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Abstract: In the bone marrow, the rapid distribution of white blood cells, which agglomerate and 

ultimately associate with normal blood cells, characterizes leukemogenic processes. Leukemogenic 

system AML is a complex neoplastic disorder characterized by naive myeloid cell upsurge and bone 

marrow incompetence. AML is the most common form of leukemia that affects the elderly. One of the 

prognostic characteristics of this response is the predominance of triggering the FMS-like tyrosine 

kinase 3 mutations (FLT3), in particular the probability of internal tandem duplication (FLT3-ITD). 

AML has a poor prognosis of the FLT3-ITD mutation. Metabolic profiling is the ability to understand 

metabolite modality. In this study, we attempted to understand AML with FLT3 from a metabolomic 

perspective. It has identified all the metabolites involved in Acute Myeloid Leukemia (AML) and their 

pathways. AML is a hematologic disease arising from the proliferation and intensification of malignant 

myeloid cells. In the past, fewer metabolites, such as inborn metabolism defects, were used to diagnose 

complex metabolic diseases and monogenic disorders. The results of this study have helped to create 

metabolic pathways for patients FLT3 / ITD, and we have further investigated how these metabolites 

are relevant from a network biology perspective. With Cytoscape and its plug-ins, such as Metscape, 

we studied molecular networks. Metabolisms of arachidonic acid and purine in cell metabolites during 

glycolysis and gluconeogenesis in plasma metabolites are pathways with the greatest impact of AML 

FLT3 / ITD, urea cycle, and metabolism of arginine, proline, glutamate, aspartate, and asparagine 

metabolism. 
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1. Introduction 

1.1. Metabolomics. 

Metabolism is a sequence of chemical reactions in life-sustaining living organism cells. 

Cellular regulation cycle metabolites end products. The metabolomics technique analyses all 

metabolites in cells, bio-liquids, tissues, or organisms that are cultivated or studied under 

specified conditions. 
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The extraction and analysis of the information in a biological sense from the large 

amount of data provided by high throughput analyzers is another challenge in the 

metabolomics. The key methods for analyzing a large number of metabolites simultaneously 

are mass spectrometry, combined with a variety of chromatographic separation techniques, 

including liquid or gas chromatography or NMR. Metabolomics is the scientific study of 

metabolite chemical processes, the molecular substrates, medium, and metabolism products 

[1,2]. 

There is a normal karyotype in a wide number of patients (roughly 45%) diagnosed 

with AML. The intermediate clinical prognosis is graded because these patients have no 

clinical reference markers. The biological origin of AML is still unclear. KIT, FLT3, NPM1, 

CEBPA, RAS, WT1, BAALC, ERG, MN1, DNMT, TET2, IDH, ASXL1, PTPN11, and CBL 

are now the genes identified. FLT3 in cells of leukemia is a gene alteration or mutation. This 

mutation occurs among 20 to 30 percent of people with AML. The FLT3 gene is the code that 

allows the white blood cells to produce a protein called FLT3. The development of too many 

abnormal leukemia cells is empowered by a gene mutation [3,4]. 

AML is a heterogeneous, malignant disorder that ensures a need to develop our 

understanding of AML biology. AML is a heterogeneous, malignant disorder that ensures a 

need to develop our understanding of AML biology. AML is Acute Myeloid Leukaemia. A 

prognostic feature associated with a reduced response is the presence of FMS-like tyrosine 

kinase 3 (FLT3) activating mutations, especially the incidence of internal tandem duplication 

(FLT3-ITD). Even if poorly understood, differential metabolic and signaling pathways to 

FLT3-ITD can lead to poor prognosis [5-7].  

