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Abstract: The current study focusses on the optimization of Copper oxide nanoparticles (CuO NPs) 

biosynthesis with Alternanthera sessilis (L.) extract using response surface methodology (RSM). The 

effect of time, pH, and extract to metal concentration ratio on the yield of synthesized nanoparticles 

(NPs) were estimated using Box–Behnken design. The influence of each of the parameters, as 

mentioned earlier, was determined by synthesizing nanoparticles under different conditions. A total of 

29 experimental runs were carried out to estimate the crucial parameters. Extract to the metal ratio was 

found to be the vital parameter for yield optimization based on the p-values (p-value < 0.05). The 

physicochemical property of NPs, like size, was estimated to be in the range of 10-20 nm. In zebrafish, 

48 hpf and 72 hpf were measured at 90 µM to reduce dysfunction and mortality during organ 

development. These results can have a valuable impact on eco-toxicological effects.  
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1. Introduction 

Nano-biotechnology, a field that connects both nanotechnology and biotechnology, is 

dedicated to product improvement and technology creation. Nanoparticles are employed in the 

manufacture of several materials, including pigments, cosmetics, biomedical devices, etc [1,2]. 

Nanomaterials such as copper oxide nanoparticles are recently being employed in 

pharmaceutical fields, food packaging, and catalyst manufacturing [3,4]. Nanoparticles have 

been synthesized through numerous methods [5]; conventional strategies use toxic chemicals 

as reducing or stabilizing agents in order to prevent agglomeration. Also, CuO NPs, which is 

synthesized through chemical routes, are known to cause acute and chronic toxicity in aquatic 

organisms [6]. 

The reduction of copper chloride to copper oxide nanoparticles is carried out by the 

high content of diterpenoid lactones possessing polyol groups present in the Alternanthera 

sessilis (dwarf copper leaf) leaves at room temperature [7]. The importance of green chemistry 

has been raised in recent decades to prevent the usage of toxic materials [8]. Green synthesis 

or the biological method involves the use of plant extracts [9], microorganisms [10], and 

enzymes [11] is based on the principle of the utilization of non-toxic materials or environment-

friendly agents, which also deals with the diminished production of harmful substances [12]. 

However, there is inadequate evidence to prove the actual toxicity of nanomaterials. The 

nanotoxicology has focused on in vitro assays, using the variety of antioxidant systems. The 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC113.1002710039
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6784-8431
http://orcid.org/0000-0002-3021-6406


https://doi.org/10.33263/BRIAC113.1002710039  

 https://biointerfaceresearch.com/ 10028 

advantage of this approach is that it considers the various level of physiological reactivity in 

the whole organism [13], and so, zebrafish (Danio rerio) has rapidly evolved as an ideal model 

organism for biotoxicity evaluation of nanomaterials. Zebrafish are used as a vertebrate model 

owing to its properties like small size, high fecundity, transparent embryos, rapid embryonic 

development cycle, and easy maintenance. Moreover, zebrafish resembles the human at gene 

metabolism level [14]. 

The toxicological studies on living organisms of nanoparticles suggested differential 

toxicities based on physiological properties like size, shape, agglomeration, concentration, 

dissolution, and application method [15]. Further, parameters such as morphology, 

concentration, and coating can also significantly contribute to its toxicity. In the present study, 

CuONPs were synthesized using Alternanthera sessilis leaf extract, a single-pot process, with 

no use of toxic chemicals or reagents. The optimized AS-CuO was then used to evaluate the 

physicochemical and antioxidant activity. In vivo studies using embryonic and larval zebrafish 

model was used for evaluating the toxicological effects. 

2. Materials and Methods 

 2.1. Sample collection and preparation.  

 The plant Alternanthera sessilis is available throughout tropical Africa, Australia, 

eastern and southern Asia. Fresh leaves of Alternanthera sessilis, free from diseases, were 

collected from VIT School of Agricultural Innovations and Advanced Learning (VAIAL). The 

plant was documented by the Plant anatomy research center, Chennai (Reference number: 

pg:191:1987) [16]. The fresh 250g of leaves was chopped, dipped into 100 mL of distilled 

water. The mixture was cooled and stored for experimental usage. 

