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Abstract: Chitin is a major structural polysaccharide after cellulose and exists as the most abundant 

polymer in nature. Chitin is a nitrogen-containing homopolymer of β-(1,4) linked N-

Acetylglucosamine. It is a key cell wall component of fungi, also found in a wide range of organisms, 

including viruses, plants, animals,  insect exoskeletons, and crustacean shells. This review focused on 

the recent developments of applications of chitin, chitinases, and chitin derivatives in biomedicinal, 

agricultural and environmental perspectives for sustainable development. Chitinases are hydrolytic 

enzymes responsible for the degradation of chitin and are used in biocontrol against various fungal 

pathogens and insects to reduce the uses of synthetic fungicides and insecticides. These can serve as 

sustainable and eco-friendly alternatives to pesticides. Chitinases producing microorganisms are a 

potential alternative to these chemicals which are present in the soil as a part of the ecosystem. Chitin 

derivatives and chitinases have significant pharmacological values and are effective as an anti-

inflammatory drug, ulcerative colitis, anticancer and gastrointestinal disorders. The significant medical 

roles of chitinases have also been observed to amplifying the functioning of antifungal drugs during the 

treatment of fungal diseases. These enzymes can be used for strengthened the human immune system 

and also employed antifungal creams and lotions as rightly expected. Chitin derivatives have a number 

of applications in the making of artificial medical articles, including contact lenses, artificial skin, and 

surgical stitches. These derivatives have been extensively used in making artificial medical products 

because of its non-toxic, non-allergic, biocompatible, and biodegradable properties. Chitin and its 

derivatives used for environmental applications comprise bioremediation of organic and inorganic 

contaminants from soil and water along with biological conversions of chitinous waste to the single-

cell proteins, bioethanol, and biofertilizers as well. 
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1. Introduction 

Chitin is an insoluble amino polysaccharide composed of β-1,4-N-acetylglucosamine 

[1]. It is a chief component of the cell wall among higher fungi belong to Chytridiomycetes, 
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Ascomycetes, Basidiomycetes, and Deuteromycetes, the exoskeleton of insects and crustacean 

external shells. Chitin present in a variety of microorganisms, which includes bacteria and fungi 

[2]. Bacteria are known for producing many secondary metabolites, which may have great 

potentials in the fields which are related to mankind [3]. Chitin was discovered by Henri 

Brancott in 1811, a professor of Natural History. It was first discovered by an English scientist, 

A. Hachette, who described it as a material that is predominantly resistant to the usual 

chemicals. In 1843 Lassaigne found that chitin contains nitrogen. Henri Brancott named it 

‘fungine’. It was found by the Oder in insects and plants in 1823, called it chitins. Chitin is 

found richly in nature and lies next to cellulose [4]. 

Chitinases are chemically hydrolytic enzymes liable to the degradation of chitin, a high 

molecular weight linear polymer of N-acetyl-D-glucosamine units. Chitinases can be found in 

a wide range of organisms’ viz. plants, bacteria, fungi, and invertebrates [5-9].  Chitinase can 

be dividing into two types: i. endochitinases, and ii. exochitinases. The endochitinases can 

cleave chitin at internal sites to generate multimers of GlcNAc; however, the exochitinases 

facilitates the swift hydrolysis of chitin to produce GlcNAc, chitobiose, or chitotriose [10]. 

Chitinase-synthesizing bacteria are isolated from natural sources such as soil and other natural 

sources such as aquatic habitats [11-12]. Many bacteria, including  Serratia marcescens 

Aeromonas sp., Pseudomonas aeruginosa, Enterobacter, and S. griseus, can synthesize several 

different chitinases [13-14]. Chitinases are the major factor of quite a lot of bacterial species, 

including Aeromonas, Serratia, Vibrio, Streptomyces, Bacillus, Aeromonas hydrophila, and A. 

punctata [10, 15]. Chitinolytic bacteria can also be isolated from the rhizosphere of a wide 

variety of plants [3, 16]. The fungal cell wall has a complex cross-linked structure composed 

of chitin, and the bacteria producing chitinase enzymes play an important role in lysing these 

cells by degrading the chitin [17]. 

