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Abstract: Carcinogenesis is a multi-stage process in which damage to a cell's genetic material changes 

the cell from normal to malignant. Tyrosine-protein kinase FGR is a protein, member of the Src family 

kinases (SFks), nonreceptor tyrosine kinases involved in regulating various signaling pathways that 

promote cell proliferation and migration. FGR protein is also called Gardner-Rasheed Feline Sarcoma 

viral (v-fgr) oncogene homolog. FGR, FGR protein has an aberrant expression upregulated and 

activated by the tumor necrosis factor activation (TNF), enhancing the activity of FGR by 

phosphorylation and activation, causing ovarian cancer. In the present study, 3D structure of FGR 

protein is built by using comparative homology modeling techniques using MODELLER9.9 program. 

Energy minimization of protein is done by NAMD-VMD software. The quality of the protein is 

evaluated with ProSA, Verify 3D and Ramchandran Plot validated tools. The active site of protein is 

generated using SiteMap and literature Studies. In the present study of research, FGR protein was 

subjected to virtual screening with TOSLab ligand molecules database in the Schrodinger suite, to result 

in 12 lead molecules prioritized based on docking score, binding free energy and ADME properties. 

These lead molecules are considered as a new policy against ovarian cancer. 

Keywords: homology modeling; NAMD-VMD:Schrodinger suite; prime-MMGBSA; AutoDock; 

virtual screening. 
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1. Introduction 

Cancer is the most common human genetic disease. Cancer is the second leading cause 

of death globally. Ovarian cancer is 7th leading cause of cancer-related death of humans [1] is 

a most commonly causing cancer in African countries. The overexpression of FGR protein 

result causes ovarian cancer [2,3], FGR protein belongs to the Src family of protein tyrosine 

kinases (SFKs), Src family kinases are nonreceptor tyrosine kinases [4]. Cell migration is 

carried out by FGR protein triggered by adhesion to β2 integrin in the signal transduction 

pathway  [5]. The normal function of SFKs proteins regulates a wide range of cellular events 

as well as specialized functions such as immune responses, cell adhesion cell movement [6], 

β2 integrins phosphorylates and activates polymorphonuclear neutrophils (PMNs) as well as 

FGR. In contrast, TNF involved in this pathway further enhances phosphorylation of FGR 

protein, which results in increased activation of FGR protein predominantly causing ovarian 

cancer progression is shown in Figure 1.  Present work involves computer-based homology 

modeling technique to build 3D structure of FGR.  The 3D model of generated protein was 
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validated using NAMD-VMD software, validated to check the quality of FGR protein using 

various validation servers, such as ProSA, Ramchandran plot, and verify 3D. The active site of 

protein is predicted from SiteMap. TOSLab ligand data bank was used as small ligand 

molecules for docking. The protein is prepared in a protein preparation wizard. Its active site 

is identified and subjected to virtual screening in Schrodinger suite and AutoDock to identify 

new lead molecules, prioritized based on docking score, binding energies, and ADME 

properties. These lead molecules are considered as potential inhibitors of FGR protein. 

 
Figure 1. Schematic diagram of FGR protein causes ovarian cancer. CD18 (β2) integrin is responsible for 

activation and phosphorylation of FGR protein in which polymorphonuclear neutrophil (PMN), phosphorylation 

enhanced by the tumor necrosis factor (TNF), leading to cell proliferation. 

2. Materials and Methods 

 2.1. Homology modeling. 

The term homology modeling, also called comparative modeling or sometimes 

template-based modeling (TBM), refers to modeling a 3D structure of a protein using a known 

experimental structure of a homologous template. Template selection is based on the query 

coverage and statistical measure of E-value [7]. The template selection was made using 

different servers, such as BLAST and Jpred [8,9], followed by sequence alignment between 

template and target protein operated in clustalW tool [10]. The 3D structure is built for FGR 

protein using modeler 9.9 [11]. Twenty models were generated. One with the least modeler 

objective function value of protein is selected for further future work. 

2.2. Energy minimization of FGR protein.  

The 3D model of FGR protein was energy minimized by using Visual Molecular 

Dynamics-Nano Scale Molecular Dynamics (VMD-NAMD)[12], FGR protein contains 

abnormal steric clashes, produced by improper bond angles, the bond length between amino 

acid residues of the protein, The initial 3d model of FGR was subjected for refinement in 

simulations environment with CHARMM, AMBER as a force field and solvated in a water box 

under a Periodic boundary environment with a size of 2.4 Å, to minimize the energy of the 

protein [13]. 