2.2. Green synthesis of CuO NPs. 

 To prepare 50 mM of copper chloride solution, typically, 0.672 g was dissolved in 30 

mL of aqueous extract. The solution was kept on an overnight shaker at 150 rpm. The aqueous 

extract was mixed with the copper chloride stock solution. The solution was kept for overnight 

shaking at 150 rpm. The formation of a deep green colored solution indicated a synthesis of 

CuO NPs Figure 1. The solution was transferred into a watch glass and heated at 80°C for 24 

h resulting in black powder, which was further used for experimental analysis. 

 

 
Figure 1. Schematic representation of the green synthesis of CuO NPs from the leaf extract of Alternanthera 

sessilis. 

2.3. Design of experiments and optimization. 

 To optimize the process variables, thereby probing their relative or interactive effects 

on the synthesis of CuONPs, Box–Behnken design (BBD) was employed. It comprises three 

steps: (1) design of experimental sets and their execution, (2) regression-based response surface 
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modeling, and (3) optimization and validation of the model. The effective process parameters 

which substantially contribute to the synthesis of CuONPs were investigated using statistical 

software called Design-Expert 11. Equation 1 was implemented to find out the number of 

experiments that would be required for the Box-Behnken design. 

Where k and C0 refer to the number of experimental factors and central points, 

respectively, four experimental factors, which are independent, were subjected to analysis. The 

design created 29 experimental runs. The experimental parameters were denoted as A 

[Concentration of Copper Chloride mM (25, 50, 75 mM)], B [pH of reaction (4, 5, 6)], C 

[volume of Alternanthera sessilis in mL (20, 30, 40)] and D [reaction time (7, 8, 9 hrs)] 

respectively and coded as -1, 0, 1 (low, central point, high. The relationship between these 

variables and its interactive responses was fitted using the below mentioned second-order 

polynomial quadratic equation. The two most crucial aspects, statistical significance, and 

proficiency of the experimental model, were determined with the help of analysis of variance 

(ANOVA). This statistical analysis was used in order to ensure that responses related to the 

levels of each variable could be categorized vigorously by enunciating the aforementioned 

equation, which had been fitted and represented as surface and contour plots. 

 2.4. Physiochemical characterizations of CuO NPs.  

 UV-Vis, DLS, FTIR, XRD, SEM with EDS were employed to understand the 

composition and physicochemical properties of CuO nanoparticles. The size of particles was 

estimated by SEM (Zeiss EVO18) attached to EDS and TEM. For SEM analysis, of CuO 

nanoparticles in solution were dried in a hot air oven, and images were captured at 10KV. The 

stability and size of CuO nanoparticles in the aqueous medium were estimated through zeta 

potential and hydrodynamic diameter measurement using DLS (HORIBA SZ100). UV-Visible 

spectra of CuO nanoparticles were obtained in the range of 200–600 nm at different time 

intervals using a double beam UV-Visible spectrophotometer (Cary 5000, Agilent, USA). XRD 

spectra were obtained in the 2θ° range of 20° to 80° to comprehend the crystallinity and size 

of CuO nanoparticles using X-ray diffractometer (XRD Brukerd 8 Advance). FTIR 

spectroscopy, in the range of 400-4000 cm-1, was used to identify the compounds involved in 

the reduction and capping of nanoparticles. 

2.5. DPPH activity. 

A similar protocol was followed for the antioxidant activity of Magnolia champaca 

extracts mediated CuO nanoparticles was evaluated by the DPPH method [17]. Various 

concentrations of CuO nanoparticles (100-500 µg/ml) were mixed with a constant range of 

(500 µl) DPPH solution. Finally, the solution was made with 3 mL of methanol. The same 

concentration of ascorbic acid was prepared used as a positive control. This entire mixture was 

shaken and for 30 min under the dark condition at room temperature. The absorbance was 

recorded at 517. 

Scavenging activity (%) = control-test/control×100                       (1) 

 

2.6. Radical ABTS radical scavenging assay. 

The in-vitro antioxidant activity of ABTS has formed. 2 mM ABTS solution with 17 

mM, (0.3ml) potassium persulfate was kept in the dark condition for 12-16 h at 28℃. This 
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solution was diluted in ethanol at 30°C. Then, the ABTS solution was added to various 

concentrations of 100- 500 µg/mL CuO nanoparticles and kept in the dark condition at room 

temperature for 30 min. Ascorbic acid of the same concentration was used as a positive control. 

