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Abstract: This investigation deals with the design and synthesis of new derivatives of pyrrole 

consisting of modifying atoms of chlorine, amide, and 1,3-oxazole fragments. These compounds can 

be interesting in the context of research of new antimicrobial agents. Ethyl 5-chloro-4-formyl-1H-

pyrrole-3-carboxylates were used as a key substrate for further transformation into target compounds. 

This process was realized as a direct transformation of an aldehyde fragment into a 1,3-oxazole cycle 

by van Leusen’s reaction followed by hydrolysis of an ester group, which finally converted a reactant 

into the corresponding pyrrole-3-carboxylic acid. This acid has been found to be an efficient 

construction block for the further development of antimicrobial agents. The preparative potential of 

these compounds has been verified by way of their transformation into a series of carbamides through 

consecutive reactions with thionyl chloride and alkyl-, aryl, and heterylamines under mild reaction 

conditions. According to bio screening results, the following two compounds have been chosen as those 

exhibiting a high anti-staphylococcus activity: 1-butyl-5-chloro-2-methyl-4-(1,3-oxazol-5-yl)-N-[(1,3-

thiazol-2-yl]-1H-pyrrole-3-carboxamide and 1-butyl-5-chloro-N-[(3-dimethylaminosulfonyl)phenyl]-

2-methyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxamide (МІС=7.8 µg/ml), while another one – 5-

сhloro-N-(4-chlorophenyl)-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-carboxamide was 

selected as a compound exhibiting high antifungal activity (МІС=7.8 µg/ml) against the reference 

strains Candida albiсans АТСС 885/653 and Aspergillus niger K9.  

Keywords: ethyl 5-chloro-4-formyl-1H-pyrrole-3-carboxylates; van Leusen’s reaction; 

toluenesulfonylmethyl isocyanide; 5-chloro-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxamides, 

antibacterial activity; antifungal activity. 
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1. Introduction 

It is known that the derivatives of pyrrole can be used as key structural components of a 

significant array of natural and synthetic substances, and today they are involved in various 

syntheses as prospective scaffolds for the development of various bioactive compounds 

possessing a high pharmaceutical profile [1-7]. Several original structures with antibacterial 

[8-11], antifungal [12-14], antiviral [15-16], anti-inflammatory [17-19], anticancer [20-22], 

antimalarial [23, 24], and other therapeutic effects [2] have been developed as a result of 

systematic synthetic and biomedical investigations.  
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The character of the influence of the heterocycle’s functional substitutes on its bioactivity 

can be retrieved from the structure/activity dependence analyzed across a series of 

polysubstituted pyrroles. In particular, it was found that haloids, amide fragments present in 

the pyrrole nucleus would seriously influence the pharmaceutical properties of the compounds. 

It can be clearly shown with the example of the bromine-pyrrole alkaloids including the oroidin 

analogs hymenidin (I,II) [25,26], dispacamide B (III) and dispacamide D (IV) [27,28], 

bromopyrrolohomoarginin (V) [27,29], anticancer medication sunitinib (VI) [30-32], 

antimicrobial agents AZD5099 (VII) [33] and (VIII) [34] (Figure 1). 
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Figure 1. Some examples of the bioactive pyrroles functionalized with the haloid atoms and amide groups. 

Along with the acyclic amide group, the bioactivity of the pyrrole derivatives is also 

significantly influenced by its isostructural heterocyclic analogs – 1,3-oxazoles known as 

representatives of systems exhibiting a clear pharmacophoric effect [35-47]. Chlorinated 

phenylpyrrolyloxazoles known as phorbazoles (IX-XII) can be mentioned as such derivatives 

(Figure 2). They were isolated from the sea sponge Phorbas aff clathata [38], and their 

carcinostatic activity was reported in [39].  
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Figure 2. Structures of phorbazoles IX-XII. 

https://doi.org/10.33263/BRIAC113.1059510606
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC113.1059510606  

 https://biointerfaceresearch.com/ 10597 

In addition to the abovementioned natural phorbazoles where both cycles are bonded 

by the combination С2
pyrrole-C2

oxazole, heterocyclic ensembles formed by the bond С2
pyrrole–

C5
oxazole and acting as inhibitors of the hydrolase of fatty acid amides [40] or as selective ligands 

for the dopamine D4 receptor [41] were described. 