In fungal chitinases play an important role in nutrition, morphogenesis, and biological 

roles like lysis of the cell wall, which helps in the screening of cells after division, hyphal 

autolysis, nutritional chuck, and morphogenetic formation, which helps in sporulation, spore 

germination, hyphal escalation and antagonistic dealings against additional microorganisms 

[17]. Chitinases can play a major role in many areas such as the production of single-cell 

protein, growth factors, mosquito control, ethanol and fertilizer, a biocontrol agent of fungal 

pathogens, isolation of fungal protoplasts, and antifungal drugs [18-25]. Thus, the need for 

microbial chitinase production has increased, and it fulfills two purposes: (i) trim down the 

environmental hazards and (ii) augmented production of industrially imperative value-added 

products [26]. The study was proposed to know the potential of different organisms for the 

production of chitinases and their sustainable role in human health, biocontrol, agriculture, and 

environment, etc.  

 

Figure 1. Molecular structure and different polymeric configurations of chitin. 
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2. Chitin: structure, properties, sources, and extraction 

2.1. Structure of chitin. 

In nature, chitin can be found in three different polymeric forms:  α, β, and γ  [27]. The 

α form is universally found and is generally collected from crab and shrimp shells and has an 

antiparallel arrangement, and β form is mainly acquired from mollusks and has a parallel 

arrangement in contrast to the α form. The α and β forms of chitin are economic in nature, and 

both differ in the packaging and polarities of straight chains in the chitin sheets. While in the 

case of γ, chitin has two parallel strands and two antiparallel strands. The β form is not 

convertible into alpha form, but γ chitin is convertible into α chitin by treating it with lithium 

thiocyanate (Fig. 1). 

2.2. Properties of chitin. 

Chitin is not soluble in water due to the strong intermolecular hydrogen bonding [28]. 

But there are certain chitin-based derivatives which are soluble in water, such as chitosan or 

carboxymethyl, which can be obtained from chitin, and the most important advantages of these 

compounds in which they are really flexible so that they can be molded into various forms like 

fibers, hydrogels, beads, sponges, and membranes. Chitin is crystalline in nature, and the tensile 

strength is much higher than most of the manufactured materials [29]. The extensive hydrogen 

bonding within the chains of chitin is the reason for the high tensile strength of chitin. A 

significant amount of chitin is present in almost all fungi, which give the evidence that the 

polymer is widely distributed in the kingdom Fungi and phylum Arthropoda and Mollusca of 

kingdom Animalia [9, 30]. 

 

Figure 2. Potential natural sources of chitin. 

2.3. Sources of chitin. 

There are large numbers of complex intracellular processes are involved in the 

formation of chitin comprising the biotransformation of trouble-free metabolites and formation 

of the polymer, chitin [30]. The accumulation of catalytic units in the cell membrane allows 

polymerized GlcNAc molecules to be a force out into the extracellular environment. The raw 

materials which are widely available for the manufacturing of chitin are insects, crab shells, 

shrimps and lobsters, and fungi (Fig. 2) [31]. The main potential animal sources for chitin 

production and its harvestings are insects (e.g., Beetles, Moths Bombyx mori, Honey bees Apis 

sp., Mosquitoes Aedes aegypti, etc.); crabs (e.g., Golden king crab Lithodes aequispinus, Snow 

crab Chionoecetes opilio, Tanner crab C. bairdi, Korean hair crab Erimacrus isenbeckii, Blue 

king crab Paralithodes platypus, Red king crab P. camtchaticus, etc.); shrimps (e.g., Penaeus 

https://doi.org/10.33263/BRIAC113.998510005
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC113.998510005  

https://biointerfaceresearch.com/ 9988 

carinatus, P. monodon, Litopenaeus vannamei, Parapenaeopsis stylifera, etc.); lobsters (e.g., 

Homarus americanus, Jasus lalandii, etc.); mollusks (e.g., Cuttlefish Sepia offcinalis, Squid 

Loligo vulgaris,etc.); fungi (e.g., Absidia blakesleeana, A. coerulea, A. glauca, Aspergillus 

niger, Gongronella butleri, Lentinus edodes, Mucor rouxii, Phycomyces blakesleeanus, 

Rhizopus oryzae, Trichoderma reesei, etc.) [32-53]. 