Absorbance was then measured at 734 nm.  

ABTS (%) = control-test/control×100                               (2) 

2.7. Nitric oxide radical scavenging activity. 

Nitric oxide radical capturing analysis was calculated using the UV-Visible 

spectrophotometer method. Test samples at different concentrations (100-500 µg/mL) were 

dissolved in DMSO. 1ml of test solution was mixed with 1ml of sodium nitroprusside (5 mM) 

in phosphate buffer saline and incubated at 25°C for 30 min. Medium without a test solution 

was used as control. 1ml of Griess reagent was then added to an equal volume of incubated 

solution. The chromophore produced for the period of the diazotization of the nitrile with 

sulphanilamide was estimated at 546 nm.  

NO (%) = control-test/control×100                                 (3) 

2.8. In- vivo toxicity of green synthesized CuO NPs on zebrafish. 

All experiments were performed according to relevant animal practice guidelines and 

regulations of OECD. Adult zebrafish were maintained at a temperature of 28.5℃, with a pH 

of 7 ± 0.2, under 14:10 h light / dark photoperiod. They were given live salt shrimp once a day 

and dry meals twice a day. A natural random mating procedure was used to obtain zebrafish 

embryos, which were further raised in embryonic water (0.2 g/L saline in double-distilled 

water) at 28.5℃. Zebrafish fertilized eggs were stored at 24 ± 3°C until hatching. The 

morphological changes and developments were monitored using microscopy. The rate of 

hatching was determined by hatching 72 hpf compared to the untreated group of multiple 

embryos. Mortality was depicted as many dead embryos after 72 hpf compared with the group 

that was left untreated. The experiment was performed thrice. 

2.9. Zebrafish embryotoxicity (mortality and hatchability). 

Disclosures were conducted with minor modifications following OECD Guideline 236 

(OECD, 2013). Briefly, fertilized zebrafish embryos (<6 hpf) were tested for viability, and 

healthy embryos were collected for estimating the mortality and hatchability in almost 

equivalent growth conditions. Tested for each sample used different concentrations at 30, 60, 

90, 120, and 150 μM. Mortality and hatching were observed during the exposure period of 5 

days under extreme care. The mortality was recorded after 1, 2, 3, 4 days of the incubation 

period, and the percentage of mobility was reported. The success of the hatching process was 

confirmed after 96 h of hatching. 

2.10. Statistical analyses. 

All results are represented as the mean for experiments repeated in triplicated and 

presented with standard deviation. Statistical analysis of the results was carried out by using 

Graph pad 6.1 software package and considered significant at <0.05 p values. 
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3. Results and Discussion 

3.1. Design of experiments and optimization. 

The regression equation, which was represented graphically using the three-

dimensional response surface plots and the corresponding contour plots. Figure 2a. Shows the 

contour plot of two factors (volume of Andrographis paniculate extract and amount of copper 

nitrate), while Figure 2b shows the corresponding 3D surface plot for the CuO NPs yield. Table 

1 contains the list of experimental runs and the similar responses obtained from the experiments 

projected by BBD. A regression coefficient R2 value of 0.9802 was obtained with a second-

order quadratic equation generated for the green synthesis of CuO NPs. 

The statistical significance of the model was ascertained based on the results obtained 

from the analysis of variance. As observed from the results, the model F-value was 49.47, 

which implied that the model was significant. The predicted R2 (0.8886) was found to agree 

with the adjusted R2, which was calculated to be 0.9604. The computed value of C.V% was 

found to be 2.63, which is relatively low, indicating greater accuracy and consistency of the 

model.  