FLT3 is a tyrosine kinase receptor with essential functions in hematopoietic stem and 

frontal cell survival and proliferation. It mutates in approximately one-third of patients with 

acute myeloid leukemia (AML) either by internal tandem duplication (ITDs) of the 

juxtamembrane domain or by point mutations normally involving a kinase domain (KD). The 

two types of mutations trigger FLT3. Several studies have shown that due to recurrence, AML 

patients with FLT3 / ITD mutations are partly treated. This led to the development of a number 

of small inhibitors of FLT3-activated tyrosine kinase (TKI) molecules. FLT3 in cells of 

leukemia is a gene alteration or mutation. This mutation occurs among 20 to 30 percent of 

people with AML. The FLT3 gene is the code that allows the white blood cells to produce a 

protein called FLT3. A gene mutation causes the development of so many anomalous leukemia 

cells. The type of internal tandem FMS tyrosine kinase-3 is one of the most frequently found 

mutations in patients with a prevalence of 20-30 percent in acute myeloid leukaemia ( AML) 

(FLM3-ITD). The ITDs are very different in dimension. The FLT3-ITD consists of duplicate 

sequence frames, most (70%) in the juxtamembrane domain (JMD), and all others in tyrosine 

kinase domain 1 (TKD1). This mutation is associated with an aggressive disease form and 

carries an increased chance of relapse in about 25-30 percent of patients with AML [8-10]. 

The effective targeted development of cancer depends on the detection of diseases 

associated with driver mutation that is responsible for the pathogenesis of ’‘passenger' mutation 

malignancies that are dispensable for cancer initiation or maintenance. Clinically successful 

clinical trials will undoubtedly discriminate against passenger accident driving powers and 

provide useful insights into human cancer biology [11,12]. Activating internal tandem 

duplication (ITD) mutations in FLT3 (FLT3-ITD) are found in around 20 percent of patients 

with acute myeloid (AML) and are related to poor prognosis [13,14]. A tyrosine kinase receptor 

that regulates the proliferation and differentiation of hematopoietic stem cells is coded by the 
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FLT 3 gene. Internal tandem duplication of the acute myelogenous leukemia (AML) FLT3 

gene (FLT3/ ITD) has been reported and may be associated with poor prognosis. [15-17]. 

2. Materials and Methods 

 2.1. Human metabolome database (HMDB). 

This analysis was carried out using metabolomic data obtained from HMDB Version 

4.0 [18] using twenty-one known metabolites of plasma, thirty-three known metabolites of 

FLT3 leukemia [19-24]. Biologically essential pathways trace these metabolic properties. The 

metabolites concerned cancer functions, cell growth, purine and metabolism involvement, 

cysteine/methionine metabolism, tryptophan metabolism, carnitine-mediated fatty acid 

oxidation, and lysophospholipid metabolism [25-28] 

 2.2. Metaboanalyst. 

With Metaboanalyst software, the characteristics separating FLT3-ITD from FLT3-WT 

AML were identified, and 21 plasma and 33 cellular metabolites were annotated for recognized 

metabolites and differentiated from FLT3 status. Metabolites with a greater abundance of 

FLT3-ITD were to be analyzed here. These included (1) organic acids from previous studies: 

3-methyl-2-oxovaleric acid associated with the metabolism of isoleucine, pyridine-2,3-

dicarboxylate, 6-carboxyhexanoate (also commonly referred to as pimelic acid, which has been 

reported to be higher in uremic serum patients) and methyl indole-3-acetate; (2) amino acids 

and intermediates such as guanine, N-acetyl arginine, N-alpha-acetyl-L-Lysine, N-acetyl-DL-

glutamic acid, L-carnitine, N-acetyl glycine, GABA, N-acetyl-amine, cysteine-S sulfate, and 

threonine/homoserine; (3) phosphocholine. Metabolites L-cysteic acid and asparagine were 

considered to be less abundant in FLT3-ITD vs. FLT3-WT patients. 