2.4. Extraction of chitin. 

For the extraction, harsh treatments are required because chitin is found associated with 

other constituents. In the present chitin, production is hugely dependent on canning industries 

as they produce crab and shrimp shells as their waste products. Chitin is now commercially 

manufactured in India, Japan, Poland, Norway, and Australia. In India, the Central Institute of 

Fisheries Technology, Kerala, was the first to start research on chitin and reported that the dry 

waste of prawn had 23% chitin; however, dry Squilla had 15% chitin content [54]. The process 

of conversion of chitinous waste to commercial products is very useful in view of their great 

economic value and versatile biological and chemical applications, chiefly in medical and 

pharmaceutical areas (Fig. 3). 

 

Figure 3. The extraction of chitin by chemical and biological methods. 

3. Chitinase: structure, properties, and types 

Chitinases are various groups of enzymes that show variations in the structure, substrate 

specificity, and acting mechanism [32]. The size range of these enzymes lies between 20kDa 

to about 90kDa [55].  

 
Figure 4. Structure of wild type chitinase (a) and bacterial chitinase-A, ChiA (b). 
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3.1. Structure of chitinases. 

The structure of chitinase is modular, having one catalytic and single or many 

noncatalytic domains that could or couldn’t play a task during substrate binding (Fig. 4). The 

bacterial chitinases showed no concern to the resemblance between the catalytic and chitin-

binding domains in pairwise comparative accounts that implies to the fact that chitin-binding 

domains in bacterial chitinases are conserved evolutionarily (Fig. 4) [56]. As the chitinases of 

different families have no amino acid sequence similarity and have different three-dimensional 

structures, it is likely that they have evolved from different ancestors [57]. Family 18 contains 

repeats of amino acids, and their enzyme core consists of eight strands of parallel β sheets, 

which form a barrel, and alpha helices are present below this barrel, which is present in the 

form of a ring towards the outside (Fig. 5) [58]. The polydomain structure of family 19 included 

catalytic domains, a cysteine affluent chitin-binding domain, and a serine/ threonine rich 

glycosylated domain, which have been discovered as the structural characteristics of chitinases 

in various organisms (Fig. 5) [59]. The bacterial and fungal chitinases show a very close 

association in terms of their structure, strongly suggesting that the catalytic domains in all of 

these microorganisms are greatly similar. 

 
Figure 5. Structure of family 18 (a) and family 19 (b) chitinase. 

3.2. Properties of chitinases. 

The study substrate specificity is important for chitinases because it divulges the 

relationship between substrate specificity and physiological roles. Enzyme nomenclature has 

listed chitinolytic enzymes as chitinases and N-acetyl-β-glucosaminidase. The chitinase breaks 

chitin polymers, and the N-acetyl-β-glucosaminidase degrades terminal N-acetyl-β-

glucosamine residues lying on the non-reducing end from chitobiose and higher analogs. 

Chitinases are hydrolytic enzymes that are capable of breakdown the β-(1,4)-glycoside bond 

of chitin, a main structural component in insect exoskeletons and fungal cell walls. Chitinases 

are created by higher plants, which utilize the catalysts to safeguard themselves against 

pathogenic assaults by corrupting chitin in the cell wall of microbes [6]. The chitin is degraded 

into chito-oligomers by chitinases, which serve a broad range of applications.  
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3.3. Types of chitinases. 

 Chitinases are broadly divided into two classes (endochitinases and exochitinases) on 

the basis of its synthesis and nomenclature [10]. The endochitinases split chitin and chitin 

microfibrils at random internal sites to produce soluble, low molecular mass products, e.g., 

chitotetraose, chitotriose, and diacetyl-chitobiose (Fig. 6). The exochitinases can catalyze the 

hydrolysis of chitin progressively to produce N-acetylglucosamine, GalNAc (Fig. 7). 

Exochitinases have been divided into two categories: chitobiosidases, and β-(1,4)-N-

acetylglucosaminidases [8].  

 
Figure 6. Chemical reaction for hydrolysis of chitin by endochitiases. 

 
Figure 7. Chemical reaction for chitin hydrolysis by exochitiases. 