The adequacy of the model was evaluated using the residuals from the least-squares fit 

as a tool. The quadratic model generated using the response surface result was found to be 

significant as the p-value is < 0.0001. The standard probability plot was plotted to assess the 

normality assumptions. It suggests that the assumptions made are agreeable based on the fact 

that the extra points cluster along the diagonal line. The value of the absorbance generated by 

performing the experiments, and the corresponding values predicted by the statistical model 

Figure 3, which relate to the amount of CuO NPs being synthesized, were compared. The 

results (A) Copper Chloride 50 mM, (B) PH of reaction 5, (C) Alternanthera sessilis in 30 mL, 

and (D) reaction time of 8 hrs indicate that the empirical model is considerably on a par with 

the experimental one within the given innovative ranges.  

 
Figure 2. (a) 2 D Contour plot (b) 3D surface plot of absorbance versus concentration of copper chloride and 

volume of Alternanthera sessilis. 

 
Figure 3. (a) Normal plot for residuals (b) predicted versus actual plot (c) residual versus predicted plot for the 

biosynthesis of CuO NPs model. 
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3.2. Validation of the statistical model. 

To establish the significance and to further adequacy of the generated models for 

maximization of the yield nanoparticles, the experiment was repeated using variable levels 

suggested by the optimum model, and size was calculated (Table 2). The size of the synthesized 

CuO NPs was 9.55nm, which was further confirmed by the data generated using the statistical 

tool. The results emphasized the effectiveness of RSM in experimental design for optimizing 

the process parameters and in projecting the prominence of both the individual and interactive 

paraphernalia of the experimental variables in nanoparticle synthesis. 

3.3. UV- Vis Spectra studies. 

UV–Vis spectra indicated the synthesis of shape and size-controlled nanoparticles. 

Visual color change from green to greyish black suggests the synthesis of CuO NPs with the 

use of Alternanthera sessilis extract Figure 1 represents the synthesis. Surface Plasmon 

Resonance (SPR) is an optical property exhibited by noble metal nanoparticles upon interaction 

with resonant light. The change in color is attributed to the excitation of surface plasma 

vibrations (SPR) in the presence of metal nanoparticles [18]. The absorbance maxima peak 

demonstrates the presence of CuO NPs as CuO SPR bands are centered between 335 and 400 

nm Figure 4. 

 
Figure 4. UV-Vis spectra of synthesized CuO NPs. 

3.4. Size and shape determination of CuO nanoparticles. 

HRTEM and SEM are the most powerful analytical tools available, providing 

information on the morphology of the synthesized CuO NPs.  

 
Figure 5. Electron micrographs of green synthesized CuO NPs. (a) TEM (Scale bar of 20 nm). (b) Magnified 

view of TEM (scale bar 10 nm). (c) SEM (Scale bar of 2µm). (d) Magnified view of SEM (scale bar 300 nm). 
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Particles were confirmed to be spherical with a uniform diameter (10-20 nm) using 

HRTEM Figure 5 a-b and SEM Figure 5 c-d. EDS analysis confirmed the purity of CuO NPs 

by 57.81% (Cu) and 34.07% (O) weight percent. However, a small amount of chloride was 

also found in the EDS spectra Figure 6. HRTEM image reveals capping of CuO NPs with a 

thickness of 20 nm, which could be attributed to the organic compounds of the leaf. Previous 

studies report the interaction of secondary metabolites with metal and metal oxide 

nanoparticles [19]. 

 
Figure 6. EDS analysis of CuO NPs. 

3.5. DLS and Zeta analysis of CuO NPs. 

The stability of nanoparticles is essential for medicinal applications. Interactions 

occurring in nanoparticle solution include the intramolecular interaction among nanoparticles, 

and intermolecular interactions of nanoparticles with the surrounding fluid eventually results 

in nanoparticles agglomeration [20]. The high zeta potential value represents nanoparticles 

stability in an aqueous medium Figure 7. The Zeta potential value of -18 mV indicates excellent 

colloidal stability.   

DLS is a potent technique for monitoring the size of nanoparticles and estimating their 

colloidal stability [21]. DLS is commonly employed to estimate the hydrodynamic diameter of 

CuO NPs. The hydrodynamic diameter of CuO NPs was determined to be 80.2 nm using DLS 

Figure 8.  

 
Figure 7. Zeta potential measurement of green 

synthesized CuO NPs. 

 
Figure 8. Particle size of CuO NPs measured by 

Dynamic light scattering. 