In this context, it seems reasonable to investigate the design and synthesis of new 

pyrrole derivatives with exofunctional chlorine atoms, amide, and 1,3-oxazole fragments as 

promising bioactive compounds. Since the problem of microbial infection control is of top 

medical importance today [42-43], major efforts should be directed towards the evaluation of 

antibacterial and antifungal properties of these substances.  

2. Materials and Methods 

2.1. Materials. 

All chemicals were of reagent grade and used without further purification. The solvents 

were purified according to the standard procedures [44]. The initial ethyl 5-chloro-4-

formylpyrrole-3-carboxylates 1a-f were prepared from ethyl 2-methyl-5-oxo-4,5-

dihydropyrrole-3-carboxylates [45] according to the method described in [46]. 

2.2. Chemistry. 

Melting points were measured on a Kofler melting point-device and are uncorrected. IR 

spectra were recorded on Bruker Vertex 70 FT-IR spectrometer for samples in KBr pellets. 1H 

NMR spectra were acquired in pulsed Fourier transform mode on a Varian VXR-400 

spectrometer (400 MHz), while 13CNMR spectra were acquired on a Bruker Avance DRX-500 

spectrometer (125 MHz), using DMSO-d6 as solvent. Mass spectra were recorded on an Agilent 

LC/MSD SL chromatograph equipped with Zorbax SB-C18 column (4.6x15mm), particle size 

1.8 µm (PN 82(c)75-932), solvent DMSO, electrospray ionization at atmospheric pressure. 

Elemental analysis was performed on a PerkinElmer 2400 CHN Analyzer. The individuality 

of the obtained compounds was monitored by TLC on Silutol UV-254 plates. 

General procedure for the synthesis of methyl (2 a-f) and ethyl (3 a-f) 1-alkyl-5-chloro-2-

methyl(phenyl)-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxylates.  

1.95 g (10 mmole) of toluenesulfonylmethyl isocyanide and 4.14 g of potassium 

carbonate were added to the solution of 10 mmole of 1 a-f aldehyde in 20 ml of dehydrated 

methanol. The mixture was boiled for 4 hours, and then the solvent was vacuum-evaporated. 

Finally, 20 ml of water were added to the dry residue; the sediment was filtered out and dried.  

General procedure for the synthesis of 1-alkyl-5-сhloro-2- methyl(phenyl)-4-(1,3-oxazol-5-

yl)-1H-pyrrole-3-carboxylic acides (4 a-f).  

0.70 g (12.5 mmole) of KOH was added to the solution of 5 mmole of a mixture of 

carboxylates 2a-f and 3a-f in the 1:1 mixture dioxane-water. The mixture was boiled for 3 

hours, then the solvent was vacuum-evaporated, 20 ml of water were added to the dry residue, 

and the sediment was filtered out. The filtrate was acidified by a 10 % solution of hydrochloric 

acid up to pH=5. Then the newly formed sediment was filtered out, dried, and crystallized from 

the 50 % aqueous solution of acetic acid.  

5-Chloro-1,2-dimethyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxylic acid (4 a).  

Yield 87 %;  m.p.: 200-202 °С. 1Н NMR:  = 12.13 (br.s, 1H, COOH), 8.36 (s, 1H, CH), 

7.16 (s, 1H, CH), 4.04 (s, 3H, CH3), 2.42 (s, 3H, CH3). 13C NMR:  = 164.5 (CОOН), 151.1 

(СH), 143.8, 136.1, 124.3 (СH), 116.1, 110.6, 106.8, 30.9 (CH3), 10.7 (CH3). LC-MS: m/z = 
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241 [M+1] (100%). Anal. Calcd. for С10H9ClN2O3, %: C 49.91; H 3.77; N 11.64. Found, %: C 

50.18; H 3.88; N 11.50. 

5-Chloro-2-methyl-4-(1,3-oxazol-5-yl)-1-propyl-1H-pyrrole-3-carboxylic acid (4 b).  

Yield 82 %; m.p.: 135-136 °С. 1Н NMR:  = 12.13 (br.s, 1H, COOH), 8.36 (s, 1H, CH), 

7.17 (s, 1H, CH), 3.93 (t, 2H, J=7.2 Hz, CH2), 2.42 (s, 3H, CH3), 1.67 (q, 2H, J=7.2 Hz, CH2), 

0.89 (t, 3H, J=7.2 Hz, CH3). 13C NMR:  = 164.7 (COОН), 151.3 (СH), 143.9, 135.8, 124.6 

(СH), 116.0, 111.1, 107.4, 45.5 (CH2), 22.8 (CH2), 11.4 (СH3), 11.8 (CH3). LC-MS: m/z = 269 

[M+1] (100%). Anal. Calcd. for С12H13ClN2O3, %: C 53.64; H 4.88; N 10.43. Found, %: C 

53.88; H 4.99; N 10.57. 