 The chitobiosidases act on a non-reducing terminal of chitin, and release di-

acetylchitobiose dimer from the parent chitin chain.  However, β-(1,4)-N-

acetylglucosaminidases split the polymeric products (e.g., di-acetylchitobiose, chitotriose, and 

chitotetraose) into monomers of N-acetylglucosamine [30]. The gene sequences of the 

chitinases came to be known; these were further divided into six classes based on their 

sequences [60-62]. Class-I chitinases had a cysteine-rich N-terminal, leucine- or valine-rich 

signal peptide, and vacuolar localization. These chitinases are further subdivided on the basis 

of their acidic or basic nature into class-Ia and class-Ib, respectively. This group contains only 

plant chitinases, and most of these are endochitinases. Class-II chitinases had a similar 

sequence to class-I chitinases. These are found in plants, fungi, bacteria, and most of these are 

exochitinases. Class-III chitinases have no similar sequences to class-I or class-II. Class-IV 

chitinases had similar characteristics as class-I chitinases, but these chitinases were really 
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smaller in size than class-I chitinases. Class-V and class-VI chitinases are not clearly 

characterized so far. 

3.4. Natural sources of chitinases. 

 The chitinases are derived from various natural resources, including bacteria, fungi, 

plants, and animals in variable quantities. Bacteria are major sources of chitinase and produce 

mainly to hydrolyze chitin and use it as a source of energy. Chitinase-synthesizing bacteria are 

isolated from natural sources such as soil and other natural sources such as aquatic habitats 

[11-12, 62]. Some chitinases produced from of chitinolytic bacteria, such as Serratia 

marcescens, Enterobacter sp. Aeromonas hydrophila, A. punctata, Serratia, Vibrio, 

Streptomyces, and Bacillus [10, 14, 15, 62]. Chitinolytic bacteria can also be isolated from the 

rhizosphere of a wide variety of plants [3, 16]. The fungal cell wall has a complex cross-linked 

structure composed of chitin, and the bacteria producing chitinase enzymes play an important 

role in lysing these cells by degrading the chitin [17]. 

The production of chitinase in the case of filamentous fungi can be observed throughout 

its life cycle [63]. In fungi, this enzyme plays an important role in releasing the spores and also 

in the hyphal branching [5]. In yeast, chitinase has a role in cell separation [64]. Chitinase also 

plays an essential role in nutrition by helping in the utilization of chitin for its carbon and 

nitrogen requirements [65]. In a few cases, it also plays a role in pathogenicity [66]. Many 

earlier scientists have been reported the purification and characterization of 3N-

acetylglucosaminidase (GlcNAcases) from various isolates of Trichoderma spp. [67-69]. 

Trichoderma spp. have given the significant contemplation as biocontrol agents of soil-borne 

fungal pathogens. The chitinases and β-1,3-glucanases are isolated, purified, and characterized 

by Talaromyces flavus and Trichoderma spp. and their role in mycoparasitism against soil-

borne fungi, i.e.,  Sclerotium rolfsii, Rhizoctonia solani, and Fusarium sp. has also been 

reported [70-72]. 

The plant chitinases have been reported in both monocotyledonous and dicotyledonous 

species and have been found in different types of structures like embryos and cotyledons, seeds, 

leaves, and stems, roots and flowers, and protoplasts [7, 73-75]. Chitinases have also been 

reported in crops (e.g., barley, rice, onion, wheat, etc.) and non-crop species like Arabidopsis, 

poplar, and rubber [8]. Their production is influenced by a variety of factors, such as infection, 

stress conditions, and phytohormones [76]. The plant chitinases are delivered as proteins in 

plant self-preservation because of the assault of phytopathogens [77]. The chitinases take part 

in vital physiological processes of plants, like embryogenesis and ethylene synthesis [56]. Garg 

and Gupta isolate and purify the chitinase from moth beans attacked by the 

fungus Macrophomina Phaseolina strain 2165 [78]. 

3.5. Production of chitinases. 

Microbial chitinases have been fashioned by liquid batch fermentation, incessant 

fermentation, and fed-batch fermentation (Fig. 8) [1]. Additionally, solid-state fermentation 

and biphasic cell systems have also been used for the mass scale production of chitinases. The 

chitinases produced by microbes are usually inducible categories. Components of media, 

carbon sources, nitrogen sources, and agricultural residues viz., rice bran, wheat bran, etc. also 

affect extracellular chitinase production [13, 79]. An alluring impact of glucose on chitinase 

creation was accounted for when glucose was utilized with chitin in the creation medium [79]. 
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On the other hand, Miyashita et al. reported a suppressing effect of glucose on chitinase 

production [80]. The temperature, pH, and aeration, also influence chitinase production. 