List of 21 plasma metabolites: 

• Guanine  

• Pyridine-2,3-Dicarboxylate  

• N-Alpha-Acetyl-L-Lysine  

• N-Acetyl glycine  

• GABA  

• N-Acetyl-L-Alanine  

• Phosphocholine  

• Diphenylamine  

• 3-Methyl-2-Oxovaleric Acid  

• L-Carnitine  

• Cysteine-S-sulfate  

• 6-Carboxyhexanoate  

• Methyl Indole-3-Acetate  

• Threonine/Homoserine  

• N-Acetyl-DL-Glutamic Acid  

• N-Acetyl-Arginine  

• Asparagine  

• L-Cysteic Acid  

• 4-Acetamidobutanoate  

• 3-Hydroxydecanoic acid  

• Betaine 

List of 33 cellular metabolites: 

• Xylenesulfonate 

• Succinate 

• Disaccharide-6C/6 C 

• L-Acetylcarnitine 

• Glyceraldehyde/Lactate 

• Glucose/Fructose 

• Inosine 

• Adenosine 5′-Monophosphate 

• Allopurinol 

• Guanosine 

• Hypoxanthine 

• Adenosine 

• LysoPE (p-526.2933–12.92; 22:6) 

• Tryptophan 

• LysoPE (n-500.2768-12.71; 20:4) 

• Benzoate 
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• Formyl-5-hydroxykynurenamine 

• LysoPE (n-452.2772-13.35; 16:0) 

• C6H12O6-

HEXOSE/KETOSE/INOSITOL 

• L-Carnitine 

• LL-2,6-Diaminoheptanedioate 

• L-leucyl-L-proline 

• LysoPE (p-502.2908-12.90: 20:4) 

• Arachidonic Acid (20:4) 

• 4-oxoproline 

• Glycodeoxycholic acid 

• Palmitoleic acid 

• Citramalate 

• LysoPE (n-480.3097-14.59: 18:0) 

• Guanine 

• L-Methionine 

• Leucine 

• 2-Alpha-D-glucosyl-D-glucose 

MetaboAnalyst is an online resource collection established for metabolomic data 

analysis and interpretation by Wishart Research Group members of the University of Alberta 

[30]. MetaboAnalyst offers a broad range of data input types commonly produced by 

metabolomic studies, including raw spectral GC / LC-MS, MS / NMR peak lists, maximum 

intensity chart NMR / MS, NMR, and MS tables and metabolic concentrations [29-31]. 

A PDF report is developed by MetaboAnalyst [31], which documents in writing each 

step of the study and shows graphical and table results. Users can access data files and PNG 

image files that have already been processed. This includes the Human Metabolome Database 

(HMDB) as well as the Small-Molecule Pathway Database and the Drug Bank and Toxin / 

Target Databases. MetaboAnalyst is one of a number of databases on metabolomics. The 

HMDB contains more than 7,900 human metabolites and around 7,200 associated DNA and 

protein sequences associated with these metabolites.  While 6,707 drug targets and 4,228 non-

redundant drug targets are included in the Drug Bank, the T3DB contains over 2900 specific 

environmental pollutants and toxins. Information on medicine is also supported by T3DB. 

SMPDB completes the suite of pathway charts for over 350 human pathways of metabolism 

and disease [32-34]. 

2.3. Cytoscape, metscape, and cytohubba. 

For the visualization of molecular interaction networks and integration with gene 

expression profiles and other state data, Cytoscape was used. Additional functionality is 

available as plug-ins. Network and molecular profiling analysis plug-ins, new templates, 

additional file format support, and database connexion and broad network search are available. 

Metscape is a Cytoscape plug-in used for visualizing and analyzing metabolomics information 

in the context of human metabolic networks. Metscape allowed us to trace the links between 

metabolites and genes by querying this database, to visualize compound networks, and to view 

compound structures as well as reaction, enzyme, gene, and pathway information. We could 

construct subnetworks that consist of compounds and responses from a given pathway by 

applying the pathway philter. Metscape was used for uploading experimental data and 

visualizing and exploring compound networks over time or conditions of the experiment. These 

complex shifts are visualized using the color and scale of the nodes. Metscape showed the 

entire metabolic network or some of the path-specific networks in the database [36]. Cytohubba 

given the eleven topological analysis methods consisting of degree, Edge Percolated 

Component, Maximum Neighborhood Component, Maximum Neighborhood Component 

Density, Maximal Clique Centrality, and six centralities (Bottleneck, Excentricity, Closeness, 

Radiality, Betweenness, and Stress) centered on the shortest paths. It uses ranking features to 

rank various nodes in a network, and genes are recorded based on their values. 
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2.4. KEGG. 

