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Abstract: Urea is one of the most extensively used fertilizers in agriculture but has a detrimental impact 

on the environment. One of the strategies to reduce this impact can be engineering modified plants 

containing urease enzyme with a considerably higher affinity for urea so that the urea applied in the 

fields can be significantly reduced.  In this study, we have selected Oryza sativa Urease and generated 

stable mutants having a high affinity for urea. We modeled the 3D structure of the enzyme and identified 

the potential binding sites by analyzing the binding sites of similar proteins, i.e., 48 urea binding 

proteins.  We found that mutation of Arg578 with Cys near the substrate-binding site of  Oryza sativa 

Urease leads to a stable mutant protein that has a  higher binding affinity for urea. This study will lead 

to a generation of environment-friendly, stable, genetically modified rice crop that consumes lesser 

urea, without compromising with crop productivity.  

Keywords: Oryza sativa Urease; molecular docking; high urea affinity; molecular modelling; 

mutation analysis. 
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1. Introduction 

Plants suffice their nutrient requirements due to the presence of Nickel-dependent 

metalloenzyme- Urease (EC 3.5.1.5), present in various plant species as the housekeeper 

enzyme, playing a vital role in catalyzing the hydrolysis of urea, converting it to ammonia in 

the cytosol, which further acts as a substrate for Nitrogen assimilation in plants [1]. With an 

estimated production of 480.13 million metric tons in 2016-17, indicated by USDA (United 

States Department of Agriculture), Oryza sativa (Rice) is one of the predominantly grown 

cereal crops worldwide, crucially depending on urea as the main source of nitrogen fertilizer 

[2], which is accessible to plants, only after its hydrolysis, mainly by microbial urease, followed 

by plant ureases [3, 4]. 

Widespread application of urea for paddy growth has a detrimental impact on the 

ecosystem, due to the high activity of microbial ureases in the soil leading to ammonia 

volatilization, phytotoxicity, Nitrate accumulation, suspended seed germination [5], leaching, 

contamination of nearby water bodies, soil acidification, etc. [6,7]. Similar harmful effects of 

excess of another nutrient- Phosphorous, have been studied, and novel methods have been 
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designed to reduce its impact on the environment [8]. The different strategies employed, such 

as developing hydrophilic polymers for controlled ammonia release [9], experimenting with 

ground cover rice production system [10], use of membrane encapsulated starch-g-PLLA urea 

fertilizer [11], designing urease inhibitors [12] have not been completely successful. The 

reduced soil urease activity should be accompanied by increased plant urease activity. 

However, not much has been investigated on targeting the ureolytic activity of Oryza sativa 

urease itself, which could potentially enhance the urea metabolism and uptake by plants, 

preventing loses due to ammonia volatilization, ultimately reducing the urea dependence 

quantitatively, thus, limiting its adverse effects [3, 13-20]. 

In our study, we designed an environment friendly and stable Oryza sativa Urease 

mutant so as to enhance the enzyme affinity for urea. This can be used to generate genetically 

modified rice species containing urease that has a high affinity for urea, such that the amount 

of urea applied in the fields can be significantly reduced. Thus, large scale production of rice 

crops will not be accompanied by large scale urea applications in the fields, thus, saving the 

environment from its catastrophic effects. 

2. Materials and Methods 

 2.1. Modeling of protein structure. 

The amino acid sequence of Oryza sativa Urease (Accession ID BAB78715.1), 

retrieved from the NCBI database, was used to generate a full-length 3D protein structure with 

the help of I-TASSER server.  

2.2. Binding-site analysis. 

Multiple sequence alignment of 48 urea-binding proteins (retrieved from RCSB- 

Research Collaboratory for Structural Bioinformatics database) and Oryza sativa urease was 

done using Clustal Omega [21]. LIGPLOT analysis of urea-binding sites of closely related 

protein structures was done with the help of PDBsum [22]. Closely related proteins were 

structurally aligned and further superimposed with Oryza sativa Urease using UCSF Chimera 

to identify the binding pocket. 

2.3. Generation of mutants. 

UCSF Chimera [23] was used to visualize and select amino acid residues having a 

cutoff distance of 3.00 Å. We then obtained stabilizing amino acids on the mutation sites by 

CUPSAT server [24]. Chimera [23] was used to select the most probable rotamers of stabilizing 

amino acids as mutants, and clashes or contacts were removed so as to stabilize any strain 

remaining after mutation. 