1-Butyl-5-chloro-2-methyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxylic acid (4 c).  

Yield 84 %; m.p.: 118-119°С. 1Н NMR:  = 12.11 (br.s, 1H, COOH), 8.33 (s, 1H, CH), 

7.16 (s, 1H, CH), 3.98 (t, 2H, J=7.2 Hz, CH2), 2.44 (s, 3H, CH3), 1.60 (q, 2H, J=7.2 Hz, CH2), 

1.33 (q, 2H, J=7.2 Hz, CH2), 0.96 (t, 3H, J=7.2 Hz, CH3). 13C NMR:  = 164.9 (COОН), 151.5 

(СH), 144.1, 135.9, 124.6 (СH), 116.1, 111.3, 107.5, 44.0 (CH2), 31.6 (CH2), 19.4 (CH2), 13.6 

(CH3), 11.5 (CH3). LC-MS: m/z = 283 [M+1] (100%). Anal. Calcd. for С13H15ClN2O3, %: C 

55.23; H 5.35; N 9.91. Found, %: C 54.98; H 5.26; N 10.07. 

1-Benzyl-5-chloro-2-methyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxylic acid (4 d).  

Yield 82 %; m.p.: 158-159°С. 1Н NMR:  = 11.93 (br.s, 1H, COOH), 8.34 (s, 1H, CH), 

7.39-7.22 (m, 3H, CHar), 7.21 (s, 1H, CH), 7.05 (d, 2H, CHar), 5.30 (s, 2H, CH2), 2.45 (s, 3H, 

CH3). 13C NMR:  = 164.8 (COОН), 151.5 (СH), 143.9, 136.4, 136.2, 129.2 (2 СH), 127.8 

(СH), 126.1 (2 СH), 124.9 (СH), 117.7, 116.1, 107.8, 47.2 (CH2), 11.8 (CH3). LC-MS: m/z = 

317 [M+1] (100%). Anal. Calcd. for С16H13ClN2O3, %: C 60.67; H 4.14; N 8.84. Found, %: C 

60.38; H 4.06; N 9.01. 

5-Chloro-1-methyl-4-(1,3-oxazol-5-yl)-2-phenyl-1H-pyrrole-3-carboxylic acid (4 e).  

Yield 85 %; m.p.: 228-230 °С. 1Н NMR:  = 11.88 (br.s, 1H, COOH), 8.38 (s, 1H, CH), 

7.48-7.39 (m, 5H, CHar), 7.26 (s, 1H, CH), 3.38 (s, 3H, CH3). 13C NMR:  = 163.8 (CОOН), 

151.2 (СH), 143.9, 137.7, 130.8, 130.8 (2 СH), 128.7 (СH), 128.1 (2 СH), 124.6 (СH), 117.8, 

112.7, 107.8, 32.6 (CH3). LC-MS: m/z = 303 [M+1] (100%). Anal. Calcd. for С15H11ClN2O3, 

%: C 59.52; H 3.66; N 11.71. Found, %: C 59.78; H 3.77; N 11.60. 

5-Chloro-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-carboxylic acid (4 f).  

Yield 86 %; m.p.: 205-207 °С. 1Н NMR:  = 11.94 (br.s, 1H, COOH), 8.41 (s, 1H, CH), 

7.48-7.36 (m, 5H, CHar), 7.28 (s, 1H, CH), 3.75 (t, 2H, J=7.2 Hz, CH2), 1.48 (q, 2H, J=7.2 Hz, 

CH2), 0.65 (t, 3H, J=7.2 Hz, CH3). 13C NMR:  = 163.97 (COОН), 157.5 (СH), 143.7, 137.6, 

130.9, 130.6 (2 СH), 128.8 (СH), 128.0 (2 СH), 124.7 (СH), 117.1, 110.9, 107.9, 46.4, 22.9 

(CH2), 10.6 (CH3). LC-MS: m/z = 331 [M+1] (100%). Anal. Calcd. for С17H15ClN2O3, %: C 

61.73; H 4.57; N 8.47. Found, %: C 61.93; H 4.68; N 8.59. 