The list of genomes, biological methods, diseases, medications, and chemical 

compounds is KEGG. KEGG is known as the Encyclopedia of Genes and Genomes of Kyoto. 

The KEGG is used for bioinformatics research and education, including data processing for 

genomics, metagenomics, metabolomics, and other omics studies, modeling and simulation of 

system biology, and translation analysis for drug discovery [37]. 

The KEGG PATHWAY database (the cable diagram database) is the core of the KEGG 

tool. The pathway map involves different entities, including genes, proteins, RNAs, chemical 

compounds, glycans and chemical reactions, and genes and therapeutic targets of diseases that 

are used as individual data entries in the other KEGG databases. 

3. Results and Discussion 

To perform Pathway Assessment, MetaboAnalyst software was used. Sixteen 

significantly affected metabolites of interest, which were significantly affected by FLT3-state 

metabolism and pyruvate metabolism, were reported in the cell metabolome pathway analysis 

and were metabolites involved in purine or biosynthesis pathways. In both patient samples, 

essential pathways linked to disease progression include purine and cysteine, and methionine 

metabolism. 

Table 1 shows the full results of the pathway analysis. Since we evaluated many 

pathways simultaneously, statistical p values for the enrichment study are also suitable for 

several experiments. In particular, the total value of the compounds in the path is that of the 

total number of compounds; the sum of the actual hits is the corresponding value of the loaded 

user data; the value of the raw p is the original p-value from the enrichment analysis; the value 

of the holm p is the p-value of the Holm-Bonferroni method; the value of the FDR p is the p-

value changed from the false discovery. 

Table 1. Pathways affected by 33 cellular metabolites. 

Pathway Total Expected Hits Log P Negative Log 

P 

Holm 

adjust 

FDR Impact 

Purine 

metabolism 

65 1.0903 6 0.000513 7.5757 0.043 0.04 0.09707 

Neomycin, 

kanamycin 

and 

gentamicin 

biosynthesis 

2 0.03355 1 0.033278 3.4029 1 1 0 

Aminoacyl-

tRNA 

biosynthesis 

48 0.80516 3 0.04397 3.1243 1 1 0 

Galactose 

metabolism 

27 0.4529 2 0.073486 2.6107 1 1 0.08787 

Valine, 

leucine and 

isoleucine 

biosynthesis 

8 0.13419 1 0.12684 2.0648 1 1 0 

Tryptophan 

metabolism 

41 0.68774 2 0.14906 1.9034 1 1 0.14305 

Butanoate 

metabolism 

15 0.25161 1 0.22501 1.4916 1 1 0 

Starch and 

sucrose 

metabolism 

18 0.30194 1 0.26376 1.3327 1 1 0.4207 

Citrate cycle 

(TCA cycle) 

20 0.33548 1 0.28854 1.2429 1 1 0.03273 
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Pathway Total Expected Hits Log P Negative Log 

P 

Holm 

adjust 

FDR Impact 

Propanoate 

metabolism 

23 0.38581 1 0.32422 1.1263 1 1 0 

Alanine, 

aspartate and 

glutamate 

metabolism 

28 0.46968 1 0.3799 0.96785 1 1 0 

Cysteine and 

methionine 

metabolism 

33 0.55355 1 0.43115 0.8413 1 1 0.10446 

Biosynthesis 

of unsaturated 

fatty acids 

36 0.60387 1 0.45992 0.77671 1 1 0 

Arachidonic 

acid 

metabolism 

36 0.60387 1 0.45992 0.77671 1 1 0.3135 

Amino sugar 

and 

nucleotide 

sugar 

metabolism 

37 0.62065 1 0.46919 0.75674 1 1 0 

Valine, 

leucine and 

isoleucine 

degradation 

40 0.67097 1 0.49611 0.70096 1 1 0 

The findings are shown both graphically and in a comprehensive table. The results are 

summarized. To allow data exploration, an interactive visualization framework has been 

implemented. There are three levels of view in the graphic output-metabolomic view, path 

view, and composite view. Figure 1 shows the pathway analysis purine metabolism showing 

maximum impact.  

