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Abstract: The interconnected physiological and metabolism factors, such as obesity, hypertension, 

insulin resistance, etc. that increases the risk of cardiovascular disorders (CVD), type2 diabetes mellitus 

(T2DM) that causes mortality is the description of metabolic syndrome (MetS). It remains unclear how 

molecular mechanisms are typical between MetS, CVD, T2DM, obesity, and hypertension. In this 

study, we compiled 27 common genes by mapping miRNAs and TFs as active seed nodes into the 

regulatory TF-miRNAs and TF-miRNA networks by the integration of target prediction. By merging 

these networks, the gene-based miRNA and TF mediated regulatory network common for MetS and its 

associated diseases were constructed. As a result, we obtained a potential active sub-network based on 

degree analysis. Next, by using the breadth-first-search approach, 46 regulatory pathways, which are 

the gene-based regulatory cascade of TFs and miRNAs, were identified. In order to identify the hub 

regulators in the original network constructed, based on degree and betweenness analysis, 16 genes 

(VEGFA, KLF2, PNPLA3, GRK2, HMOX1, EDN1, IL6, TGFB1, NOS3, TNF, SERPINA1, SPP1, 

AGTR1, ADRB3), 3 miRNAs(has-miR-335-5p, has-miR-124-3p, has-miR-181a-5p), 4TFs(NFKB, 

FOXO1, RELA, SP1) are over-represented in the following significantly enriched functional pathway 

groups such as AGE-RAGE signaling pathway, Renin-Angiotensin System, HIF-1 signaling pathway. 

The majority of the regulatory relationships from published literature studies demonstrated the 

reliability and validity of these miRNA and TF mediated regulatory network. Hence, our study has 

aided in deciphering the complex regulatory mechanisms involved in MetS and will provide putative 

therapeutic targets by further validation of these pathways by biological experiments.  
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1. Introduction 

Metabolic Syndrome (MetS) is a growing public health and clinical problem in 

sedentary lifestyles worldwide. It is characterized as a cluster of metabolic abnormalities 

associated with visceral adiposity, particularly insulin resistance, hypertension, dyslipidemia, 

and central obesity [1]. MetS syndrome is diagnosed with the occurrence of three metabolic 

disorders of the five previously described. Such irregularities significantly increase the risk of 
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cardiovascular disease (CVD) and Type2 (T2DM), one of the major causes of death for people 

with MetS [2, 3]. To develop therapeutic strategies, it is important to understand the possible 

mechanisms common to MetS and its associated diseases. The primary causes of morbidity 

and mortality are Met-related disorders. The study focuses on finding the root causes of MetS 

[4]. Knowing key metabolism control pathways, goals, and risk factors leading to MetS may 

result in the creation of pharmaceutical interventions [5]. The entire gene expression and 

protein formation processes of living cells are modulated by gene regulatory networks and thus 

determine the fate of cells. The major regulators of these networks are MicroRNAs (miRNAs) 

and transcription factors (TFs) [6]. MicroRNA is a type of short non-encoding RNA involved 

in gene regulation that can operate either directly on the target genes or indirectly by initially 

regulating TFs regulated by gene expression. As a result, miRNA and TF do not really function 

independently in many diseases, such as cancer [7]. In that context, MetS, obésity, 

hypertension, CVD, and T2D M have been used to classify genetic variants and their regulators. 

In order to detect possible TF-miRNA mediated regulatory pathway, the BFS (breadth-first-

search) approach was used [8] with a basic network structure and interpretation that could be 

validated further by biological experiments. Knowing the regulatory network of MetS 

regulated by miRNA and TF would thus shed light on the pathogenesis mechanisms of the 

network [9].  

2. Materials and Methods 

2.1. Collection of genes related to MetS & its associated components. 

The DisGeNET discovery tool was used for the purpose of accessing a catalog of genes 

associated with their respective diseases: "metabolic syndrome," "type 2 diabetes mellitus," 

"cardiovascular disease," "hypertension" and "obesity." In this study, 601 genes, 1507 genes 

for T2DM, 934 genes for CVD, 1962 genes for obesity, and 78 hypertension genes were 

extracted from the DisGeNet database [10] for the process of determining particular genetic 

signatures among these diseases with JVenn, an intergraphical tool for comparing lists with 

Venn graphics [11]. This analysis provided a collection of genetic diagrams. 