2.3. Validation of protein. 

Quality of energy minimized protein was validated with different server tools, such as 

ProSA, Ramchandran plot, and Errat. To evaluate the quality of the protein, ProSA is a tool 

widely used to check 3D models of protein structures for potential errors, and the z- score 

indicates the quality of protein [14]. Ramachandran plot helps to visualize energetically 
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allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein 

structure [15]. ERRAT plot analyzes the statistics of non-bonded interactions between different 

atom types and comparison with statistics from highly refined structures. 

2.4. Protein preparation. 

The protein preparation wizard is used for the optimization of the FGR Protein structure 

[16]. Protein is taken as a raw stage in which hydrogen atoms are missing with incorrect bond 

orders. In protein preparation, wizard hydrogens are added, bond order is assigned unwanted 

Water molecules are removed. The energy minimization is carried out using protein preparation 

wizard at OPLS 2005 force field, until a stage where a Root Mean Square Deviation (RMSD) 

of 0.3 Å is reached [17]. 

2.5. Ligand preparation. 

Ligand preparation was carried out by the LigPrep module of Schrodinger suite in 

Maestro 9.0.111 [18]. Ligand molecules are taken from the TOSLab ligand databank, 

containing 17643 small molecules. These ligand molecules were subjected to LigPrep, 

resulting in low energetic conformers for the virtual screening in the LigPrep module of the 

Schrodinger suite. Each ligand molecule generates different conformers based on ionic state, 

stereochemistry, and ring conformations in the module. Those with low energy output 

conformers are used for virtual screening to identify lead molecules [19].  

2.6. Active site identification. 

The active site region of the protein is a crucial step in structure-based drug design. 

Identification of the binding region is based on the Schrodinger suite's literature studies and 

sitemap tool [20]. The ligand N-(5-Chloro-1,3-Benzodioxol-4-Yl)-7-[2-(4-Methylpiperazin-1-

Yl)ethoxy]-5-(Tetrahydro-2h-Pyran-4-Yloxy) quinazolin-4-Amine, binding to Amino acid 

residues of a template (2H8H) protein were taken as active site residues and are manually 

correlated to obtain active site residues of FGR protein through the pair sequence alignment in 

ClustalX2.1 [21]. Grid is generated from Glide tool using active site amino acid residues of the 

FGR protein, with dimensions of 32×32×32Å and 80×80×80Å. This box is used as a favorable 

binding cavity for screening studies [22]. SiteMap is a fast, accurate, and practical binding site 

identification tool; it generates site score, which is useful in identifying effective binding sites 

on the surface of the protein. Evaluation of the SiteMap results helps locate the binding sites 

with a high degree of accuracy, showing hydrogen bond donors, the hydrogen bond acceptors, 

hydrophobic and hydrophilic regions. Glide tool in Schrodinger suite was used for molecular 

docking studies [23].  

2.7. Virtual screening. 

Virtual screening is a prominent tool for the identification of novel ligand molecule 

discovery. Grid generated at the active region of FGR protein is used for docking using ligand 

molecules for the inhibition activity of FGR protein. This process proceeds through virtual 

screening, including protein preparation wizard, ligand preparation, and docking [24]. This 

process involves three filtration stages, 1)  bulk LigPrep out file and protein is passed through 

the first stage, HTVS (High Throughput Virtual Screening) docking mode in the docking 

funnel results in the thoroughness of the final torsional refinement; 2) The conformers are 
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passed through the next stage SP (standard precision) docking mode where ligands are flexible, 

filters unstable ligands,  and at the third stage performs XP (extra precision) docking mode. 

Under each stage, 10% of molecules are filtered [25,26], and finally, the best-docked molecules 

were prioritized by different scoring functions. 

2.8. Prime MMGBSA. 

The binding free energy of FGR protein and ligand complex was carried out in Prime 

MMGBSA (Molecular Mechanics Generalized Born Surface Area).  The binding free energies 

of receptor-ligand complexes were calculated using the Prime (27) module of Schrodinger suite 

with the OPLS_2005 force field. The binding free energy of a ligand (L) to a protein (P) to 

form the complex (PL) is obtained as the difference.  

∆Gbinding = ∆G (complex)-∆G (Protein)-∆G (Ligand) 

Where GBinding is the binding free energy; whereas Gcomplex, Gprotein and Gligand represents the 

free energy of complex, protein, ligand, respectively.    