Production of chitinase from Bacillus sp. BG-1, also increases when the growth medium is 

added with amino acids such as tryptophan, tyrosine, glutamine, and arginine (0.1mM) [79]. 

The extracellular chitinase production by Serratia marcescens in an aqueous two-phase system 

(ATP) of PEG and dextran was reported by Chen and Lee [81].  

 

Figure 8. Flow chart showing batch fermentation, production, purification, and packaging of chitinases. 

3.6. Application of chitinases. 

Chitinases can play a major role in many areas such as the production of single-cell 

protein, growth factors, mosquito control, bioethanol and biofertilizers, a biocontrol agent of 

fungal pathogens, isolation of fungal protoplasts, and antifungal drugs (Fig. 9) [1, 18-25].  

 
Figure 9. Potential diversification in applications of chitinases. 

Thus, the need for microbial chitinase production has increased and solved two 

purposes: (i) shrink the environmental hazards and (ii) augments manufacture of industrially 
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important value-added products [26]. Chitinases are useful for the production of ophthalmic 

products by the use of chitinases and micro biocides [82]. An important medical use of 

chitinases has also been observed in amplifying the functioning of antifungal drugs in the 

treatment of fungal diseases [21]. Due to their applications, their use in antifungal creams and 

lotions is rightly expected. Several pieces of evidence have explained the importance of 

chitinases in the defensive immune system of mammals [22]. The presence of bacterial 

chitinases in humans can play an important role as a component of defense mechanisms against 

fungal attack [83].   

4. Chitin derivatives and its applications 

GlcNAc (a polymer of chitin) itself acts as an anti-inflammatory drug. It is synthesized 

in the human body from glucose, and after being synthesized, it is then incorporated into 

glycoprotein and glycosaminoglycans. The GlcNAc, which is administered in the human body, 

has been found to be effective in the treatment of ulcerative colitis, gastrointestinal disorders, 

and inflammation [84]. The uses of chitin might be limited because of its helpless 

dissolvability, low porosity, and surface zone [85]. Henceforth to conquer the impediments and 

control the properties of chitin, different noteworthy subsidiaries are created (Table 1). 

Chitosan is one of the most significant subordinates of chitin as far as appropriateness [86]. 

Chitin derivatives have a number of applications in the making of artificial medical articles 

such as contact lenses, artificial skin, and surgical stitches. These derivatives have been 

extensively used in making artificial medical products because these chitin derivatives have 

been found to be non-toxic, non-allergic, biocompatible, and biodegradable [87]. 

Rameshthangam et al. discuss the different biomedical applications of chitin and its derivatives 

(Fig. 10) [30]. 

 
Figure 10. The biomedical applications of chitin and its derivatives. 

4.1. Application in nanomedicine and biomedical engineering. 

Chitosan is one of the most extravagant biopolymers got from characteristic chitin that 

normally exists in the exoskeletons of arthropods, shellfish shells, creepy crawlies, and 

parasitic cell dividers [88]. Chitosan is a natural and cationic polysaccharide, has been 

considered as a promising nanomaterial with broad clinical applications [89-90]. It has 

remarkable properties, for example, nontoxicity, biocompatibility, biodegradability, 

bioactivity, and mucoadhesion [91-92]. It very well may be corrupted by interior proteins, for 

example, lysozymes and chitosanases, to procure oligosaccharides and monosaccharides, 
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which are in this manner consumed by the body [93].  Be that as it may, different methodologies 

for adjusting chitin and chitosan have been created to address these issues [94-95]. Free amino 

and hydroxyl bunches have been used to create a wide scope of subsidiaries with improved 

solvency dependent on its high proclivity with useful proteins and the ability to self-collect 