General procedure for the synthesis of 1-alkyl-5-chloro-2-methyl(phenyl)-4-(1,3-oxazol-5-

yl)-1H-pyrrole-3-carboxamides (5 a-k).  

0.71 g (6 mmole) of thionylchloride was dripped to the solution of 3 mmole of the acid 

4 a-f in 10 ml of dehydrated dichloromethane and boiled for 1 hour. The solvent was vacuum-

evaporated, and then 10 ml of dehydrated tetrahydrofuran, 3 mmole of the corresponding 

amine, and 0.3 g (3 mmole) of triethylamine were added to the dry residue. This mixture was 

boiled for 2 hours, the solvent was vacuum-evaporated, and the dry residue was dissolved in 

the 50% solution of sodium bicarbonate. Finally, the sediment was filtered out, dried, and 

crystallized from the 70 % aqueous solution of ethanol.  
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5-[2-Chloro-1,5-dimethyl-4-(pyrrolidin-1-ylcarbonyl)-1H-pyrrole-3-yl]-1,3-oxazole (5a). 

Yield 80 %; m.p.: 108-110 °С. 1Н NMR:  = 8.31 (s, 1H, CH), 7.13 (s, 1H, CH), 3.51 (s, 3H, 

CH3), 3.43 (t, 2H, J=6.8 Hz, CH2), 2.99 (t, 2H, J=6.8 Hz, CH2), 2.17 (s, 3H, CH3), 1.83-1.78 

(m, 2H, CH2), 1.72-1.67 (m, 2H, CH2). 13C NMR:  = 162.1 (C=О), 150.3 (СH), 144.9, 127.8, 

121.0 (СH), 115.6, 112.5, 104.6, 47.4 (CH2), 45.2 (CH2), 30.9 (CH3), 25.3 (CH2), 24.1 (CH2), 

10.9 (CH3). LC-MS: m/z = 294 [M+1] (100%). Anal. Calcd. for С14H16ClN3O2, %: C 57.24; H 

5.49; N 14.30. Found, %: C 57.50; H 5.58; N 14.18. 

5-[2-Chloro-1-methyl-5-phenyl-4-(pyrrolidin-1-ylcarbonyl)-1H-pyrrole-3-yl]-1,3-oxazole 

(5b)  

Yield 81 %; m.p.: 138-140 °С. 1Н NMR:  = 8.37 (s, 1H, CH), 7.51-7.39 (m, 5H, CHar), 

7.21 (s, 1H, CH), 3.59 (s, 3H, CH3), 3.28-3.24 (m, 2H, CH2), 2.89-2.85 (m, 2H, CH2), 1.67-

1.62 (m, 2H, CH2), 1.52-1.47 (m, 2H, CH2). 13C NMR:  = 164.0 (C=О), 151.3 (СH), 144.9, 

131.3, 130.5, 129.7 (2 СH), 129.1 (2 СH), 128.9 (СH), 121.9 (СH), 117.5, 115.6, 106.0, 47.7 

(CH2), 45.5 (CH2), 34.9 (CH3), 25.6 (CH2), 24.4 (CH2). LC-MS: m/z = 356 [M+1] (100%). 

Anal. Calcd. for С19H18ClN3O2, %: C 64.14; H 5.10; N 11.81. Found, %: C 63.90; H 4.98; N 

12.00.  

1-{[5-Chloro-1-methyl-4-(1,3-oxazol-5-yl)-2-phenyl-1H-pyrrole-3-yl]carbonyl}piperidine 

(5c). 

Yield 82 %; m.p.: 145-146 °С. 1Н NMR:  = 8.39 (s, 1H, CH), 7.49-7.38 (m, 5H, CHar), 

7.20 (s, 1H, CH), 3.54 (s, 3H, CH3), 3.49-3.45 (m, 2H, CH2), 3.04-3.00 (m, 2H, CH2), 1.36-

1.21 (m, 4H, CH2), 0.99-0.96 (m, 1H, CH), 0.68-0.63 (m, 1H, CH). 13C NMR:  = 164.0 (C=О), 

154.3 (СH), 144.8, 131.1, 130.4, 129.9 (2 СH), 129.0 (2 СH), 128.9 (СH), 122.1 (СH), 116.1, 

115.7, 106.4, 47.5 (CH2), 45.1 (CH2), 32.9 (CH3), 25.6 (CH2), 25.3 (CH2), 24.3 (CH2). LC-MS: 

m/z = 370 [M+1] (100%). Anal. Calcd. for С20H20ClN3O2, %: C 64.95; H 5.45; N 11.36. Found, 

%: C 65.10; H 5.38; N 11.50.  