2.2. Identification of gene-miRNA/TF, TF-miRNA regulatory relationship. 

Regulatory relationships of Gene-miRNA with the specific genes selected have been 

evaluated using experimentally checked targets. The TarBase v8 [12], miRTarBase v7 [13] 

database, has been experimentally tested, and only goals in the two datasets have been 

maintained in this analysis, to improve the reliability of the tests. In the Transfac [14] databases, 

TRRUST v2 [15] incorporated gene-TF regulatory relationships, using experimentally 

verifiable and expected gene targeting. RegNetwork Regulatory Network Repository of 

Transcription Factor and Mediated Gene microRNA Regulations [16] were then built into 

regulatory relationships with TF-miRNA. 

2.3. Construction of gene-TF-miRNA mediated regulatory network. 

As individual networks, we have established gene-miRNA regulating relationships, 

gene-TF regulatory relationships, and TF-miRNA regulatory relationships. Later, we merged 

these networks with the tool "merge" of Cytoscape (an open-source software framework for 

visualizing expressive profiles and other state data) [17]. We achieved a potential active sub-
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network based on the grade cutoff of 2 (node score of 0.200, k-core) by using a cytoscapape 

plug-in MCODE, a novel clustering algorithm that recognizes substructures in broad networks. 

2.4. Identification of potential active regulatory cascades.  

Throughout this analysis, we focused on regulatory routes that were the routes 

connected in the TF-miRNA-curated regulatory network to multiple TFs, miRNAs, and target 

genes. We have established all guided acyclic paths from 0 in-degree nodes to 0-degree nodes 

from the possibly active TF-miRNA regulatory sub-network. A guided diagram was used for 

the future active subnetwork. The first thing we used is to cross all vertical pictures of the BFS 

(Breadth-First Search) algorithm [18].  Second, the backtracking procedure was used to remove 

all paths from the 0-indegree node to the 0-outdegree node based on the results of graph 

crossing. The directed acyclic paths with more than two nodes have been considered as 

potential active regulatory paths in this study. 

2.5. Identification of hub nodes in the network. 

We have used Cytoscape plug-in cytohubba v1 [19] to explore the main hub nodes in 

the developed gene-miRNA-TF regulatory network. It provides 11 topological methods of 

analysis, including the degree, edge percolated component, maximum component 

neighborhood, density for maximum neighborhood components, maximum central cliques, and 

six centralities (Eccentricity, Nearness, Radiality, Betweenness, and Stress) based on the 

shorter distances. This plug-in was used for rating the nodes in the network with its network 

features. 

2.6. Functional enrichment analysis of common genes.        

The Kyoto Genes and Genomes Encyclopedia (KEGG) has indeed been developed as 

a database for the mapping of linked genes on their own pathways [20]. Clue GO, a Cytoscape 

plug-in for gene ontology and pathway notation systems, can be decrypted functionally with a 

hypergeometric check, the kappa coefficiency of pathways can be calculated [21], and 

functional pathway correlations can be examined [22]. In this study, a ClueGO method for the 

study of the functions of specific genes was used in KEGG pathway enrichment research. A P 

value < .05 was regarded as a threshold value, a kappa coefficient of 0.4. They were identified 

and noted as the most important pathways linked to the syndrome. 

3. Results and Discussion 

3.1. Identification of common genes related to MetS & its associated components. 

We have put together a list of GAD diseases using the DisGeNET v4.0 database, which 

were correlated by the Venn diagram (Figure 1), with a view to identifying the specific genes 

in MetS with cardio-vascular, obese, hypertensive, and type 2 melites. We focused on 27 

specific genes between metabolism, obesity, CVD, and T2DM. 

