[1]. S proteins are major components in SARS CoV2, where play an essential role in cell entry, 

approximately  1300aa long proteins, including two main sub-domains, which are structured 

as S1 and S2 In COVID-19, that is a beta-coronavirus from bat coronaviruses and infects 

humans. Structural details demonstrated that COVID-19 extracted from a bat SARS-like 

coronavirus and has mutated in the S-protein & N-proteins [2].  The COVID-19 complete 

genomes to possess fourteen open reading frames (ORFs) encoding 28 proteins. Sequences 

analyzing exhibited that COVID-19 has more than 85% identity with SARS-CoV and 55% 

with MERS-CoV. S1 receptor binding domain or RBD and mediates viruses attachment to their 

ACE2 receptors, while S2 carries out the function of fusion to enable successful entry [3]. S2 

contains the fusion peptide. As compared to the E &M proteins in virus assembling, the S 

proteins have a major role in the host cells and initiating infection [4]. As mentioned above S 

proteins could be divided into two important functional subunits, which include the N-terminal 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC113.1001610026
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6665-837X
https://orcid.org/0000-0002-6896-336X


https://doi.org/10.33263/BRIAC113.1001610026  

 https://biointerfaceresearch.com/ 10017 

S1 and the C-terminal S2 region. The S1 subunit can be attached to the receptors on the host 

cell, whilst the S2 will be responsible for fusing the envelope of the virus is related to cell 

membranes [5]. In the ORFs group, the ORF1a/b can translate two polypeptides with the 

names, pp1(a) and pp1(ab), and also encodes 15 non-structural proteins. The residual ORFs 

encode other structural polypeptides, including spike(S), (E), (M), and nucleon-capsid (N) [6]. 

COVID-19 also possesses secondary proteins that participate with the host’s innate immune 

response. S-proteins are the same as a molecular machine where mediates coronavirus entry 

into host cells and also binds to the receptors through its S1 domains and then fuses viral 

through its S2 component [6]. Spike protein consists of   3 parts: including a large Ecto-domain, 

a single-pass Tran’s membrane anchor, and a short intracellular tail (scheme 1) [3-6]. Electron 

microscopy investigation showed where the spike proteins have a clove-shaped timer form with 

three S1 heads and a trimmer’s form of S2 stalk. As soon as virus entry inside the cell, S1 binds 

to the related receptor for viral binding, and S2 also fuses the cell and viral membranes. 

Receptor binding is the critical situation in the beginning process of the coronavirus infection 

life [7,8].  

 
Scheme 1. Schematic position of two proteolytic cleavage sites (S1/S2 and S’2), two proposed fusion peptides 

(FP1 and FP2), two heptad repeat regions (HR1 and HR2), transmembrane domain (TD), and cytoplasmic tail 

(CT). 

1.1. How S protein allows coronaviruses to enter cells. 

Right away, the S1 attaches to the receptors, two major changing of systems can occur 

for the S2 subunit to complete the fusion of the virus. Those are consisting of heptad repeat 

(HR) regions 1 and two, otherwise referred to as HR1 and HR2 (Scheme 1). The first 

confirmation is related to the transformation of an un-structured S2 subunit and, in addition, the 

second conformational change for occurring, including the inversion of these subunits to the 

coils. As soon as these shapes are completed, the fusion peptide bonds are anchored to the cell 

of the host for allowing the virus to move towards the membranes [9,10]. 

 
Figure 1. Component of COVID-19. 

1.2. Receptor recognition. 

The β-coronavirus SARS-CoV S1-CTD combined with human’s ACE2 includes; two 

subunits, one a core structure and second a receptor-binding motif or RBM. The RBM 

demonstrated gradually concave outer surfaces for attaching ACE2. The base of these concave 

surfaces are small, two-stranded antiparallel β-sheets, and two ridges are completed through 

several loops. Several virus-binding motifs (VBMs) have been identified on the outer surfaces 
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of the peptidase, away from the buried peptidase catalytic ports. Studies on CoV-ACE2 

combinations have been prepared some new concepts inside cross-species transmissions. 

Within this epidemic, similar SARS-CoV was abstracted from both human patients. Between 

both of the themes a salt bridge, including a hydrophobic media, appears to the virus-receptor 

binding. Two residues in beta-CoV S1-CTD complexes are under mutation, and these played 

major roles in the civet-to-human and human-to-human transmissions during 

 the epidemic.  