5-Chloro-2-methyl-N-methyl-4-(1,3-oxazol-5-yl)-1-propyl-1H-pyrrole-3-carboxamide (5d).  

Yield 83 %; m.p.: 112-113 °С. 1Н NMR:  = 8.32 (s, 1H, CH), 7.66 (s, 1H, NH), 7.16 (s, 

1H, CH), 3.90 (t, 2H, J=7.6 Hz, CH2), 2.67 (d, 3H, J=4.4 Hz, CH3), 2.29 (s, 3H, CH3), 1.63 (q, 

2H, J=7.6 Hz, CH2), 0.91 (t, 3H, J=7.6 Hz, CH3). 13C NMR:  = 164.6 (C=О), 150.4 (СH), 

144.4, 129.1, 122.8 (СH), 116.3, 112.9, 105.7, 45.3 (CH2), 25.3 (CH3), 22.9 (CH2), 10.9 (CH3), 

10.8 (CH3). LC-MS: m/z = 282 [M+1] (100%). Anal. Calcd. for С13H16ClN3O2, %: C 55.42; H 

5.72; N 14.91. Found, %: C 55.15; H 5.60; N 15.06.  

4-({[5-Chloro-2-methyl-4-(1,3-oxazol-5-yl)-1-propyl-1H-pyrrole-3-

yl]carbonyl}amino)benzoic acid (5e).  

Yield 82 %; m.p.: 180-182 °С. 1Н NMR:  = 12.34 (br.s, 1H, COOH), 10.22 (s, 1H, NH), 

8.31 (s, 1H, CH), 7.89 (d, 2H, J=8.4 Hz, CHar), 7.73 (d, 2H, J=8.4 Hz, CHar), 7.21 (s, 1H, CH), 

3.95 (t, 2H, J=7.6 Hz, CH2), 2.36 (s, 3H, CH3), 1.67 (q, 2H, J=7.6 Hz, CH2), 0.93 (t, 3H, J=7.6 

Hz, CH3). 13C NMR:  = 167.4 (COОH), 163.6 (C=O), 151.3 (СH), 144.7, 143.8, 130.9, 130.7 

(2CH), 125.7, 123.0 (СH), 119.0 (2CH), 116.4, 113.9, 106.5, 45.9 (CH2), 23.4 (CH2), 11.4 

(CH3), 11.3 (CH3). LC-MS: m/z = 388 [M+1] (100%). Anal. Calcd. for С19H18ClN3O4, %: C 

58.84; H 4.68; N 10.83. Found, %: C 59.10; H 4.79; N 11.00.  

5-Chloro-N-(2-hydroxyethyl)-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-

carboxamide (5f).  

Yield 82 %; m.p.: 133-134 °С. 1Н NMR:  = 8.37 (s, 1H, CH), 7.66 (b. s, 1H,  NH), 7.47-

7.40 (m, 5H, CHar), 7.26 (s, 1H, CH), 4.97 (b. s, 1H, OH), 3.84 (q, 2H, J=7.2 Hz, CH2), 3.19-

3.15 (m, 2H, CH2), 3.07-3.04 (m, 2H, CH2), 1.48 (q, 2H, J=7.2 Hz, CH2), 0.67 (t, 3H, J=7.2 
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Hz, CH3). 13C NMR:  = 164.4 (C=О), 151.3 (СH), 144.7, 132.6, 130.6 (2 CH), 130.5, 129.1 

(CH), 128.9 (2 СH), 123.0 (СH), 118.9, 114.8, 106.9, 59.8 (CH2), 49.5 (CH2), 41.9 (CH2), 23.5 

(CH2), 11.1 (CH3). LC-MS: m/z = 374 [M+1] (100%). Anal. Calcd. for С19H20ClN3O3, %: C 

61.04; H 5.39; N 11.24. Found, %: C 60.85; H 5.50; N 11.40.  

5-Chloro-N-(4-methylphenyl)-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-

carboxamide (5g).  

