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Abstract: Cancer is one of the important health problems, and researchers continue their efforts to 

discover new anti-cancer agents. Coumarins (chromene-2-ones), a group of natural metabolites, have 

shown different biological activities based on their substitutions. In this study, 15 compounds of 1,5-

dihydropyrano[2,3-c]chromene were synthesized by three-component reaction and investigated for the 

antiproliferative activity on the breast (MCF-7), colorectal (SW48 and HT-29), lung (A549), and brain 

(U-87 MG) cancer cell lines as well as two normal cell lines (3T3 and HUVEC). The apoptosis/necrosis-

inducing effect of the selected compounds was determined on the MCF-7 cell line by flow cytometry. 

The results showed that the compounds bearing a moiety on their phenyl ring's para position had potent 

cytotoxic effects on the tested cell lines. These compounds induced apoptosis in MCF-7 cells. The 

compounds were also toxic for 3T3 and HUVECs and did not display a high selectivity for tumor cells. 

Our results revealed that the compounds having a moiety at the para position of their phenyl ring might 

be suitable lead compounds for the synthesis of potent anti-cancer agents. 
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1. Introduction 

Cancer is considered the most challenging problem, and the second leading cause of 

death worldwide [1]. Aging and population growth have increased the incidence and mortality 

of cancers [2]. Cancer incidence is complicated and under the effect of several factors; 

however, the extrinsic factors have more influence, causing increased cancer development in 

young adults [3]. One-third of cancer incidence and mortality is related to lung, breast, and 

colorectal cancers worldwide. Lung and colorectal cancers are the first and second mortal 

cancers for both sexes. Among females, however, breast cancer is the leading cause of cancer 

death [2]. From 2012 to 2016, the death rate for brain and other nervous system tumors has 

increased, and these types of cancers are the leading cause of cancer death among young adults 

[1]. Gliomas are the second most common brain tumors in adults, and glioblastomas are the 

most aggressive and invasive type [4, 5]. 

Radiotherapy and surgery are used to treat localized tumors and chemotherapy and 

immunotherapy for hematologic or metastatic malignancies. However, the best method of 

cancer treatment is still chemotherapy. Nevertheless, drug resistance is a problem in cancer 
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therapy, which leads to the failure of the treatment [6, 7]. Therefore, researchers continue their 

efforts to discover new antitumor agents. Additionally, angiogenesis, a neo-vessel growth 

pathway, has a role in tumorigenesis; thus, angioprevention can also be used to prevent and 

treat cancers, and scientists are looking for anti-angiogenesis compounds [8, 9]. 

Coumarins are the most diverse and abundant family of secondary metabolites 

exhibiting a wide range of pharmacological activities. These compounds are well known for 

their anticoagulant effects. Additionally, coumarins have shown antioxidant, antiviral, 

antiparasitic, antifungal, antibacterial, antitumor, anti-inflammatory, and anti-Alzheimer 

effects based on the substitution pattern [10-16]. There are extensive reports of the antitumor 

activity of synthetic and natural coumarin derivatives in many tumor cells, including those of 

colorectal, gastric, breast, and lung cancers [12]. Coumarins exert their anti-cancer effects by 

inhibiting angiogenesis, aromatase, telomerase, protein kinase activity, arresting cell cycle, 

producing oxidative stress via generating free radical species inducing apoptosis [17-20].  

The present study aimed to investigate the in vitro antiproliferative and anti-apoptotic 

effects of 15 derivatives of synthesized 3-hydroxy coumarin. 

2. Materials and Methods 

 2.1. Synthesis of the compounds. 

 A series of 1,5-dihydropyrano[2,3-c]chromene derivatives (4a-o) were synthesized by 

the three-component reaction of 3-hydroxycoumarin (1), malononitrile (2), and aromatic 

aldehydes (3a-o) in the presence of piperidine as a base in EtOH and under reflux conditions. 

This method was based on our previous works on environmentally friendly multi-component 

reactions [21-23]. The compounds were prepared as previously reported [24-29]. 