2.4. Docking. 

 The 3D structure of urea was obtained from the Chemspider database. Molecular 

docking of Urea and Oryza sativa urease and its mutants were carried out using the AutoDock 

software package (version 4.2) [25] as implemented through the graphical user interface 

AutoDock Tools (ADT 1.5.6). In docking grid box size of 40x40x40 points covering the whole 

protein structure was built. A grid spacing of 0.375 Å (approximately one-fourth of the length 

of the carbon-carbon covalent bond) and distances-dependent functions of the dielectric 
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constants was used for the calculation of the energetic map. Confirmation runs were generated 

by using Lamarckian genetic algorithm searches. Default settings were used with an initial 

population of 50 randomly placed individuals, a maximum number of 2.5 × 106energy 

evaluations, and a maximum number of 2.7 × 104generations. A mutation size of 0.02 and a 

crossover rate of 0.8 were chosen. The resultant complex structures were then selected based 

on binding free energy values. 

3. Results and Discussion 

3.1. Homology modeling. 

The 3-D structure of Oryza sativa Urease was not available in the Protein Databank, so 

we modeled the structure using its amino acid sequence, which was retrieved from the NCBI 

database (Accession ID BAB78715.1). The enzyme consists of a single chain of 848 amino 

acid residues. I-TASSER server provided 5 full-length models of the protein, out of which the 

structure with a C-score (confidence score) of 2 (predicting the high quality of model) was 

selected (Figure 1). It consists of 34 α-helices, 11 of them being extremely short (with 3-4 

amino-acid residues). Most of the helices are amphiphilic, interacting with the solvent, while a 

few are surrounded by loops. The 29 β-strands arrange themselves in 6 β-sheets, 2 buried in 

the core, while 4 are amphiphilic. The 2 β-turns consist of loops facing the solvent, while 8 β-

strands form a barrel, making a hydrophobic pocket.   

 
Figure 1. Structure of Oryza sativa Urease modeled by I-TASSER server. Blue color indicates helices, Red- 

beta-strands, Green-loops. 

3.2. Binding-site analysis. 

In order to perform the binding site analysis, we have first retrieved all the existing Urea 

binding proteins from the RCSB database.  In the RCSB database, we have found  48 such 

proteins. Multiple sequence alignment of Oryza sativa Urease with the existing 48 urea-binding 

proteins was carried out. We found that Oryza sativa Urease has high similarity with 4 of the 

48 existing urea-binding proteins. Among the 4 proteins, we have chosen Ricin-A from Ricinus 

communis (PDB id: 2R2X), Moesin from Spodoptera frugiperda (PDB id: 2I1J), Moesin from 

Spodoptera frugiperda (PDB id: 2I1K) for binding site analysis. We have not considered HLA-

B*1501 from Homo sapiens (PDB id: 1XR9) for further binding site analysis because of the 
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absence of a urea-binding site in the chain C  of 1XR9 (which has high similarity with Oryza 

sativa Urease). We studied the molecular interactions in the Urea-binding sites of the above 

mentioned 3 proteins with LIGPLOT analysis ( Figure S1). From Figure S1, we can see that 

the residues  Asn6 and Glu73  present in chain A of Moesin (2I1J), as well as 2I1K, were 

involved in forming hydrogen bonds with urea in its binding pocket, while the residues Met5, 

Asn74, Pro75, and Leu76 create a hydrophobic atmosphere around the pocket (Figure S1 a, b) 

[26]. The urea binding pocket in chain A of Ricin(2R2X) (Supplementary Figure S1 (c)) 

contains Gly121 and Val81, which form hydrogen bonds with urea, and Ile172, Phe93, Tyr80 

make Hydrophobic contacts.[27] ( Table S1). 

We structurally aligned Oryza sativa Urease with 2R2X, 2I1J, and 2I1K (Figure 2).  

From Figure 2c,  we can see the residues Gly121 and Phe93 that were present in the urea 

binding pocket of 2R2X were structurally aligned with the residues Asp622 and Phe580 of 

Oryza sativa urease, respectively.  From Figure 2a,  we can see only one of the residue (Asn6) 

present in the urea binding pocket of 2I1J was structurally aligned with Tyr350 of Oryza sativa 

Urease. From Figure 2b, we can see none of the residues present in the urea binding pocket of 

2I1K were involved in structural alignment with the residues in Oryza sativa Urease.  

 

Figure 2. Structural superimposition of proteins with Oryza sativa Urease (copper) with (a) 2I1J_A (blue) (b) 

2I1K_A (blue) (c) 2R2X_A (blue). 

Since two residues were aligned in the case of 2R2X structural alignment (Table 1), we 

chose the corresponding structurally aligned amino acid residues, i.e., Asp622 and Phe580, as 

the urea binding site for Oryza sativa Urease (Figure 3). 

Table 1. Structural alignment of amino acid residues of Oryza sativa urease with other urea bound proteins. 