Yield 84 %; m.p.: 162-163 °С. 1Н NMR: 9.79 (s, 1H, NH), 8.34 (s, 1H, CH), 7.45-7.33 

(m, 6H, CHar+CH), 7.30 (d, 2H, J=6.4 Hz, CHar), 7.25 (s, 1H, CH), 7.00 (d, 2H, J=6.4 Hz, 

CHar), 3.86 (t, 2H, J=7.6 Hz, CH2), 2.47 (s, 3H, CH3), 1.51 (q, 2H, J=7.2 Hz, CH2), 0.67 (t, 3H, 

J=7.6 Hz, CH3). 13C NMR:  = 162.3 (C=O), 151.0 (СH), 144.2, 136.5, 132.5, 132.3, 131.2(2 

CH), 130.2 (2 CH), 128.8 (CH), 128.4 (2 CH), 122.1 (CH), 119.4 (2 СH), 118.4, 114.5, 113.9, 

106.6, 46.1 (CH2), 23.1 (CH2), 20.3 (CH3), 10.6 (CH3). LC-MS: m/z = 388 [M+1] (100%). 

Anal. Calcd. for С24H22ClN3O2, %: C 68.65; H 5.28; N 10.01. Found, %: C 68.90; H 5.19; N 

9.89.  

5-Chloro-N-(4-chlorophenyl)-4-(1,3-oxazol-5-yl)-2-phenyl-1-propyl-1H-pyrrole-3-

carboxamide (5h)  

Yield 85 %; m.p.: 131-132°С. 1Н NMR:  = 10.06 (s, 1H, NH), 8.36 (s, 1H, CH), 7.54-

7.40 (m, 7H, CHar), 7.31-7.26 (m, 3H, CHar+CH), 3.89 (t, 2H, J=6.8 Hz, CH2), 1.53 (q, 2H, 

J=6.8 Hz, CH2), 0.71 (t, 3H, J=6.8 Hz, CH3). 13C NMR:  = 162.4 (C=O), 151.5 (СH), 144.6, 

138.4, 132.3, 132.1, 131.3, 130.7 (2СH), 130.3 (СH), 129.3 (2СH), 128.9 (2СH), 127.4, 122.9 

(СH), 118.4 (2СH), 115.1, 107.1, 40.6 (CH2), 23.5 (CH2), 11.1 (CH3). LC-MS: m/z = 441 

[M+1] (100%). Anal. Calcd. for С23H19Cl2N3O2, %: C 62.74; H 4.35; N 9.54. Found, %: C 

62.95; H 4.26; N 9.67. 

1-Butyl-5-chloro-N-[(3-dimethylaminosulfonyl)phenyl]-2-methyl-4-(1,3-oxazol-5-yl)-1H-

pyrrole-3-carboxamide (5i).  

Yield 85 %; m.p.: 170-172°С. 1Н NMR:  = 10.23 (s, 1H, NH), 8.30 (s, 1H, CH), 8.10 

(s, 1H, CHar), 7.91 (d, 1H, J=7.6 Hz, CHar), 7.58 (t, 1H, J=7.6 Hz, CHar), 7.40 (d, 1H, J=7.6 

Hz, CHar), 7.22 (s, 1H, CH), 4.00 (t, 2H, J=7.2 Hz, CH2), 2.63 (s, 6H, 2 CH3), 2.38 (s, 3H, 

CH3), 1.63 (q, 2H, J=7.2 Hz, CH2), 1.36 (q, 2H, J=7.2 Hz, CH2), 0.97 (t, 3H, J=7.2 Hz, CH3). 
13C NMR:  = 163.2 (C=O), 150.8 (СH), 144.2, 140.0, 135.2, 130.5, 129.6 (СH), 123.1 (СH), 

122.7 (СH), 121.8 (СH), 117.7, 115.7 (СH), 113.4, 106.0, 47.7 (CH2), 39.5 (2CH3), 31.7 (CH2), 

19.3 (CH2), 13.6 (CH3), 10.8 (CH3). LC-MS: m/z = 465 [M+1] (100%). Anal. Calcd. for 

С21H25ClN4O4S, %: C 54.25; H 5.42; N 12.05. Found, %: C 53.98; H 5.50; N 11.97. 

1-Butyl-5-chloro-2-methyl-4-(1,3-oxazol-5-yl)-N-[(1,3-thiazol-2-yl]-1H-pyrrole-3-

carboxamide (5j).  