The shape of β-coronavirus MERS-CoV S1-CTD demonstrated an important example 

of how two structurally viral RBDs recognize various protein receptors. Same as SARS-CoV 

S1-CTD, MERS-CoV S1-CTD also contains two subdomains, but, in contrast to the loop-

dominated MERS-CoV, RBM contains a four-stranded antiparallel β-sheet, presenting a 

relatively flat surface to bind DPP4. Various  MERS-of coronaviruses family have been 

isolated from bats (Figure 2) [11-14].  

 
Figure 2. Human Sars-Cov S1-CTD. 

1.3. Targeting viruses via the S protein. 

By the lake of S-protein, COVID-19 would never be able to react with the cell of 

humans to cause infection. Consequently, S-proteins exhibit a suitable target for vaccines. 

Moreover, in cells, S protein of viruses is a major inducer of antibodies that naturally produced 

through our human immune systems. So, this kind of antibody binds to the surface of a viral 

system to prevent their entry into human cells, and some of them have been recognized against 

SARS -CoV containing domain targets.  

The most sensitivities of the S-subunits have led other scientists to be attempted in 

researching standardized agents that can stop the binding activities and fusion of S-proteins in 

SARS-CoV-2. Although recent works have discovered that the neutralization capabilities of 

those drugs against the SARS-CoV-2 within the S1 subunits are uncertain, some studies have 

exhibited that drug has a stronger neutralization capability as compared to when these are given 

alone. This information, therefore, leads scientists to believe that a combination of several 

potent drugs has the potential to target SARS-CoV-2 and increase its sensitivity to 

neutralization [12-15].  

1.4. Fusion mechanism. 

Spike proteins are important for any further studies, so during molecular maturation, it 

is cleaved via host proteases into receptor-attaching subunit HA1 and membrane-fusion subunit 
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HA2. During cell entry,  HA1 appends to the sugar receptors of viral structures, and after that 

HA1 dissociates, and then HA2 changes towards the transition of the post-fusion positions. 

Consequently, the buried hydrophobic fusion peptides in HA2 become exposed and insert into 

the target host membrane (Figure 3).  

 
Figure 3. Hemagglutinin glycoprotein (HA) into receptor-binding subunit HA1 and membrane-fusion subunit 

HA2. 

The fusion peptide is eventually positioned on the same end of the six-helical structures, 

yield the viral and host membranes together to fuse. Due to six-helical structures that are 

energetically stables, huge amounts of energies are released during the conformational 

transition of HA. These structures of the perfusion COVID- spike proteins are also more 

complex than that of influenza virus HA. In spike structures, S1 heads (on top of an S2 )  

preventing S2 from undergoing conformational transitions. In addition, in the S2 stalk, HR-N 

forms several helical conformations and arranges by themselves along the symmetry axis of S2 

subunits. 

2. Materials and Methods 

 All computational calculations were done using the Gaussian, Hyper Chem, Chem 

office, Charmm, and Schrodinger packages. Covid-19 spike structures, along with peptides like 

inhibitors molecules of the SARS-CoV-2 spike glycoprotein (PDB ID: 6VXX, 

DOI:10.2210/pdb6VXX/pdb) including small-molecules of inhibitor structures (Figure 4) and 

model of novel coronavirus spike-receptor-binding domain complexes with its receptors ACE2 

(Pdb ID:6LZG DOI:10.2210/pdb6LZG/pdb) (PDB ID: 6W63) (Figure 5), were designed and 

simulated from related PDB of SARS-Cov-2 main protease. The majorities of those structures 

are bind with small molecules and are suitable for the drug discovery approaches. Proteins were 

provided in protein preparation wizard, H atoms have been added, and H2O molecules beyond 

6Å of the binding sites were removed. The chains and loops were designed using the prime 

module.  

2.1. Docking and free energy calculations. 

BIOVIA-2020’s Docking software, chem3D, Hyper Chem, Rasmol, VMD, and 

Charmm software have been applied for all optimization and docking calculation. The grids of 

20& 19Å were produced over the co-crystallized peptide-like inhibitors. Re-docking of the co-

crystallized molecules was accomplished for evaluating the docking protocols. The docked 

systems were based on crystal structures for calculating the root mean square deviation. The 

re-docking of structures and compounds pose with 1.20Å and 0.70Å RMSD, respectively. 