Figure 1. (a) shows the pathway analysis of 33 cellular metabolites, which are 

differently abundant. Each of that dot represents one of the 16 pathways. Figure 1. (b)  shows 

the pathway of purine metabolism, which has a high impact (the red dot in figure 1. (a) is purine 

metabolism).  

The study of the plasma metabolome pathway identified 12 significantly affected 

metabolic pathways involving pathways such as cysteine, which involves metabolism of 

methionine, purine, and biosynthesis, as well as several metabolism pathways of amino acids. 

Table 2 displays the findings of the pathway study. Since we search many directions at 

the same time, statistical p values for enrichment analysis are also suitable for several 

experiments. In particular, the total number of compounds on the track is the total number of 

the database; the hits are the actual numbers from the data submitted by the user; the raw p is 

the original p-value calculated by the analysis of the enriching process; the holm p-value is the 

p-value changed by the Holm-Bonferroni method; the FDR p is a revised p-value using the 

False Discovery Rate. 

The pathway analysis of 21 different plasma metabolites is shown in Figure 2. Each dot 

is one of the twelve pathways. Figure 2 demonstrates the pathway with high impact metabolism 

of alanine, aspartate, and glutamate. Table 3 lists the metabolites not recognized by 

metaboanalyst.  
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(a)                                        (b) 

Figure 1. (a) Overview of pathway analysis purine metabolism showing the maximum impact  (b) Schematic 

representation of the pathway. 

 

Table 2. Pathways effected by the 21 plasma metabolites. 
Pathway Total Expected Hits Raw P Negative 

Log P 

Holm 

adjust 

FDR Impact 

Alanine, aspartate and 

glutamate metabolism 

28 0.28903 2 0.032306 3.4325 1 1 0.08654 

Glycine, serine and 

threonine metabolism 

33 0.34065 2 0.043793 3.1283 1 1 0.05034 

Arginine and proline 

metabolism 

38 0.39226 2 0.056589 2.8719 1 1 0.02385 

Valine, leucine and 

isoleucine biosynthesis 

8 0.082581 1 0.079832 2.5278 1 1 0 

Taurine and 

hypotaurine 

metabolism 

8 0.082581 1 0.079832 2.5278 1 1 0 

Aminoacyl-tRNA 

biosynthesis 

48 0.49548 2 0.085538 2.4588 1 1 0 

Arginine biosynthesis 14 0.14452 1 0.13574 1.997 1 1 0 

Nicotinate and 

nicotinamide 

metabolism 

15 0.15484 1 0.14474 1.9328 1 1 0 

Butanoate metabolism 15 0.15484 1 0.14474 1.9328 1 1 0.03175 

Cysteine and 

methionine metabolism 

33 0.34065 1 0.2925 1.2293 1 1 0 

Glycerophospholipid 

metabolism 

36 0.37161 1 0.31467 1.1562 1 1 0.00937 

Purine metabolism 65 0.67097 1 0.49785 0.69746 1 1 0.01281 

 

 
 

(a) (b) 

Figure 2. (a) Overview of pathway analysis alanine, aspartate, and glutamate metabolism showing the 

maximum impact (b) Schematic representation of the pathway. 
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Table 3. List of metabolites that are not recognized by metaboanalyst and the used synonyms. 