Yield 80 %; m.p.: 110-111°С. 1Н NMR:  = 12.00 (s, 1H, NH), 8.33 (s, 1H, CH), 7.47 

(s, 1H, CH), 7.22 (s, 1H, CH), 7.19 (s, 1H, CH), 3.99 (t, 2H, J=7.2 Hz, CH2), 2.37 (s, 3H, CH3), 

1.64 (q, 2H, J=7.2 Hz, CH2), 1.34 (q, 2H, J=7.2 Hz, CH2), 0.93 (t, 3H, J=7.2 Hz, CH3). 13C 

NMR:  = 162.8 (C=O), 158.6, 151.3 (СH), 144.5, 138.1 (СH), 132.0, 123.3 (СH), 114.3, 

114.1, 113.8 (СH), 106.8, 44.1 (CH2), 32.3 (CH2), 19.7 (CH2), 15.0 (CH3), 11.3 (CH3). LC-

MS: m/z = 365 [M+1] (100%). Anal. Calcd. for С16H17ClN4O2S, %: C 52.67; H 4.70; N 15.36. 

Found, %: C 52.88; H 4.60; N 15.47. 

1-Benzyl-5-chloro-N-(2-hydroxyethyl)2-methyl-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-

carboxamide (5k). 

Yield 82 %; m.p.: 122-123 °С. 1Н NMR:  = 8.34 (s, 1H, CH), 7.77 (t, 1H, J=5.6 Hz, 

NH), 7.36 (t, 2H, J=7.6 Hz, CHar), 7.29 (t, 1H, J=7.6 Hz, CHar), 7.23 (s, 1H, CH), 7.07 (d, 2H, 
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J=7.6 Hz, CHar), 5.26 (s, 2H, CH2), 4.64 (t, 1H, J=5.4 Hz, OH), 3.45 (q, 2H, J=5.4 Hz, CH2), 

3.24 (q, 2H, J=5.4 Hz, CH2), 2.24 (s, 3H, CH3). 13C NMR:  = 164.0 (C=О), 150.7 (СH), 144.2, 

136.5, 129.8, 128.7 (2 CH), 127.2 (CH), 126.3 (2 СH), 122.8 (СH), 116.6, 113.4, 106.0, 58.9 

(CH2), 46.9 (CH2), 41.7 (CH2), 11.2 (CH3). LC-MS: m/z = 360 [M+1] (100%). Anal. Calcd. 

for С18H18ClN3O3, %: C 60.09; H 5.04; N 11.68. Found, %: C 59.85; H 4.93; N 11.50.  

2.3. Antimicrobial activity.  

A micro method of the double serial dilutions in the liquid nutrient medium [46] has been 

employed for the determination of the antibacterial and antifungal activity of the synthesized 

compounds. The minimal inhibition concentration (MIC) against the reference bacterial strains 

(Staphylococcus аureus 25923 F 49, Escherichia coli ATCC 25922, Bacillus cereus ATCC 

11778, Bacillus subtilis ATCC 6633, Proteus vulgaris 4636, Enterococcus faecalis ATCC 

29212 ) and the fungi (Candida albiсans АТСС 885/653 and Aspergillus niger K9) was found 

for the carbamides 5a-k synthesized in this work.  

The 1000 μg/ml DMSO solutions of all the compounds to be researched were prepared 

and then involved in experiments according to the serial dilutions micro method. All the 

experiments were repeated three times until the relevant and not-contradictory data were 

obtained.  

3. Results and Discussion 

3.1. Chemistry. 

We recently synthesized [47] ethyl 5-chloro-4-formyl-1H-pyrrole-3-carboxylates 1a-f 

with the two functional groups, which are easily available for further structural modifications: 

aldehyde and ester were used as a basic substrate for obtaining the target products. First, an 

aldehyde fragment of the compound 1a-f was transformed in the 1,3-oxazolyl cycle by van 

Leusen’s reaction using tosylmethylisocyanind (TosMIC) as an equivalent of the three-atom 

synthon [C-N=C] [7]. For the studied compounds, this process runs with some peculiarities: it 

takes place in the boiling methanol solution of K2CO3 acting as a base, and a partial 

methanolysis of the etoxycarbonile group occurs along with the oxazole cycle construction as 

seen from the NMR 1H spectroscopy and mass-spectrometry results, the products obtained after 

the above transformation was, in fact, a mixture of methylcarboxylates 2a-f and 

ethylcarboxylates 3a-f with an approximate ratio of 3-4:1.  