Lower RMSD demonstrates that our docking methodologies are adequate and can be applied 

to search small molecule inhibitors. Docking was done in 3 different modes, virtual screening 
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followed by standard-precision (SP) and extra-precision (XP) docking using the Glide 

program.  

2.2. M.D. simulations. 

Molecular dynamics modeling for polypeptide-ligands structures were accomplished 

using the above-mentioned software. The OPLS and Charmm force fields were applied for 

modeling the interactions of the protein-small molecules.  Long-range electrostatic forces were 

estimated using the Particle-mesh E-wald (PME) software with a grid spacing of 0.75 Å. Nose-

Hoover thermometry and Martyna-Tobias-Klein method were applied for maintaining the 

temperature and constant pressure, respectively. The formula of motion was considered using 

the multi-run RESPA by 3.0 fs time steps for bonded and non-bonded interactions within a low 

cutoff. An outer time step of 5.0 fs was used for non-bonded forces beyond the cutoff. 

 
Figure 4. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. 

2.3. Simulations for interactions between the CoV2-RBD and the ACE2. 

It can be discussed widely about the charged residues for many of the fraction and 

binding interface of CoV2-RBD and the ACE2. Moreover, electrostatic interactions have 

critical points for a complex formation. Distances among the two mentioned proteins are a key 

at the binding interfaces that identified for the three representative models (Figure 5 & Table 

1).  

Table 1. Human-derived anti-SARS-CoV-2 S protein RBD neutralizing antibody and nucleocapsid antibody 

(Contact residues). 

Molecule Cat. No. Species Host Product Description 

Nucleocapsi

d protein 

AC2-H5257 Human HEK293 Human ACE2 / ACEH Protein, Fc Tag (MALS verified) 

AC2-C52H7 Cynomolgus HEK293 Cynomolgus ACE2 / ACEH Protein, His Tag 

AC2-H52H8 Human HEK293 Human ACE2 / ACEH Protein, His Tag (MALS verified) 

AC2-R5246 Rat HEK293 Rat ACE2 / ACEH Protein, His Tag (MALS verified) 

AC2-M5248 Mouse HEK293 Mouse ACE2 / ACEH Protein, His Tag (MALS verified) 

AC2-P5248 Paguma larvata HEK293 Paguma larvata ACE2 / ACEH Protein, His Tag 

NUN-V52H3 HCoV-OC43 HEK293 HCoV-OC43 Nucleocapsid protein, His Tag 

S1 protein 

S1N-C52H3 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S1 protein, His Tag 

S1N-S52H5 SARS HEK293 SARS S1 protein, His Tag (MALS verified) 

S1N-C52H4 SARS-CoV-2 HEK293 
SARS-CoV-2 (COVID-19) S1 protein, His Tag (MALS 

verified) 

S1N-C5255 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S1 protein, Fc Tag 

S1N-C5257 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S1 protein, Mouse IgG2a Fc Tag 

S2 protein 

S protein 

RBD 

S2N-C52H5 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S2 protein, His Tag 

SPD-C5255 SARS-CoV-2 HEK293 
SARS-CoV-2 (COVID-19) S protein RBD, Fc Tag (MALS 

verified) 
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Molecule Cat. No. Species Host Product Description 

SPD-S52H6 SARS HEK293 SARS S protein RBD, His Tag (MALS verified) 

SPD-C5259 SARS-CoV-2 HEK293 
SARS-CoV-2 (COVID-19) S protein RBD, Mouse IgG2a Fc 

Tag 

SPD-S52H5 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S protein RBD (N354D), His Tag 

SPD-S52H7 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S protein RBD (W436R), His Tag 

SPD-S52H8 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S protein RBD (R408I), His Tag 

SPD-C52H4 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S protein RBD (G476S), His Tag 

S1 protein 

CTD 
S1D-C52H3 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) S1 protein CTD, His Tag 

S protein 

SPN-C52H4 SARS-CoV-2 HEK293 
SARS-CoV-2 (COVID-19)  S protein (R683A, R685A), His 

Tag 

SPN-C52H8 SARS-CoV-2 HEK293 
SARS-CoV-2 (COVID-19)  S protein (R683A, R685A) , His 

Tag, active trimer (MALS verified) 

    

Envelope 

protein 
ENN-C5128 SARS-CoV-2 E.coli SARS-CoV-2 (COVID-19) Envelope protein, His Tag 