Unrecognized Metabolites Synonyms from HMDB And Pubchem 

LysoPE(n-452.2772-13.35; 16:0) 5Z,8Z,11Z,14Z-Eicosatetraenoic acid 

LysoPE(n-480.3097-14.59: 18:0) Octadecanoyl-lysophosphatidylethanolamine 

LysoPE(n-500.2768-12.71; 20:4) 1-hydroxy-2-palmitoyl-sn-glycero-3-phosphoethanolamine 

LysoPE(p-502.2908-12.90: 20:4) Lysophosphatidylethanolamine(20:4/0:0) 

LysoPE(p-526.2933–12.92; 22:6) Lysophosphatidylethanolamine(0:0/22:6) 

Arachidonic Acid (20:4) 1-Arachidonoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine 

Cytoscape network analysis was performed for all 33 cellular and 21 plasma 

metabolites from FLT3 / ITD. The KEGG (Kyoto encyclopedia of genes and genomes) gathers 

ID’ S on these metabolites. The KEGG ids were obtained and tabled in Table 4 and Table 5 for 

these cellular and plasma metabolites. 

Table 4. List of plasma metabolites and their KEGG IDs. 

PLASMA METABOLITES KEGGID 

N-Acetylglycine C00033 

N-Acetyl-L-Alanine C04341 

Methyl Indole-3-Acetate C01926 

3-Hydroxydecanoic acid C02774 

Asparagine C00152 

Threonine C00188 

Guanine C00242 

L-Carnitine C00318 

GABA C00334 

L-Cysteic Acid C00506 

Phosphocholine C00588 

N-Acetyl-DL-Glutamic Acid C00624 

Betaine C00719 

6-Carboxyhexanoate C02656 

4-Acetamidobutanoate C02946 

3-Methyl-2-Oxovaleric Acid C03465 

Pyridine-2,3-Dicarboxylate C03722 

Cysteine-S-sulfate C05824 

Diphenylamine C11016 

N-Alpha-Acetyl-L-Lysine C12989 

N-Acetyl-Arginine C00624 

 

Table 5. List of cellular metabolites and their KEGG IDs. 
Cellular Metabolites KEGG ID 

Allopurinol C00695 

Lysophosphatidylethanolamine(0:0/22:6) C05973 

1-Arachidonoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine C11695 

1-hydroxy-2-palmitoyl-sn-glycero-3-phosphoethanolamine C00416 

L-leucyl-L-proline C00993 

Lysophosphatidylethanolamine(20:4/0:0) C04438 

Octadecanoyl-lysophosphatidylethanolamine C04438 

Adenosine Monophosphate C00020 

Glucose C00031 

Succinate C00042 

L-Methionine C00073 

Tryptophan C00078 

Leucine C00123 

Adenosine C00212 

5Z,8Z,11Z,14Z-Eicosatetraenoic acid C00219 

Guanine C00242 

Hypoxanthine C00262 

Inosine C00294 

L-Carnitine C00318 

Guanosine C00387 

Benzoate C00539 

LL-2,6-Diaminoheptanedioate C00666 

Citramalate C00815 
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Cellular Metabolites KEGG ID 

HEXOSE C00984 

4-oxoproline C01877 

Glyceraldehyde C02154 

L-Acetylcarnitine C02571 

Xylenesulfonate C02824 

Disaccharide C04932 

Glycodeoxycholic acid C05464 

Formyl-5-hydroxykynurenamine C05647 

Palmitoleic acid C08362 

2-alpha-D-glucosyl-D-glucose C19632 

The cellular metabolites were analyzed with the use of cytoscape, and from a total of 

only 23 metabolites, the remaining metabolites were identified, and the recognizable 

metabolites were analyzed and constructed in the network, with reactions, enzymes, genes, and 

compounds related to these metabolites.  

Table 6. List of cellular metabolites not recognized by cytoscape. 