2.9. ADME properties. 

Pharmacokinetic properties of the resulting screened XP out a file of top docked ligand 

molecule are identified in QikProp module of Schrodinger suite [28]. The identified docked 

lead ligand molecules obtained by docking obey the ADME properties. The ADME properties 

of new lead molecules are essential for the development of an effective druggable molecule. 

The ligands' ADME properties were all in permissible ranges and are considered new potential 

inhibitors of the FGR protein. 

2.10. AutoDock. 

AutoDock 1.5.6 is one of the most cited docking software in the research community. 

It is an excellent tool to recognize docking affinity for individual ligand molecules identified 

with protein [29]. The screened XP out file ligand molecules obtained from the Schrodinger 

suite was converted to PDBQT file format. Grid and docking parameter files were given as 

GPF files and DPF files in AutoDock. Different conformations of ligands were docked at the 

active region of the FGR protein following the Lamarkian type of genetic algorithm. 

3. Results and Discussion 

3.1. Structure evaluation and validation.  

The 3D structure of FGR protein is not reported in PDB (protein data bank) by NMR   

spectroscopy and X crystallography experimental studies [30]. The 3D structure of FGR 

protein was built using the comparative homology model technique, based on the sequence 

similarity, E-value, and identity of the known structure of the template (2H8H) protein [31]. 

The amino acid sequence of FGR protein is retrieved from UniProt with accession ID P09769 

and submitted to BLAST, and Jpred servers. These servers give the known proteins as 

templates with similar structures, resulting in the best match template protein as 2H8H show 

in Table 1. 

Pairwise sequence alignment of target FGR protein with structurally similar 2H8H 

template was carried out in clustalX1.2.The alignment between FGR protein and template 
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2H8H protein reveals the identical and conserved residues in FGR protein. The sequence-

structure relationship is visualized with discovery studio3.5, shown in Figure 2.  

Table 1. Template selection from Blast and J Pred. 

S.No Name of the protein database 

search server 

Parameters considered for template selection E Score 

Value 

Protein PDB 

Code 

1 BLAST Sequence similarity  3e-166 2H8HA 

2 Jpred3 Three-state (a-helix, b-strand, and coil) prediction 

of secondary structure and solvent accessibility 

e-131 2H8HA 

 
Figure 2. Pairwise sequence alignment of FGR protein with template 2H8HA. Identical residues are shown in 

cyan color, strongly similar residues with red color and weakly similar residues with yellow color, non-matching 

similar residues with a green color. 

The alignment file is further used as an input file to MODELLER 9.9 [32] to build 

homology models. Twenty models of FGR protein were generated. The model with the least 

probability density function model (2646.37 KJ/mol) is taken for further studies. PyMOL, 

shown in Figure 3, visualize the 3D model of FGR protein.  

 
Figure 3. The energy minimized 3-dimensional structure of FGR protein is visualized using PyMOL software. 

The 3-dimensional protein contains 19-helices, 14 helix-helix interacts, 47 turns, and the N-terminal and C-

terminal are exhibited with pink and blue color, respectively. The conserved domain is indicated in yellow color. 
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Energy minimization of protein was carried out using the NAMD-VMD tool to reduce 

the steric clashes in FGR protein. Solvation of protein is carried out in all directions with a10 

Å layer of water. Energy minimization was performed in order to stabilize the protein in 

NAMD_2.9_Win32-multicore package of NAMD-VMD module, which uses AMBER, 

CHARMM force fields by applying simulations. Stabilized protein was analyzed based on 

RMSD value 3D structure of FGR protein exhibited RMSD value of around 1.0-1.1 Å with 

time stages (1072–1828Ps) shown in Figure 4.  

 
Figure 4. Energy minimization of FGR protein carried out using NAMD-VMD software. The graph displays the 

RMSD values of various energy states at different time steps. The FGR protein was stabilized at a constant 

RMSD value of 1.1 Å with time steps 1072–1828 Ps. 

The FGR structure was stabilized by removing bad interaction and steric clashes, 

hydrogen atoms were added, water molecules are removed. This stabilized protein analyzed 

based on RMSD value 1.1 Å, considered for molecular docking. This process proceeds in the 

Schrodinger suite's protein preparation wizard module, and the optimized structure was used 

for further work.  