[96-97]. It tends to be handily prepared in differing structures, for example, films, strings, 

tablets, layers, and microparticles/ nanoparticles, permitting the plan of an assortment of 

clinical and pharmacological gadgets versatile to end purposes. Specifically, in medication, 

chitosan might be valuable in swathes to decrease draining, and as an antibacterial operator can 

likewise be utilized to help convey drugs through the skin (Fig. 11). It is additionally utilized 

in the improvement of chitosan medicate control discharging frameworks, including chitosan 

wipes, chitosan film, chitosan dabs, chitosan microbeads (microspheres), and chitosan 

nanoparticles. In other words, nano-magnetic is the center and chitosan polymer covering the 

magnetic centers. The procedure is called a coating. These magnetic nanoparticles can be 

utilized as incredible transporters for chemical immobilization, and chitosan nanoparticles have 

an antitumor job through improving the ” body’s safe capacity or immune system [98]. In spite 

of the notable points of interest of exploiting chitosan in these fields, extra work should be done 

to streamline ” chitosan’s details and upgrade its physicochemical properties for various 

employments. 

Table 1. Biomedical and industrial application of various chitin derivatives. 
S.No. Chitin derivatives Process of synthesis Applications References 

1. Chitosan Deacetylation Anticancer, antibacterial agent, 

enzyme immobilization,  

[85-86, 99-

100] 

2. Alkyl chitin Deacetylation of chitosan Antimicrobial agents [101] 

3. N and O sulfated chitin Sulfation Anticoagulant agent, heparin [102] 

4. Dibutyryl chitin Reaction of the chitin with 

butyric anhydride 

Intermediates for further chemical 

modifications 

[103-104] 

5. Carboxymethyl chitin 

(CMCH) 

Carboxymethylation Excipients for oral drug delivery [105-106] 

6. Chito-oligosaccharides 

(COS) 

Acid hydrolysis  

and oxidative, reductive 

depolymerization 

Nutraceutical additive [107-108] 

7. Chitin nanofibers (CNF) Loosening of tightly 

bonded fibrils bundles by 

removal   of   minerals,  

proteins, pigments, and 

lipids with the treatment 

of  HCl, NaOH, and 

ethanol 

Tissue engineering wound 

dressing, cosmetic, skin health, 

stem cell, anticancer therapy, drug 

delivery, obesity treatment, anti-

inflammatory 

[109-111] 

8. Chitin nano-whiskers 

(CNW) 

Treatment of  chitin with 

3N HCl at 100°C or 3M 

H2SO4 solution 

 

Nanotechnology and 

nanocomposite material for 

drug/gene delivery or 

nanoscaffolds in tissue 

engineering 

[112-113] 

9. Chitin nanoparticles 

(CNP) 

Treatment of  chitin in 3M 

HCl for 1.5 h at 90°C 

Biocompatible, biodegradable, 

and non-toxic 

[114-116] 

10 Chitin nanocomposites 

(CNC) 

By chitin whisker and 

tannic acid,cross-link 

chitosan, or chitin 

nanofibers or adding metal 

nanoparticles into chitin 

matrix 

Drug encapsulation, improving 

the drug load, and controlled 

release action 

[76, 117] 

11. Chitin hydrogels (CHG) NaOH treatment of chitin Bone tissue regeneration, cell 

scaffolds and drug delivery 

vehicles 

[118-120] 
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Figure 11. Strategies for production and application of chitosan nanoparticles. 

  4.2. Application in sustainable agriculture management. 

  4.2.1. Antifungal activity. 

  A highly limiting factor in the production of the crops is the diseases that are caused by 

the phytopathogenic fungi [23, 25]. These diseases affect the seeds right from germination and 

throughout development, consequently reducing the yield by 30% [121]. Therefore plant 

disease control has become highly dependent upon the fungicides to control these fungal 

diseases. The investigation has reported potentially unfavorable environmental side effects. 

Increased awareness and the concern regarding the accumulation of the residues of these 

chemical fungicides in the biosphere and also the development of the resistance against 

conventional antibiotics have done the search for new antimicrobial agents, a field of utmost 

importance in disease management. Organisms producing chitinase can be exploited as 

biocontrol agents in both direct and indirect manner by using their purified proteins or via gene 

manipulation [122]. According to estimation, the crop loss because of disease-causing 

pathogens is around 25% of the total yield in the developed countries, and in the developing 

countries, it is around 50% [123]. Fungal infections alone cause a threat f these diseases. 