Cellular Metabolites KEGG ID 

L-leucyl-L-proline C00993 

Benzoate C00539 

LL-2,6-Diaminoheptanedioate C00666 

Citramalate C00815 

4-oxoproline C01877 

Glyceraldehyde C02154 

Xylenesulfonate C02824 

Glycodeoxycholic acid C05464 

Palmitoleic acid C08362 

2-alpha-D-glucosyl-D-glucose C19632 

Table 7. List of plasma metabolites not recognized by cytoscape. 

Plasma Metabolites KEGGID 

N-Acetyl-L-Alanine C04341 

Methyl Indole-3-Acetate C01926 

3-Hydroxydecanoic acid C02774 

6-Carboxyhexanoate C02656 

Cysteine-S-sulfate C05824 

Diphenylamine C11016 

N-Alpha-Acetyl-L-Lysine C12989 

Build a metabolite network in Metscape and perform a compound-reaction-enzyme-

gene analysis. The drug, reaction, enzyme, and genes associated with the query metabolites are 

visualized, and the connectivity is obtained in this particular study. Tables 6 and 7 lists the 

cellular and plasma metabolites not recognized by cytoscape.  

Table 8. Plasma metabolites in cytoscape. 

SUID CanonicalName Category Enzyme.ecnum Enzyme.name 

62 Choline dehydrogenase Enzyme 1.1.99.1 Choline dehydrogenase 

63 

Aminobutyraldehyde 

dehydrogenase Enzyme 1.2.1.19 

Aminobutyraldehyde 

dehydrogenase 

64 

Aldehyde dehydrogenase 

(NAD(+)) Enzyme 1.2.1.3 

Aldehyde dehydrogenase 

(NAD(+)) 

65 

Aldehyde dehydrogenase 

(NAD(P)(+)) Enzyme 1.2.1.5 

Aldehyde dehydrogenase 

(NAD(P)(+)) 

66 

3-methyl-2-oxobutanoate 

dehydrogenase (2-

methylpropanoyl-transferring) Enzyme 1.2.4.4 

3-methyl-2-oxobutanoate 

dehydrogenase (2-

methylpropanoyl-transferring) 

67 L-amino-acid oxidase Enzyme 1.4.3.2 L-amino-acid oxidase 

81 

Betaine--homocysteine S-

methyltransferase Enzyme 2.1.1.5 

Betaine--homocysteine S-

methyltransferase 

82 Glycine amidinotransferase Enzyme 2.1.4.1 Glycine amidinotransferase 
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SUID CanonicalName Category Enzyme.ecnum Enzyme.name 

83 

Amino-acid N-

acetyltransferase Enzyme 2.3.1.1 Amino-acid N-acetyltransferase 

84 

Carnitine O-

octanoyltransferase Enzyme 2.3.1.137 Carnitine O-octanoyltransferase 

85 

Carnitine O-

palmitoyltransferase Enzyme 2.3.1.21 Carnitine O-palmitoyltransferase 

86 

Purine-nucleoside 

phosphorylase Enzyme 2.4.2.1 Purine-nucleoside phosphorylase 

87 

Nicotinate-nucleotide 

diphosphorylase 

(carboxylating) Enzyme 2.4.2.19 

Nicotinate-nucleotide 

diphosphorylase (carboxylating) 

88 

tRNA-guanine 

transglycosylase Enzyme 2.4.2.29 tRNA-guanine transglycosylase 

89 Thymidine phosphorylase Enzyme 2.4.2.4 Thymidine phosphorylase 

90 

Adenine 

phosphoribosyltransferase Enzyme 2.4.2.7 Adenine phosphoribosyltransferase 

91 

Hypoxanthine 

phosphoribosyltransferase Enzyme 2.4.2.8 

Hypoxanthine 

phosphoribosyltransferase 

92 Aspartate transaminase Enzyme 2.6.1.1 Aspartate transaminase 

93 4-aminobutyrate transaminase Enzyme 2.6.1.19 4-aminobutyrate transaminase 

94 

Branched-chain-amino-acid 

transaminase Enzyme 2.6.1.42 

Branched-chain-amino-acid 

transaminase 

 

Table 8 shows the plasma metabolites in Cytoscape, the canonical names, and the EC 

numbering of the related enzymes.  