2.2. Cell culture. 

U-87 MG (human glioblastoma), A549 (human lung), MCF-7 (human breast), SW48 

and HT-29 (human colorectal) cancer cell lines, HUVEC (human umbilical vein endothelial 

cells), and 3T3 (mouse embryonic fibroblast) normal cell lines were purchased from the Iranian 

Biological Resource Center (IBRC, Tehran, Iran) and cultured in Dulbecco’s modified Eagle’s 

medium (DMEM, Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Gibco), and antibiotics (100 U/ml penicillin and 100 µg/ml streptomycin, Biosera). The cells 

were incubated at 37 °C, 5% CO2, and 95% relative humidity up to at least 80% confluent. 

2.3. Cytotoxicity assay by MTT. 

To evaluate the antiproliferative effects of the compounds, MTT assay was performed. 

The cells were trypsinized, 1×104 cells were cultured in each well of a 96-well microplate, and 

the microplates were incubated in the above-mentioned conditions for 24 h. The next day, 

different concentrations (from 0.1 to 500 µg/ml) of the compounds were added, and the cells 

were incubated for a further 24 h. Doxorubicin (the most potent anti-cancer drug) was used as 

the reference. At least 3 wells of the microplate were used for each concentration, and the 

experiment was repeated 3 times. Finally, MTT solution (5 mg/ml, Melford, England) was 

added to the wells, and the microplates were incubated for 3 h protected from light. Formazan 

crystals were solubilized in 100 µl DMSO, and the absorbance was measured at 570 nm in a 
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multiplate reader. The IC50 values were calculated using a nonlinear curve of dose-response in 

GraphPad® Prism version 5 from the percent of viable cells vs. logarithm of concentrations.  

The selectivity index (SI) was calculated by dividing the compound's IC50 value on 

3T3 by the IC50 value on the cancer cell line [30]. 

2.4. Cytotoxicity assay by trypan blue dye exclusion. 

MCF-7 cells were cultured at 6-well plates (5×105 cells/well) and incubated for 24 h. 

Different concentrations of the compounds (0.1, 1, 10, 50, and 100 µg/ml) were added to each 

well and incubated for 24 h. The cells were trypsinized and combined with trypan blue. Then 

the numbers of the dead and the live cells were counted on a Hemocytometer. 

2.5. Apoptosis assay by flow cytometry. 

MCF-7 cells were treated with 50 μg/ml solutions of one of the compounds 4c, 4e, 4g, 

4h, 4j, or 4l, or 250 μg/ml of 4n for 24 h. Detection of apoptosis in cells was carried out by 

flow cytometry the next day using Annexin-V-FITC/ PI (propidium iodide) Apoptosis Kit 

(MabTag, Germany) based on the manufacturer's protocol. Briefly, the cells were trypsinized 

and washed twice in ice-cold PBS. The cells were then suspended in the binding buffer to a 

concentration of 1×106 cells/ml, later stained with PE annexin-V and PI, and incubated in the 

dark. Cell analysis was done with the flow cytometer (CyFlow®, Sysmex Partec GmbH, 

Germany). 

3. Results and Discussion 

3.1. Chemistry. 

We have synthesized a series of 1,5-dihydropyrano[2,3-c]chromene derivatives. The 

synthesized compounds 4a to 4o were identified by comparing their melting points and FTIR 

spectra with those of authentic samples. The synthesis process and the structure of the 

compounds are shown in Scheme 1. 