S.No. 
PDB ID of 

Protein 

Aligned 

Amino Acids 
Corresponding amino acids of Oryza sativa Urease 

1. 2R2X_A 

GLY121 ASP622 

VAL81 Not Aligned 

PHE93 PHE580 

2. 2I1K_A 
ASN6 Not Aligned 

GLU73 Not Aligned 

3. 2I1J_A 
ASN6 TYR350 

GLU73 Not Aligned 

 

    

(a) (b) (c) 
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Figure 3. Predicted binding site in the modeled structure of Oryza sativa Urease, showing amino acid residues 

ASP622 and PHE580 in the binding pocket. 

3.3. Generation of mutants.  

To generate mutants, we initially found the amino acid residues that are present around 

the predicted substrate-binding pocket. The amino acid residues with a distance less than 3 Å 

from urea (present in the binding site) were Cys833, Glu621, Arg578, Asp622, and Thr577. 

The residues forming hydrogen bonds with urea (i.e., Phe580, Asp622) were exempted. All the 

4 residues were checked for their possible amino acid replacements with the help of CUPSAT 

server. Thus, a list of possible stabilizing and destabilizing amino acid residues was found for 

each of the 4 amino acid point mutations in protein (Table S2). Hence, we obtained 2 single 

mutants and 2 double mutants- Arg578 was replaced with Cys, to generate OS_R587C, Arg578 

replaced with Pro, to form OS_R578P. The double mutants produced were 

Arg578Val/Cys833Val (OS_R578V/OS_C833V) and Thr577Lys/Glu621Met (OS_T577K 

/OS_E621M). 

Ligand (Urea) - protein (Urease) interactions for the native (originally modeled 

structure) and different mutants were analyzed by molecular docking to find mutant with the 

least binding energy, and thus, the highest binding affinity for urea. The native structure of 

modeled Oryza sativa Urease (OS_native) had binding energy of -4.47 kcal/mol and inhibition 

constant of 527.59 µM (Table 2), with Lys656, Ala619, Ile618, Phe580 being the interacting 

amino acid residues, forming hydrogen bonds with urea (Figure 4).  

Table 2. Docking Analysis of Oryza sativa urease with urea. 

S. No. 

PROTEIN  

Binding 

Energy 

(kcal/mol) 

Inhibition 

Constant 

Interacting Amino Acids (forming 

H-bonds) 

Interacting 

Urea Atom 

Distance 

(Å) 

Amino Acid Atom   

1. OS_native -4.47 527.59 𝜇𝑀 LYS656 H O 1.92 

ALA619 O H 2.17 

O H 2.14 

ILE618 O H 2.14 

O H 2.11 

PHE580 HN O 2.30 

2. 

OS_R578P -5.13 173.46 µM 

GLU621 O H 2.058 

ILE618 O H 2.09 

ASP622 O H 2.109 

ASP622 O H 2.407 

ASP622 O H 2.059 

ASP622 O H 2.417 

THR577 O H 2.23 

3. 

OS_R578C -5.28 134.81 µM 

ASP622 O H 2.241 

ASP622 O H 2.14 

THR577 O H 2.0 

ILE618 O H 1.86 

ASP622 O H 2.16 
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S. No. 

PROTEIN  

Binding 

Energy 

(kcal/mol) 

Inhibition 

Constant 

Interacting Amino Acids (forming 

H-bonds) 

Interacting 

Urea Atom 

Distance 

(Å) 

Amino Acid Atom   

GLU621 O H 2.129 

4. 

OS_R578V 

/ 

OS_C833V 

-5.21 150.88 µM 

ASP622 O H 2.213 

ASP622 O H 2.166 

THR577 O H 2.01 

ASP622 O H 2.186 

ASP622 O H 2.285 

ILE618 O H 2.395 

5. 

OS_T577K 

/ 

OS_E621M 

-4.85 279.65 µM 

GLU550 HN O 2.132 

GLU550 O H 2.0 

LYS577 H N 2.04 

GLY551 HN N 2.20 

HIS548 O H 2.08 

THR574 O H 2.278 

THR574 O H 2.17 

 

 

Figure 4.  Computed structures are showing molecular interactions of (a) OS_native with urea and (b) 

OS_R578C with urea. Green color indicates hydrogen bonding. 

Further, Asp622, Thr577, Ile618, Glu621 were the interacting amino acid residues of 

Arg578Cysmutant of Oryza sativa Urease (OS_R587C), with a binding energy of -5.28 

kcal/mol and inhibition constant of 134.81 µM, thus regarded as best binding affinity with urea 

of the proteins given in Table 1. Arg578Val/Cys833Val (OS_R578V/OS_C833V) and urea 

gave second best binding affinity with a binding energy of -5.21, followed by mutant 

Arg578Pro (OS_R578P) and then mutant Thr577Lys/Glu621Met (OS_T577K /OS_E621M). 