The stabilized protein structure is validated with different standard validation protocols 

such as ProSA, Ramchandran plot, and verify 3D. ProSA is generating two models, i) overall 

model quality and ii) local model quality. Overall model quality z-score value -10.76 indicates 

the protein's quality by comparing with the experimentally determined proteins deposited in 

protein data bank by X-ray crystallography (light blue) and NMR spectroscopy (dark blue)  

shown in Figure 5a.  

 
Figure 5. (a) The z-score of the FGR protein obtained from ProSA gives the value as -10.76. The black spot 

corresponds to the good quality of FGR protein. 5(b) ProSA analysis of the local model quality showed all the 

amino acid residues in the negative region of indicating a good model quality of the 3D model of FGR protein. 

Local model quality of FGR protein has its amino acid residues falling below the 

baseline in the negative region, shown in Figure 5b, indicating the generated model is highly 

reliable. Ramachandran plot of FGR protein revealed 93% of amino acid residues in the 
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favorable region, 5% residues in the additionally allowed region, indicating the good 

stereochemical quality of FGR protein, shown in Figure 6.  

 
Figure 6. Ramachandran plot of FGR protein. The red area indicates the most favored amino acid residues; the 

brown area indicates the additional allowed regions, and the yellow area indicates the generously allowed 

regions. The Ramachandran plot of protein has 98.4% of residues in the favored region, indicating a good 

quality protein model. 

The verify 3D is a well-organized web-based server to correct the 3d model by 

estimating compatibility with its own 1D amino acid sequence to its 3D profile. Verify3D flot 

of FGR protein reveals that 96.63% of residues had an average 3D-1D score >=0.2 within the 

permeable ranges shown in Figure 7. The Protein 3D model is visualized by PyMOL software. 

FGR protein consists of 17 helices, 15 helix-helix interactions, 51 beta turns, and 3gamma turns 

[33] shown in Table 2. 

 
Figure 7. Verify 3d plot of FGR. The graph showing that 96.63% of residues of FGR had an averaged 3D-1D 

score within permeable ranges. At least 80% of amino acids have scored >=0.2 in the 3D-1D profile. 

Table 2. Secondary structure information on the FGR protein, identified by PDBSum server. 

S.No Start End Number of 

residues 

Length in Å Sequence of α helices 

1 Arg155 Leu162 8 12.10 RRESERLL 

2 Leu223 Lys232 10 15.95 LQQLVAYYSK 

3 Pro304 Lys316 13 20.32 PEAFLQEAQVMKK 

4 Leu346 Leu350 5 8.08 LLDFL 

5 Gly352 Gly355 4 5.60 GETG 

6 Leu360 Arg379 20 29.97 LPQLVDMAAQIASGMAYVER 

7 Asn414 Thr417 4 6.43 NEYT 

8 Pro431 Tyr436 6 8.46 PEAALY 

9 Ile441 Leu455 15 22.74 IKSDVWSFGILLTEL 

10 Asn468 Glu476 9 15.10 NREVLDQVE 

11 Leu360 Cys498 10 15.47 ESLHDLMCQC 

12 Asn414 Glu517 9Å 13.75 FEYLQAFLE 
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3.2. Active site identification of FGR protein. 

The active site plays a pivotal role in structure-based drug design. The active site 

residues of target FGR protein are identified from template protein by comparing its residues 

with active site residues of template protein (2H8H), Active site residues of template were 

obtained from Lig plot shown in Figure 8. 

 
Figure 8. The Ligpolt diagram exhibiting the template residues (2H8H), interacting with ligand compound 1-

Tert-Butyl-3-(Naphthalen-1-Yl)-1h-Pyrazolo [3, 4- D] pyrimidin-4-Amine . All these amino acid residues were 

considered for the identification of an active site of FGR protein. 

The amino acid residues of template 2H8H interacting with ligand molecule ligand are 

N-(5-Chloro-1,3-Benzodioxol-4-Yl)-7-[2-(4-Methylpiperazin-1-Yl)ethoxy]-5-(Tetrahydro-

2h-Pyran-4-Yloxy) quinazolin-4-Amine, were Leu273, Gly274, Val281, Ala293, Lys295, 

Thr338, Glu339, Tyr340, Leu393, Ser342, Lys343, Gly344, Ala390, Leu393. These residues 

of 2H8H template were manually correlated to an amino acid sequence of FGR protein by the 

ClustalX1.2, which resulted in Leu269, Gly270, Val277, Ala289, Lys291, Thr334, Glu335, 

Tyr336, Leu337, Ser338, Lys339, Gly340 as active site residues, shown in Figure 9.  