3.2. Cytotoxicity assay by MTT. 

To evaluate the cytotoxic activity of the synthesized compounds, several cell lines were 

incubated with different concentrations of the compounds, and their viabilities were determined 

after 24 h. The IC50 values calculated from MTT assay results showed that compounds 4c, 4e, 

4g, 4h, 4j, and 4l have toxic effects on some of the tested cell lines (Table 1). The compounds 

were significantly cytotoxic for the MCF-7 cell line. Among all the compounds, 4h showed 

high toxicity on all the tested cell lines, and unlike other compounds, it was toxic for the A549 

cells. Most of the compounds were not toxic for the U-87 cell line except compounds 4g and 

4h. It should be noted that most of these compounds were also toxic for the regular cell lines 

(3T3 and HUVEC). The cytotoxicity of some compounds such as 4c and 4g was more on the 

3T3 than on the MCF-7 cells, and compound 4o was toxic for the 3T3 cells despite the lack of 

toxicity for the cancer cell lines. However, the SI (selective index) values of compounds 4e, 4j, 

and 4l for MCF-7 were 3.62, 5.17, and 2.48, respectively. Also, compounds 4c, 4e, 4g, 4h, 4j, 

and 4l were toxic for the HUVECs.  

Six out of 15 compounds tested in this study were effective on growth inhibition of the 

cell lines. All the useful compounds had a moiety at the para position of their phenyl rings. 
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Compounds 4g and 4h with a Cl atom at the para position were potent antiproliferative agents. 

Although the additional chlorine group at the ortho site of the phenyl ring of compound 4h 

increased its toxicity on A549 and U-87 cells dramatically, it did not have such an effect on 

MCF-7 cell line. In fact, 4h was the only compound effective on A549 cell line. In addition to 

4h, 4g was also effective on the U-87 cell line with a higher IC50. Unlike these two chlorinated 

compounds, compound 4f bearing one Cl atom at an ortho position was not cytotoxic to any 

cell lines. It seems that the para position must be substituted in order for the ortho position to 

increase its cytotoxic effects. In other words, substitution at the ortho position alone is not 

sufficient for cytotoxicity of the compounds. This is true for other moieties (Br, CH3, OCH3), 

too, in which ortho position is not a suitable substitution. 

In the same way, meta-position did not lead to the production of cytotoxic compounds 

as seen in compounds 4k and 4n with F and NO2 groups at meta position, respectively. 

Simultaneously, their equivalents having these groups at para position (4l and 4o) were 

cytotoxic. It can be concluded that a moiety at the para position is necessary for toxic effects. 

However, the NO2 group was not as effective as halogens, methoxy, and methyl groups. This 

may be related to its high electron-withdrawing effect. 

Furthermore, the TPSA (topological polar surface area) of the compounds with NO2 

functional group is higher. It is seen that the higher the TPSA is, the less the in vitro toxicity 

will be [31]. Basanagouda et al. tested iodinated-4-aryloxymethyl-coumarins on breast and 

lung cancer cell lines and concluded that the halogenated compounds exhibited potent activity 

[32]. Our previous work on dihydropyrano[3,2-b]chromene derivatives, compounds having 

halogens, CH3, and OCH3 substitutions showed cytotoxic activity against cancer cell lines [33]. 

Similarly, there was no remarkable difference between halogens, methoxy, and methyl 

substitutions in this work. 

 
Scheme 1. Synthesis of 1,5-dihydropyrano[2,3-c]chromene derivatives. (1) 3-hydroxycoumarin, (2) 

malononitrile, (3a-o) aromatic aldehydes, (4a-o) the synthesized compounds. 
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Table 1. IC50 (µg/ml) values of the compounds (mean ± S.E.M). Values are reported from three independent 

experiments. 

Code MCF-7 SW48 HT-29 A549 U87 HUVEC 3T3 

4a >500 >500 >500 >500 >500 >500 >500 

4b >500 >500 >500 >500 >500 304.25±14.15 >500 

4c 21.34±2.52 47.43±5.11 70.00±7.21 293.6±19.30 399.6±26.57 13.17±0.35 11.85±0.29 

4d >500 >500 >500 >500 >500 >500 >500 

4e 39.04±4.82 283.5±10.89 146.9±9.32 300.5±14.98 502±17.38 35.69±3.25 141.66±16.08 

4f >500 >500 >500 >500 >500 >500 >500 

4g 24.47±1.69 44. 94±5.65 44.17±10.40 230.8±15.52 74.03±15.08 10.48±0.69 9.91±0.81 