3.6. FTIR and XRD analysis of biosynthesized CuO NPs. 

FTIR spectra revealed the presence of biomolecules in Alternanthera sessilis extract 

potential responsible for capping, reduction, and stabilization of CuO NPs. FTIR spectra of 

Alternanthera sessilis (AS) extract and dried CuO NPs are depicted in Figure 9A-B. Previous 
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literature suggests the role of tannins, carbohydrates, proteins, and ascorbic acid from the 

Alternanthera sessilis extract in synthesis and capping of Ag NPs [22]. These secondary 

metabolites are known to possess antioxidant, anti-inflammatory potentials [23]. FTIR spectra 

of AS reveals the presence of broad -OH stretching vibration at 2945.30 cm-1 and cellulose at 

3313.71 cm-1. Other bands at 2833.43 cm-1, 1658.78 cm-1, 1413.82 cm-1, 1112.93 cm-1, 1024.20 

cm-1 are attributed to the stretching vibration of alkane, stretching vibration of aromatic 

compounds, ketone, carboxylic acid [24], and C-N stretching vibrations of aromatic nitro 

compounds [25]. , The presence of similar bands in the FTIR spectra of CuO NPs, suggests the 

involvement of Alternanthera sessilis extract in the synthesis and reduction of nanoparticles. 

FTIR spectra of CuO NPs indicates the presence of bands at 3439.08 cm-1, 3331.07 cm-1, 

1622.13 cm-1, 1396.46 cm-1, 1078.21 cm-1, 802.39cm-1 and 580.57 cm-1 corresponding to O-H 

bond stretching vibration, -NH2 stretching vibration of amino acid salts, C=N stretching 

vibration of conjugated cyclic oximes/imines, C-H vibration, C-O stretching vibration of 

alcohols, CH3-metal groups and CS2 stretching vibration. Results were similar to previous 

literature [26]. 

The X-ray diffraction pattern of the synthesized CuO NPs is depicted in Figure 10. 

XRD peaks were indexed using the standard peak values available in JCPDS files (JCPDS card 

no.: 89-5895) [24,27]. The position and relative intensities of all eleven diffraction peaks were 

well consistent with the standard XRD pattern of CuO. Some of the characteristics peaks are 

observed at 2θ angles of 32.82º, 35.83º, 39.04º, 49.21º, 53.49º, 58.71º, 62.05º, 66.47º, 68.47º, 

72.62º, 75.16º and are assigned respectively to the (110), (111), (200), (202), (020), (202), 

(113), (022), (113), (311), and (004) diffraction planes. The XRD pattern revealed the 

formation of CuO NPs with a monoclinic structure. The average size of the synthesized 

nanoparticles was observed to be 17.28 nm. 

 
Figure 9. FT-IR spectrum of (A) Alternanthera sessilis (B) CuO NPs. 

 
Figure 10. X-ray diffraction pattern of CuO NPs. 
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3.7. Antioxidant activity. 

The DPPH radical scavenging assay of CuO NPs at different concentrations is shown 

in Figure 11a. The results revealed dose-dependent % inhibition of 27.27 % at 100 μg/mL, 

39.81% at 200 μg/mL, 61.89 % at 300 μg/mL, 74.97 % at 400 μg/mL, 84.63 % at 500 μg/mL 

respectively. CuO NPs demonstrated significant radical scavenging activity when compared to 

ascorbic acid. Phytochemicals present in the Alternanthera sessilis might have contributed to 

the high antioxidant potential of CuO NPs [28].  The ABTS radical scavenging assay of the 

synthesized CuO NPs is shown in Figure 11b. At 500 μg/mL concentration, the inhibition of 

CuO NPs was found to be 71.02%, and that of the standard was 66.46%.  The result shows 

dose-dependent % inhibition of 16.24 % at 100 μg/mL, 40.02% at 200 μg/mL, 54.30 % at 300 

μg/mL, 62.03 % at 400 μg/mL, 71.02 % at 500 μg/mL. The NO radical scavenging assay of the 

synthesized CuO NPs is sown in Figure 11c. The results demonstrate % inhibition of 25.55 % 

at 100 μg/mL, 45.16 % at 200 μg/mL, 58.44 % at 300 μg/mL, 75.48 % at 400 μg/mL, 82.68 % 

at 500 μg/mL. The results suggested that the synthesized CuO NPs have moderate antioxidant 

activity against ABTS and NO radical scavenging assays. The hydroxyl group of plant phenolic 

compounds show scavenging potential and, thus, can be a contributor to the antioxidant activity 

of CuO NPs [29]. 