3.2. Identification of gene-miRNA/TF and TF-miRNA regulatory relationship. 

There have been a total of 631 miRNA genes and 216 TF gene regulatory links. This 

collection of miRNA-gene, TF-gene, and TF-miRNA rules were imported into the cytoscape 

as a network file for the separate TF-miRNA, miRNA-gene, and TF-gene networks [23]. The 
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561 nodes and 691 edges miRNA-gene regulatory network (Figure 2), the 150 nodes and 265 

edges regulatory network TF-gene (Figure 3), and the 189 and 289 edges regulatory system 

TF-miRNA (Figure 4). 

 
Figure 1. Venn diagram showing common genes associated with MetS-T2DMCVD-Obesity-hypertension. 

 
Figure 2. Gene-miRNA regulatory network [pink-gene, blue-miRNA]. 

3.3. Construction & analysis of gene-TF-miRNA mediated regulatory network common for 

MetS and its associations. 

By combining the 3 networks built in the above parts, we built a common regulatory 

network for MetS, CVD, T2DM, Obesity, and Hypertension with miRNA & TF. List of gene-

TF-miRNA regulatory pathways common for Mets and its components is listed in Table 1. 
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There are 810 nodes and 1111 edges [26 genes, 143 TFs, and 644 miRNAs] in the network. On 

the basis of the topological analysis, the global properties of this network were evaluated. 

 
Figure 3. Gene-TF regulatory network [pink-gene, yellow-TF]. 

 
Figure 4. TF-miRNA regulatory network [yellow-TF, blue-miRNA]. 

The rating of the most nodes was high, as seen in Figure 5, and a fairly small number 

of nodes were communicating with other nodes. The possible active subset (Figure 5 and Figure 

6) obtained has been exploited for further analysis, based on this study. 

Table 1. Gene-TF-miRNA regulatory pathways common for Mets and its components 

No of pathways List of gene-TF-miRNA regulatory pathways in MetS No of elements 

1 AGT->NFKB1->hsa-let-7a 3 

2 AGT->NFKB1->hsa-miR-148b-5p 3 

3 AGT->NFKB1->hsa-miR-146a 3 

4 AGT->NFKB1->hsa-miR-9 3 

5 AGT->NFKB1->hsa-miR-15a 3 

6 IL6->NFKB1->hsa-let-7a 3 

7 IL6->NFKB1->hsa-miR-148b-5p 3 

8 IL6->NFKB1->hsa-miR-146a 3 

9 IL6->NFKB1->hsa-miR-9 3 

10 IL6->NFKB1->hsa-miR-15a 3 

https://doi.org/10.33263/BRIAC113.99049914
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC113.99049914  