4h 15.25±1.05 19.69±4.74 21.33±6.81 55.38±8.83 18.72±5.22 16.15±1.29 17.28±2.09 

4i >500 >500 >500 >500 >500 >500 >500 

4j 37.47±1.42 204.7±7.29 >500 >500 250.1±16.88 12.49±0.093 193.86±11.87 

4k >500 >500 >500 >500 >500 >500 >500 

4l 38.16±3.97 93.50±6.27 87.05±8.67 206.3±8.50 305.0±15.72 29.08±0.1 94.63±7.74 

4m >500 >500 >500 >500 >500 >500 >500 

4n >500 >500 >500 >500 >500 >500 >500 

4o 339.43±55.29 >500 367.6±30.37 383.5±12.89 >500 124.13±3.16 79.41±5.60 

Dox 5.13 ± 0.31 5.08± 0.27 4.98 ± 0.23 6.32 ± 0.19 7.64 ± 0.34 7.36±0.54 6.25 ± 0.21 

Dox: doxorubicin 

3.3. Cytotoxicity assay by trypan blue dye exclusion. 

The trypan blue dye exclusion test (Figure 1) confirmed the MTT assay results in that 

4h lowered the percent of viable cells dramatically at the concentration of 50 µg/ml. In other 

words, 4h followed by 4c and 4l were the most toxic agents that disturbed the cell membrane's 

integrity. Surprisingly, compound 4o, which did not show cytotoxicity on the MCF-7 in the 

MTT assay, brought the viable cells below 50% at 100 µg/ml concentration. 

 
Figure 1. Cytotoxicity assay of the compounds by Trypan blue dye exclusion method. MCF-7 cells were treated 

with compounds for 24 h. The data represent the mean±SD. 

3.4. Apoptosis assay by flow cytometry. 

To investigate the compounds' apoptotic activity, MCF-7 cells treated with the 

compounds for 24 h were stained with a combination of Annexin V-FITC and PI and analyzed 

in a flow cytometer. The results of this part of the experiment are shown in Figure 2. It 

confirmed that all tested compounds induced apoptosis in MCF-7 cells except 4o, which 

induced necrosis at high concentration. 

There are several reports of apoptosis-inducing activity of coumarin derivatives and 

hybrids. The 6-brominated coumarin hydrazide–hydrazone derivatives showed potent 

antiproliferative activity and induced apoptosis in a pancreatic cancer cell line [17]. O-

prenylated coumarin derivatives showed antiproliferative effects on HeLa cells and induced 
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apoptosis after 48 h treatment; however, these compounds did not inhibit HDF normal cells 

[34]. Some thiazolylpyrazolyl coumarin derivatives also were toxic for the MCF-7 cell line and 

induced apoptosis and cell cycle arrest in these cells [35]. 

 
Figure 2. The apoptosis assay by flow cytometry. MCF-7 cells were treated with the compounds for 24 h. A) Dot 

plots showing apoptosis ratios using propidium iodide (PI) and FITC-annexin V. The Q1 quadrant represents 

necrotic cells (PI-positive and annexin negative), the Q2 represents late apoptotic cells (PI and annexin positive), 

the Q3 represents viable cells (PI and annexin negative). The Q4 represents early apoptotic cells (PI negative and 

annexin positive). C stands for control. B) Bar graph showing the percentage of cells in different states. Note the 

percentage of apoptotic cells (dark and bright grey). 
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4. Conclusions 

 Based on our results, 1,5-dihydropyrano[2,3-c]chromene derivatives can be considered 

suitable lead compounds for the synthesis of anti-cancer agents. A moiety on the para position 

of the phenyl ring showed in vitro toxic activity against cancer cell lines by introducing 

apoptosis. Therefore, these compounds can be considered as motivating anti-cancer agents for 

further study. Although HUVEC is a standard cell line, it is mostly used for evaluating the 

angiogenesis, preventing the potential of chemicals, so further research can be performed to 

investigate the anti-angiogenesis effect of these compounds. 
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