There are about 50 compounds, 40 reactions, 39 Enzymes, and 68 genes involved in 

these 13 recognized metabolites. The network in fig shows 198 other compounds and 9 

pathways involved in these 13 metabolites mechanism. These pathways are - 

Glycerophospholipid metabolism; Glycine, serine, alanine Schematic representation of the pathway, 

and threonine metabolism; Methionine and cysteine metabolism; Purine metabolism; 

Tryptophan metabolism; Urea cycle and metabolism of arginine, proline, glutamate, aspartate, 

and asparagine; Vitamin B3 (nicotinate and nicotinamide) metabolism. 

4. Conclusions 

 Acute myeloid leukemia (AML) arises inside the bone marrow (the soft internal portion 

of certain bones that contain fresh blood cells), but it spreads more commonly into the blood. 

This can also spread to other parts of the body, including lymph nodes, liver, spleen, cord brain, 

and spinal cord, and testes. A striking reaction to the need to develop our awareness of the 

biology of AML. The presence of FMS-like tyrosine kinase 3 (FLT3) activating mutations, in 

particular internal tandem duplication (FLT3-ITD), is one of the prognoses associated with 

decreased response [38]. 

FLT3 is a tyrosine kinase receptor that plays a crucial role in the hematopoietic 

stem/progenitor cell survival and proliferation. It is mutated in around 1/3 of acute myeloid 

leukemia (AML) patients by an internal duplication of the juxtamembrane domain (ITD), or 

point mutations that normally affect the kinase domain (KD). Both forms of mutation 

constitutively activate the FLT3. Ultra-high-performance liquid-chromatography metabolomic 

profile spectrometry showed that the plasma status of 21 plasma metabolites and 33 FLT3 

metabolites found in leukemic cells differed in abundance. We concentrated on these cell and 

plasma metabolites separately. Using a metaboanalyst, Cytoscape plug-ins, we performed 

pathway analysis and defined the most significant and important paths in this system. Using 

Cytoscape’s plug-ins as Metscape and CytoHubba, we concluded that the main pathways for 

the synthesis of arachidonic acid synthesis and purine in the cellular metabolites Glycoliosis 
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and Gluconeogenesis and Urea cycles are arginine, proline, glutamate, aspartate, and 

asparagine metabolism. 

In this research, the intermediate pathological markers were used to explain new 

leukemogenic mechanisms. From the Metaboanalyst analysis, the FLT3 status had 

considerable influences on purine metabolism and pyruvate metabolism. Important pathways 

related to disease progression include purine and cysteine and the metabolism of methionines 

in both patient samples. In AML with FLT3 / ITD, proline, glutamate, aspartate, and asparagine 

are essential to Cytoscape metabolism of arachidonic acid and purine in cellular metabolites, 

glycolyses and gluconeogenic metabolism and the urea cycle and of arginine. In the last 

decade, glutamine has been the most common nutrient studied in the field of metabolism of 

cancer cells other than glucose. Glutamine has an important role to play in many bio-

proliferation processes, including biosyntheses and bioenergy, anti-oxidant defense, 

modification/gene transcription of chromatin, fast transport of certain amino acids through the 

plasma membrane, and cell signaling regulations.   Both the tissue and the oncogenic 

background will determine the relative effects of glutamine as well as glutamine-derived 

metabolites. 

In normal proliferating cells and in the context of tumorigenesis, glutamine metabolism 

is essential for survival, growth, differentiation, and resilience. Finding new intersections 

between metabolism and disease, revealing new therapeutic opportunities for intervention, can 

lead to further exploration of ways cellular glutamine affects these different processes and to a 

study of strategies that cells may adapt to withstand glutamine limitations. Apart from the 

already established glutamine metabolomics, the other identified key amino acid pathways 

need elucidation in the context of AML with FLT3 and general hematopoiesis. 
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