 https://biointerfaceresearch.com/ 9909 

No of pathways List of gene-TF-miRNA regulatory pathways in MetS No of elements 

11 IL6->STAT1->hsa-miR-145 3 

12 IL6->KLF4->hsa-miR-145 3 

13 IL6->MYC->has-miR-20b 3 

14 IL6->MYC->has-let-7a 3 

15 IL6->FOXO1->has-miR-9 3 

16 CCR5->NFKB1->hsa-let-7a 3 

17 CCR5->NFKB1->hsa-miR-148b-5p 3 

18 CCR5->NFKB1->hsa-miR-146a 3 

19 CCR5->NFKB1->hsa-miR-9 3 

20 CCR5->NFKB1->hsa-miR-15a 3 

21 EDN1->NFKB1->hsa-let-7a 3 

22 EDN1->NFKB1->hsa-miR-148b-5p 3 

23 EDN1->NFKB1->hsa-miR-146a 3 

24 EDN1->NFKB1->hsa-miR-9 3 

25 EDN1->NFKB1->hsa-miR-15a 3 

26 EDN1->STAT1->hsa-miR-20a 3 

27 EDN1->NR1H4->hsa-miR-192-3p 3 

28 EDN1->NR1H4->hsa-92a-3p 3 

29 EDN1->FOXO1->has-miR-9 3 

30 EDN1->HIF1A->has-miR-519c-3p 3 

31 EDN1->HIF1A->has-miR-107 3 

32 EDN1->HIF1A->has-miR-20b 3 

33 EDN1->HIF1A->has-miR-424 3 

34 EDN1->E2F1->has-let-7a 3 

35 EDN1->PPARG->has-miR-20b 3 

36 NR1H4->STAT1->has-miR-145 3 

37 ACE->HIF1A->has-miR-519c-3p 3 

38 ACE->HIF1A->has-miR-107 3 

39 ACE->HIF1A->has-miR-20b 3 

40 ACE->HIF1A->has-miR-424 3 

41 AGTR1->HIF1A->has-miR-519c-3p 3 

42 AGTR1->HIF1A->has-miR-107 3 

43 AGTR1->HIF1A->has-miR-20b 3 

44 AGTR1->HIF1A->has-miR-424 3 

45 VEGFA->NR1H4->has-miR-192-3p 3 

46 VEGFA->NR1H4->has-miR-92a-3p 3 

 
Figure 5. Gene-TF-miRNA regulatory network [pink-gene; blue-miRNA; yellow-Transcriptional Factor]. 
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Figure 6. Degree analysis of the regulatory network [pink-gene; blue-miRNA; yellow-Transcriptional factor]. 

 
Figure 7. Re-constructed regulatory network common for MetS and its components [pink-gene; blue-miRNA; 

yellow-Transcriptional Factor]. 

3.4. Identification of potential active regulatory cascades.  

In this analysis, we focused on regulatory paths that were linked in the curated TF-

miRNA regulatory network to several TFs, miRNAs, and target genes in order to determine 

active regulatory trajectories of MetS, the molecular mechanisms of MetS are identified not 

only by uncovered transcription or post transcription regulatory cascades. We've established 

all the directed acyclic paths of 0 in-degree nodes to 0 out-degree nodes using BFS algorithms 
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using a possible active TF-miRNA regulatory sub-network. Certain regulators cannot regulate 

the 0 in degree gene / miRNA, which means it is upstream of the regulatory pathway.  The 

gene / miRNA at 0 out-degree still does not regulate other genes / miRNA because it is 

downstream from the regulatory pathway. The upstream / miRNAs are important because their 

activation may result in a cascading effect that changes downstream gene / miRNA expression 

and leads to MetS. Therefore, we may find key upstream genes / miRNAs on the regulatory 

pathways by searching for all pathways between 0 in-degree genes / miRNAs and 0 out-degrees 

genes/ miRNAs. We found out that 46 regulatory cascades are listed in Table 2, and it was 

reassembled in the regulatory network module, as shown in Figure 7. 

3.5. Identification of hub nodes in the network. 

Nodes that have high centrality and are strongly connected (hub) have been analyzed, 

and these together show that the nodes play a major role in maintaining the overall network 

connectivity [24]. The regulatory network built was upgraded to the top 20 percent of the 

network on the basis of the central (BC) and node degree parameters. The number of the 

shortest routes passing one node is indicated by BC. The class represents one node's number 

of interactions. Nodes with BC>0.05 levels of thresholds and above each network's average 

value were called hub genes. The top 20% of the network constructed based on betweenness 

and degree in Cytohubba is shown in Figure 8 and Figure 9.  

 
Figure 8. Betweenness analysis of genes and regulator. 

In the case of the regulatory network's betweenness-analysis, 13 genes (VEGFA, KLF2, 

PNPLA3, GRK2, HMOXI, EDN1, MBL2, IL6, TGFB1, NOS3, TNF, SERPINA 1, SPP1) have 

been identified as nodes of a hub in the top 20 percent of the network. 

 In the case of the degree analysis (DA) for the regulatory network, the Top 20 percent 

of TF [NFKB1, SP1] and 1 miRNA [HAS-MIR-335-5p] have been identified as core nodes in 

17 genes [VEGFA, KLF2, PNPLA3, GRK2, HMOX1, EDN1, IL6, MBL2, TGFB1, T NF, 

SPP1, NOS3, AGPT2, AGRT1, NR1H4, ADRB3] (Figure 9). 