At the next stage, a mixture of the esters 2a-f and 3a-f have been hydrolyzed by KOH in 

the boiling water-dioxane solution, which resulted in obtaining of 5-chloro-4-(1,3-oxazol-5-

yl)-1H-pyrrole-3-carboxylic 4a-f acids with the yield 82-87 %. Some H5 (8.41-8.33 ppm) and 

H2 (7.28 -7.16 ppm) proton wide singlets of the oxazole cycle can be seen together with the 

typical R1 and R2 substituents signals in the 1Н NMR spectra of these compounds. The oxazole 

carbon atoms have been registered within the ranges 151.53-151.08 ppm and 124.92-124.32 

ppm in the 13C NMR spectra.  

The acids containing the pharmacophore pyrrole and 1,3-oxazole nuclei are new building 

blocks for the design of the bio perspective compounds. Their preparative potential has been 

investigated at the third stage of our work through the example of a synthesis of the 

carboxamides 5a-k. The acids 4a-f were sequentially treated by thionylchloride, alkyl-, aryl- 

and heterylamines under mild reaction conditions ensuring the yields of 80-85 % (see Scheme 
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1). A composition of all obtained amides was confirmed by the results of 1H (13C) NMR and 

mass spectrometry.  
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3.2 Investigation of antimicrobial activity. 

The antibacterial and antifungal activities of the carboxamides 5a-k have been evaluated 

in vitro using the double serial dilution method against the test-strains of some gram-positive 

and gram-negative bacteria and fungi (Table 1). All the test microorganisms showed sensitivity 

to the synthesized carboxamides 5a-k, while their minimum inhibition concentrations (MIC) 

were ranged between 7.8-500 µg/ml proving good antimicrobial activity of this class of 

carboxamides.  

It should be emphasized that S. aureus is a pathogen with a natural resistance to many 

antimicrobial agents [48]. However, some of our carboxamides have proven a high activity 

against these microbes (MIC = 7.8-31.2 µg/ml), and the best antistaphylococcal activity was 

found for the amides 5j, 5i (MIC=7.8 µg/ml, same as the activity of the reference medicine). 

As seen from the antifungal activity analysis, all synthesized compounds, but the compound 

5g showed a clear effect against the strains of C. albiсans and A. niger. It should also be taken 

into account that the MIC of the amide 5h against C. albiсans (7.8 µg/ml) is equal to that of 

the reference medicine “Clotrimazole”.  

Table 1. Antibacterial and antifungal activities of the synthesized compounds. 

Сompound  

Cultures of microorganisms / MIC, µg/ml 

S. 

aureus 

E.  

coli 

B.  

cereus 

B.  

subtilis 

E.  

faecalis 

P.  

vulgaris 

C.  

albicans 

A.  

niger 

5 a 31.2 31.2 62.5 62.5 62.5 62.5 15.6 15.6 

5 b 31.2 62.5 62.5 62.5 125 62.5 31.2 31.2 

5 c 31.2 62.5 62.5 62.5 62.5 62.5 31.2 31.2 

5 d 15.6 62.5 62.5 62.5 125 62.5 31.2 31.2 

5 e 31.2 31.2 62.5 62.5 125 62.5 15.6 15.6 

5 f 31.2 31.2 62.5 62.5 125 62.5 15.6 15.6 

5 g 500 250 250 500 500 62.5 250 250 

5 h 31.2 125 125 125 125 62.5 7.8 7.8 

5 j 7.8 62.5 62.5 62.5 62.5 62.5 31.2 31.2 

5 i 7.8 31.2 250 62.5 62.5 62.5 15.6 31.2 

5 k 15.6 31.2 62.5 62.5 62.5 62.5 31.2 31.2 

Control* 7.8 3.9 3.9 3.9 1.9 3.9 7.8 0.9 

*Doxycycline was used as a reference for the evaluation of the antibacterial activity [49], and Clotrimazole was 

used as a reference in the antifungal activity determination series [50]. 

4. Conclusions 

A small library of 5-chloro-4-(1,3-oxazol-5-yl)-1H-pyrrole-3-carboxamides has been 

synthesized through the structural modification of the aldehyde and ester groups of ethyl 5-

chloro-4-formyl-1H-pyrrole-3-carboxylates. The synthesized compounds can be considered as 

perspective objects for further synthesis of new antimicrobial agents. According to the bio 

screening results, the amides 5 j, i can be highlighted as the agents with high antistaphylococcal 

activity against the test strain S. aureus, while the amide 5 h exhibits high antifungal activity 

against the test strains C. albiсans and A. niger. 
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