Nonspecific toxicity and adverse effects of commercial fungicides on the environment have 

led our thinking on other options of pest control like the use of chitinases/ chitinolytic enzymes 

as antifungal agents to control pathogens [19]. The characteristic of chitinases to hydrolyze 

chitin can be exploited, suggested a greener approach that can be exploited to control plant and 

fungal pathogens.  

Biological control is the most accepted alternative because it is environment friendly. 

These specific microorganisms are used, which interfere with the plant pathogens and pests 

and doing so to overcome the problems caused by the chemical methods. Among the 

microorganisms, the bacteria are considered as the most suitable as they are able to produce a 

variety of antimicrobial products. The bacterial species of Streptomyces, Bacillus, and 

Pseudomonas are commonly used as biocontrol agents [124]. There has been a lot of 

information reported on the antagonism between the bacteria and fungi and about its potential 

role in biocontrol [125-126]. Some bacterial secretions have the ability to kill the 

phytopathogenic fungi. These secretions contain many enzymes that lyse the structural 

component of the fungal cell wall. One of the enzymes in these secretions is chitinase. Chitinase 

plays an important function in biocontrol of fungal plant diseases by hydrolyzing chitin 
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polymer of fungal pathogen’s cell walls so that altered fungal growth, hyphal tips, and germ 

tubes [24, 71, 127]. 

The rectified chitinases of Streptomyces rimosus exhibited in vitro antifungal properties 

against Fusarium solani and Alternaria alternata [128]. Correspondingly, the chitinolytic 

potential of Streptomyces viridificans, in vitro was observed against Curvularia, Pythium, 

Colletotrichum, Fusarium Aspergillus, Sclerotinia, and Rhizoctonia [28]. Amongst 

Streptomyces spp. Recovered from rhizosphere soils, the S. hygroscopicus was effective 

antagonistic against Colletotrichum gloeosporioides and Sclerotium rolfsii [16]. The damping-

off disease of sugar beet, caused by Rhizoctonia solani, can be controlled in vitro with 

streptomycetes [129]. It was observed that GH19 chitinases show antifungal properties against 

fungi: Rhizoctonia solani, Colletotrichum gossypii, Pythium aristosporum, and Fusarium 

oxysporum. Streptomyces viridodiasticus isolates caused extensive cell wall lysis of Sclerotinia 

minor when grown in a carbon-free salt solution [27]. These isolates, individually or in 

combination, decrease disease incidence in greenhouse conditions [130]. The combined effect 

of chitinolytic enzymes and an antifungal compound, 2-furancarboxaldehyde of Streptomyces 

cavourensis was found to be a potential biocontrol agent of anthracnose in pepper [131]. An 

earlier report showed that Bacillus thuringiensis isolates exhibited antifungal activity against 

Verticillium spp. in-vitro [132]. The isolates of Bacillus cereus reduced the severity of 

Verticillium wilt on eggplant up to 70% in 14 days [133]. The endochitinase and chitobiose 

from Serratia marescens inhibited Botrytis cinerea in vitro. The red pigment Prodigiosin, 

produced by S. marescens, enhanced the rate of inhibition [134]. The damping-off disease of 

cucumber, which is caused by Phytophthora capsici, also controls by Prodigiosin. The in vitro 

chitinase activity of Enterobacter spp. was assessed in opposition to the common cocoa leaf 

pathogen, Colletotrichum gloeosporioides. The in vitro outcomes demonstrated that the 

contagious hyphae developed in deviant shapes and were broken or lysed, which was probably 

brought about by in vivo assays, established a decreased severity of the disease [135]. Many 

chitinolytic bacteria also possess plant-growth-promoting properties, e.g., a Pseudomonas sp. 

enhances nodulation in chickpea [136]. 

  4.3.1. Insecticide activity. 

  The well-known biocontrol agent of insects in agriculture is Bacillus thuringiensis. 

Chitinases have also been demonstrated to affect insect growth, which ultimately leads to death 

[24]. The chitinases were weakening the peritrophic membrane that lines the gut epithelium of 

the larvae [137]. Brandt et al. found that the Orgyia pseudotsugata peritrophic membrane was 

besmirched by chitinases, and an equivalent effect was also observed in vivo with Spodoptera 

littoralis and E. coli that expressed the endochitinase ChiAII from Serratia marescens [138-

139]. The B. thuringiensis blends two chitinases that improved the insecticidal action of Bt 

crystal protein against hatchlings of Spodoptera exigua and Helicoverpa armigera [119, 140]. 