There have been many studies to determine urea-urease interactions or urease activity 

[28-40] of different plant species. The free binding energy of our mutated enzyme (-5.28 

kcal/mol) is very less as compared to the energy predicted of  Arabidopsis thaliana (-3.28 

kcal/mol), and almost comparable to that of Canavalia ensiformis (-5.7 kcal/mol) [41]. In the 

recent past, we can see quite a number of in-silico studies in the literature that have been used 

to produce various genetically modified crops with novel properties, such as the production of 

β-carotene in rice endosperm [42], in-silico designing α-gliadin peptidase against celiac disease 

[43], developing crops that can withstand high abiotic stresses [44], etc. Thus, the 

computationally designed high urea-affinity enzyme can be used to generate environment 

 
 

(a) (b) 
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friendly, genetically modified rice crop which has minimum urea requirement, high Nitrogen 

Use Efficiency (NUE), without any compromise in its productivity. 

4. Conclusions 

 We modeled the structure of Oryza sativa Urease, and it is found to be stable. We 

identified 2 urea binding sites in the modeled structure by analyzing the binding patterns of 

amino acids with urea in the 48 urea-binding proteins. We predicted the binding pocket 

consisting of Phe580 and Asp622 residues, based on high structural similarity and sequence 

alignment of native protein with Ricin. We created mutants of the modeled structure by 

replacing the amino acids near the binding site of the protein, with favorable and stabilizing 

amino acid residues. From the analysis of the mutants,   we found  OS_R578C (Arg578Cys 

mutation) to have higher urea binding affinity than the native protein. Furthermore, OS_R578P 

and double mutant OS_R578V/OS_C833V had similar binding energies, while 

OS_T577K/OS_E621M had the least binding affinity among the mutants, but still a higher 

affinity in comparison to the native protein. So, the mutant OS_R578C is stable and has the 

highest binding affinity for urea. Thus, a high affinity for urea will enhance urea metabolism 

and uptake by paddy, reducing environmental hazards caused by nitrogen losses from 

agricultural systems. This can be used as a template to generate an eco-friendly and stable 

genetically modified cereal crop (rice), which prevents hazards caused by excessive urea 

consumption in fields. 
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Table S1. Amino acids involved in hydrogen bonding and hydrophobic contacts of closely related proteins with 

respect to Oryza sativa urease for urea ligand with the help of LIGPLOT (PDBsum). 
PDB ID Chain Hydrogen Bonds (with urea) Hydrophobic contacts (with urea) 

2I1J A ASN6, GLU73 MET5, ASN74, PRO75, LEU76 

2I1K A ASN6, GLU73 ASN74, MET5, LEU76 

2R2X A GLY121, VAL81 ILE172, PHE93, TYR80 

Table S2. List of stabilizing and destabilizing amino acids for the mutation in Oryza sativa Urease using 

CUPSAT server. 

Amino Acid 
Overall Stability 

Stabilizing Amino Acids Destabilizing Amino Acids 

CYS833 VAL 

GLY,ALA,LEU,ILE,MET,PRO,TRP,SER,THR

,PHE,GLN,LYS,TYR,ASN,GLU,ASP,ARG,HI

S,CYS 

GLU621 ALA,VAL,LEU,ILE,MET 
GLY,PRO,TRP,SER,THR,PHE,GLN,LYS,TY

R,ASN,GLU,ASP,ARG,HIS,CYS 

ARG578 
VAL,LEU,ILE,MET,PRO,TR

P,LYS,CYS 

GLY,ALA,SER,THR,PHE,GLN,TYR,ASN,GL

U,ASP,ARG,HIS 

ASP622 ALA,MET,PRO,TRP,TYR 
GLY,VAL,LEU,ILE,SER,THR,PHE,GLN,LYS

,ASN,GLU,ASP,ARG,HIS,CYS 

THR577 ALA,PRO,GLN,LYS 
GLY,VAL,LEU,ILE,MET,TRP,SER,THR,PHE

,TYR,ASN,GLU,ASP,ARG,HIS,CYS 

 
Figure S1. LIGPLOTs showing the interacting residues of a protein molecule with urea (a) Interaction of urea 

with chain A of 2I1J, ASN6, GLU76 are forming Hydrogen bond, and MET5, ASN74, PRO75, LEU76 have 

hydrophobic contacts with urea (b) with chain A of 2I1K, ASN6, GLU73 are forming hydrogen bonding and 

ASN74, MET5, LEU76 have hydrophobic contact with urea (c) with chain A of 2R2X, GLY121, VAL81 are 

forming hydrogen bonding and ILE172, PHE93, TYR80 have hydrophobic contacts with urea. 
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