 
Figure 11. In vitro antioxidant activity of copper oxide nanoparticles using (A) DPPH assay (B) ABTS assay, 

and (C) NO assay. 

3.8. In vivo toxicity of green synthesized CuO Nanoparticles in zebrafish embryos. 

Rate of hatching and viability was considered to be viral parameters to evaluate the 

toxicity of CuO NPs on Zebrafish embryonic development [30]. The mortality rate of zebrafish 

embryos was high in CuO NPs treated embryo when compared to the AS-CuO treated one. 

Compared with the AS-CuO groups, the mortality rate was estimated to be 5 times more in 

CuO treated groups at a concentration of 120 μM. The hatching rates of zebrafish embryos 

after the CuO NPs treatments were given in Figure 12A. As shown in Figure 12B, control 

groups and the CuO NPs treated embryos started to hatch at 48 hpf. A dose-dependent decrease 

in the hatching rate decreased significantly was observed between 48 and 72 hpf [31]. As 

compared to the AS-CuO group, the hatching rate in the highest concentration (150 μM AS-

CuO) group was decreased by about 30%. The highest body malformation rate was found for 

the highest concentration of CuO NPs treatment (150 μM) Figure 12C. 

https://doi.org/10.33263/BRIAC113.1002710039
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC113.1002710039  

 https://biointerfaceresearch.com/ 10036 

 
Figure 12. Zebrafish embryo viability, hatchability, and embryo development. 

Table 1. Experimental matrix and responses (absorbance) for Box–Behnken design. 

 

Run 

Factor 1 Factor 2 Factor 3 Factor 4 Response 

A: Concentration B: pH C: Volume D: Time Absorbance 

M 
 

ml hrs a. u 

1 0.05 6 30 7 0.77 

16 0.075 6 30 8 0.84 

8 0.05 6 40 8 0.85 

14 0.05 6 20 8 0.87 

12 0.025 6 30 8 0.88 

20 0.05 4 30 9 0.89 

6 0.05 6 30 9 0.92 

9 0.05 4 20 8 0.95 

4 0.025 4 30 8 0.96 

2 0.025 5 30 9 0.97 

3 0.05 4 30 7 0.98 

21 0.05 5 20 9 0.98 

24 0.05 5 40 7 0.98 

25 0.025 5 30 7 0.98 

22 0.025 5 20 8 0.99 

5 0.05 5 20 7 1 

15 0.025 5 40 8 1 

27 0.05 4 40 8 1.02 

13 0.075 5 30 7 1.03 

7 0.075 4 30 8 1.04 

29 0.075 5 40 8 1.04 

10 0.075 5 20 8 1.05 

11 0.075 5 30 9 1.08 

28 0.05 5 40 9 1.08 

17 0.05 5 30 8 1.22 

19 0.05 5 30 8 1.23 

18 0.05 5 30 8 1.24 

23 0.05 5 30 8 1.24 

26 0.05 5 30 8 1.24 

Table 2. Results of validation experiments. 

Number of runs Absorbance at 400 nm 

1 1.22 

2 1.24 

3 1.24 

Average 1.23 

Predicted 1.27 
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4. Conclusions 

 In the present study, the biosynthesis of CuO NPs was attempted using greener 

techniques by optimizing all crucial parameters using statistical designs.  The presence of CuO 

in the synthesized nanoparticle was confirmed using UV-Vis spectrophotometry, FTIR, EDS, 

and XRD techniques. The morphology and the size of CuO NPs were determined by SEM and 

TEM studies. In summary, successful green synthesis of stable, well-characterized CuO 

nanoparticle was carried out, the in vitro and in vivo toxic impact was investigated with 

comparison to commercially available CuO NPs. Data from this report suggested a novel 

method of green synthesis of CuO nanoparticles. 
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