Bacillus pumilus inhibited the growth of Scirpophaga incertulas, a rice pest [141]. 

Paenibacillus illinoisensis deformed and destroyed the eggshell of the root-knot nematode 

(Meloidogyne incognita) [101]. Singh et al. found that Paenibacillus sp. D1, could be used to 

control Helicoverpa armigera. Stenotrophomonas and Chromobacterium were observed to 

inhibit egg hatch of the potato cyst nematode (Globodera rostochiensis) in vitro [142-143]. A 

GH18 chitinase isolated from Pseudomonas sp., had amino acid sequence identity with 

chitinases of Serratia marescens, showed little insecticidal activity towards Spodoptera litura 

larvae [144]. 
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 4.4. Application in environmental management. 

The biggest source of chitinous waste is the seafood industry. In order to maintain the 

ecosystem’s carbon-nitrogen balance, its recycling is highly essential. The insoluble nature of 

chitin and its inactivity towards most chemical agents makes it mandatory for the utilization of 

more feasible biological processes. Keeping the above facts in view, enzyme chitinase can be 

adequately used for the biological conversion of industrial seafood waste [18]. It executes two 

functions at the same time in a manner that makes use of chitinous wastes and reduces the 

production cost of the microbial chitinases [20]. Soil and water pollution by organic and 

inorganic contaminants affect human health and the environment. Environmental protection is 

very important nowadays, and industries try to develop new technologies that resolve the 

contaminants problem [145-147]. Recently chitin and its derivatives were used for remediation 

of organic and inorganic contaminants from soil and water (Fig. 12). The biocompatible nature 

of chitins and its derivatives are used for the immobilization of chitinases for sensing the 

environment hazardous chemicals [148]. Chitin and chitosan help for the removal of dyes, 

organic and contaminants, and remediation of heavy metals [149-153]. After some 

modifications like functionalization of chitin is using irradiated grafting of acrylonitrile on 

chitin, polypyrrole, acetophenone derivatives of nanochitosan, cross-linking chitosan into 

nanohydrogel, poly, chitin nanofibers having better heavy metal adsorption potential (154-

156]. Chitinous waste of marine organisms can be converted into simpler useful depolymerized 

components by chitinases, which reducing water pollution (2, 157-158].  Chito-oligomers 

obtained by the action of chitinases have a wide range of biotechnological applications in 

biochemical, food, and various chemical industries (Fig. 12). Chitinase can also be used in the 

conversion of chitinous waste into biofertilizer, insecticides, and fungicides so that these can 

be more potent and ecofriendly as compared to chemically synthesized active agents (Fig. 12). 

 
Figure 12. Application of chitin, chitinases, and chitosans for sustainable management of the environment. 

5. Conclusions 

The chitin is naturally available in insects, fungi, and some algae; these are widely used 

for the manufacturing of chitin; chitinases play a significant role in biocontrol against various 

fungal pathogens and insects. These can serve as sustainable and eco-friendly alternatives to 

chemical pesticides. Chitinase producing microorganisms are a potential alternative to these 

chemicals because they are present in the soil and part of the ecosystem. For the industrial 

applications, the production of chitinase is carried out in the liquid batch fermentation, 
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continuous fermentation, and fed-batch fermentation by chitinolytic microorganisms. Chitin 

derivatives and chitinases have significant pharmacological values, as an anti-inflammatory 

drug, antifungal drugs, anticancer, immunity booster, antifungal creams, wound healing, 

contact lenses, artificial skin, surgical stitches, and used in making artificial medical products 

because these chitin derivatives have been found to be non-toxic, non-allergic, biocompatible, 

and biodegradable. In the environmental remediation process, using chitin and its derivatives 

may lead to the development of futuristic methods to reduce the environmental toxins because 

these are eco-friendly biodegradable material. Other applications of chitinases include the 

biological conversions of chitinous waste to the single-cell proteins and ethanol and fertilizers. 

We hoped that this review would encourage the use of chitin, chitinases, and chitin derivatives 

for the sustainable development of pharmaceutical, agricultural, and environmental 

perspectives for the benefit of society and nature. 
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