Papain-like 

Protease 
PAE-C5148 SARS-CoV-2 E.coli 

SARS-CoV-2 (COVID-19) Papain-like Protease Protein, His 

Tag 

Nucleocapsi

d protein 

NUN-C51H9 SARS-CoV-2 E.coli SARS-CoV-2 (COVID-19) Nucleocapsid protein, His Tag 

NUN-C5227 SARS-CoV-2 HEK293 SARS-CoV-2 (COVID-19) Nucleocapsid protein, His Tag 

NUN-C81Q6 SARS-CoV-2 E.coli 
Biotinylated SARS-CoV-2 (COVID-19) Nucleocapsid 

protein, His, Avitag™ 

S1 protein 

SIN-V52H3 HCoV-NL63 HEK293 HCoV-NL63 S1 protein, His Tag 

SIN-V52H4 HCoV-229E HEK293 HCoV-229E S1 protein, His Tag 

SIN-V52H5 HCoV-OC43 HEK293 HCoV-OC43 S1 protein, His Tag 

SIN-V52H6 

HCoV-

HKU1(isolate 

N5) 

HEK293 HCoV-HKU1(isolate N5) S1 protein, His Tag 

NSP1 NS1-C51H7 SARS-CoV-2 E.coli SARS-CoV-2 (COVID-19) NSP1 Protein, His Tag 

NSP7 NS7-C51H6 SARS-CoV-2 E.coli SARS-CoV-2 (COVID-19) NSP7 Protein, His Tag 

The majority of those residues are preserved for our simulation. The same models can 

be accomplished for the SARS-RBD/ACE2 complexes. Interestingly, the SARS-RBD match 

in CoV2-RBD did not form close with the ACE2 in related simulations. It is worthwhile to 

mention that the sequence identity between CoV2-RBD and SARS-RBD is low in this loop 

region, suggesting the loop region might be partially responsible for the difference in the 

receptor binding. The H-bonds among the CoV2-RBD and ACE2 can be extracted using the 

VMD program. It can be discussed that the number of hydrogen bonds fluctuated over time. 

Similar trends can be observed in the other simulations, suggesting that the binding became 

stronger as the simulation progressed. This work has been done based on our theoretical works  

[17-75]. 

 
Figure 5. Structure of novel coronavirus spike receptor-binding domain complexed with its receptor ACE2. 
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3. Results and Discussion 

An active inhibitor of HIV-1 protease was found effective in treating COVID-19 

disease. Data from the docking calculations were analyzed by the molecular modeling software 

[76,77]. We accomplished 60 ns molecular dynamic modeling (MD) of both SARS-CoV and 

COVID-19 to get insight into the binding cavities with a classical molecular dynamics method 

with water molecules applied as molecular indexes. These kinds of strategies are supposed to 

provide highly detailed pictures of protein’s interior dynamics. These small molecules tracking 

approaches were applied for determining the accessibilities of the pockets of the active sites in 

both SARS-CoV and COVID-19, and also, the local distribution approaches were applied for 

providing information about an overall distribution of related solvents in the protein interior. 

To properly examine the flexibilities of both activated sites, we applied the AQUA-DUCT 

(AQ) software for analyzing the water molecules flow through the cavities in a 15 ns time step. 

Effectiveness and Outbreak rate as a target for vaccine and therapeutic development has been 

an important factor for anti-HCoVs drugs. RBD of the S protein has been proposed as a 

promising target for the development of specific antibodies and vaccines. RBD-specific 

antibody CDC2-C2 demonstrated inhibitory activities against MERS-CoV infection. CoV-S-

RBD is hyper-variable throughout evolution, which marking differences in host receptors 

usage in different H-CoVs. Although the same host receptors are used by different H-CoVs, 

they frequently target different binding sites on the host receptor. For this reason, specific 

RBD-active sites, antibodies or vaccines inevitably lack broad-spectrum activities against 

coronavirus infection. The delay time among emerging human CoVid-19 outbreaks and the 

development of new prophylactic treatments or vaccines are of concern. 

4. Conclusions 

 Thus, there is an urgent need for the development of new, broad-spectrum drugs that 

target conserved sites in the currently circulating and future emerging coronavirus so as to 

prepare for future outbreaks of yet unknown COVID-19 added to the manuscript even if the 

discussion is unusually long or complex. 
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