3.6. Pathway enrichment analysis.  

In ClueGO, Cytoscape plug-in using the KEGG database, the functional annotation of 

the common genes found among MetS, CVD, T2DM, hypertension, obesity was carried out. 

Three key pathways, for example, the HIF-1 signaling pathway, the AGE-RAGE signal 

signaling route, and the Renin Angiotensin network, were significantly enriched (Figure 10) 

(Table 2). 
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Figure 9. Degree analysis of genes and regulators. 

 
Figure 10. Pathway enrichment analysis of MetS and associated disorders. 

 

Table 2. Most significant pathways involved in the syndrome. 

KEGG ID Pathway P-value No. of genes Genes 

KEGG:04022 cGMP-PKG signaling pathway 0.005945544 4 ADRB2, ADRB3, AGTR1, NOS3 

KEGG:04668 TNF signaling pathway 0.00300178 3 EDN1, IL6, TNF 

KEGG:05323 Rheumatoid arthritis 0.00349747 3 IL6,TNF,VEGFA 

KEGG:04614 Renin-angiotensin system 5.98E-08 4 ACE,AGT, AGTR1, REN 

KEGG:04924 Renin secretion 5.98E-08 6 ACE,ADRB2,ADRB3,AGT, 

AGTR1, REN 

KEGG:04926 Relaxin signaling pathway 3.52E-04 3 EDN1, NOS3, VEGFA 

KEGG:05200 Pathways in cancer 0.048666807 4 AGTR1,HMOX1,IL6, VEGFA 

KEGG:05167 Kaposi sarcoma-associated 

herpesvirus infection 

0.00349747 4 ANGPT2,CCR5,IL6, 

VEGFA 

KEGG:04931 Insulin resistance 0.002774931 3 IL6, NOS3, TNF 

KEGG:05410 Hypertrophic cardiomyopathy 

(HCM) 

0.01161327 3 ACE, IL6, TNF 

KEGG:05163 Human cytomegalovirus 

infection 

0.00349747 4 CCR5, IL6, TNF, VEGFA 

KEGG:04066 HIF-1 signaling pathway 1.71E-07 6 ANGPT2, EDN1, HMOX1, IL6, 

NOS3, VEGFA 

KEGG:05418 Fluid shear stress and 

atherosclerosis 

3.52E-04 5 EDN1,HMOX1,NOS3, TNF, 

VEGFA 

KEGG:04060 Cytokine-cytokine receptor 

interaction 

0.00349747 4 CCR5,CX3CR1, IL6, TNF 

KEGG:05142 Chagas disease (American 

trypanosomiasis) 

0.01161327 3 ACE, IL6, TNF 

KEGG:04020 Calcium signaling pathway 0.005945544 4 ADRB2, ADRB3, AGTR1, NOS3 

KEGG:04933 AGE-RAGE signaling pathway 

in diabetic complications 

1.61E-07 6 AGTR1,EDN1, IL6, NOS3, TNF, 

VEGFA 
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The RAS pathway offers a possible causal link between MetS 'risk factors. Disruption 

of the RAS activity by any drug or genetic factor can promote weight gain, contributing to 

insulin resistance and the relief of hypertension [25, 26]. Increased AGE, RAGE, NF-KB, and 

RAS mediators are closely linked to blood pressure and vascular wave reflection and 

connection RAGE gene polymorphism and insulin resistance, which is subsequent [27]. 

Hypoxia-inducing factor-a loss / gain-of-function in animal models highlights the identification 

of hypoxia reaction in the pathogenesis of obesity and insulin resistance [28].  

 

4. Conclusions 

 The majority of the regulatory associations are verified by literature studies published 

showing the efficiency and validity of the regulatory network regulated by MIRNA and TF. 

Our study has, therefore, been used to decipher the complex regulatory mechanisms in MetS 

and, through further validation of those pathways, will provide therapeutic targets. 
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