CLUSTAL 2.1 multiple sequence alignment 
 
 
2h8h                     CLSVSDFDNAKGLNVKHYKIRKLDSGGFYITSRTQFNSLQQLVAYYSKHADGLCHRLTTV 
sp|P09769|FGR_HUMAN      SLSIRDWDQTRGDHVKHYKIRKLDMGGYYITTRVQFNSVQELVQHYMEVNDGLCNLLIAP 
                         .**: *:*:::* :********** **:***:*.****:*:** :* :  ****: * :  
 269,270  277          289 291 

2h8h                     CPTSKPQTQGLAKDAWEIPRESLRLEVKLGQGCFGEVWMGTWNGTTRVAIKTLKPGTMSP 
sp|P09769|FGR_HUMAN      CTIMKPQTLGLAKDAWEISRSSITLERRLGTGCFGDVWLGTWNGSTKVAVKTLKPGTMSP 
                         *.  **** *********.*.*: ** :** ****:**:*****:*:**:********** 
                                                        334 335 336 337 338 339 340 
2h8h                     EAFLQEAQVMKKLRHEKLVQLYAVVSEEPIYIVTEYMSKGSLLDFLKGETGKYLRLPQLV 
sp|P09769|FGR_HUMAN      KAFLEEAQVMKLLRHDKLVQLYAVVSEEPIYIVTEFMCHGSLLDFLKNPEGQDLRLPQLV 
                         :***:****** ***:*******************:*.:********.  *: ******* 
 
2h8h                     DMAAQIASGMAYVERMNYVHRDLRAANILVGENLVCKVADFGLARLIEDNEYTARQGAKF 
sp|P09769|FGR_HUMAN      DMAAQVAEGMAYMERMNYIHRDLRAANILVGERLACKIADFGLARLIKDDEYNPCQGSKF 
                         *****:*.****:*****:*************.*.**:*********:*:**.. **:** 

Figure 9. Prediction of active site residues of FGR protein from an alignment of the template 2H8H with FGR 

protein. Highlighted colors are manually correlated between a template and the target protein. FGR protein 

residues are shown in pink color. Template residues are shown in yellow color, and active residue numbers are 

shown in cyan color. 

The conserved domain of FGR protein is taken from the BLAST server shown in Figure 10. 
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Figure 10. Conserved domain of FGR protein obtained from blast server. Query sequence submitted to BLAST 

server.  The active site region is found to be between 150 to 230 amino acid residues of FGR protein. 

The putative binding receptor of FGR protein was identified in the SiteMap module in 

Schrodinger suite using the OPLS_2005 force field. It also provides the nature of the cavities 

such as hydrogen bond acceptors, hydrogen bond donors, hydrophilic region, and hydrophobic 

region, depicting the nature of the active site binding region [34] shown in Figure 11, SiteMap 

also gives the volume of binding regions and binding modes illustrated shown in Table 3. Three 

Dimensional grid box was generated from Glide tool of Schrodinger software, using active 

amino acid residues of FGR protein which were Leu269, Gly270, Val277, Ala289, Lys291, 

Thr334, Glu335, Tyr336, Leu337, Ser338, Lys339, Gly340, with the box size 80×80×80 Å and 

the centroid of 32 Å x 32 Å x 32 Å dimension of FGR protein shown in Figure 12. 

 
Figure 11. The active site domain of the FGR protein is identified from sitemap in Schrodinger tool Red color 

depicts the hydrogen donor; light blue indicates hydrogen acceptors, hydrophilic and hydrophobic are showed 

spring green and yellow respectively. 

Table 3. Putative active site binding region of FGR protein was identified from the SiteMap tool of Schrodinger 

suite. 

Cavity Binding region Volume(Å) 

1 HB acceptor 521.102 

2 HB donor 844.393 

3 Hydrophilic 1362.17 

4 Hydrophobic 245.94 

5 Metal binding 0.000 

6 Surface 2132.05 

 
Figure 12. Grid is generated from Glide module of Schrodinger software, FGR active residues used for Grid 

generation. 
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3.3. Docking studies. 

Identification of potential ligand molecules against FGR protein is based on the 

structure-based virtual screening. It is a computer-based technique. It analyzes the binding 

affinity and interactions between protein-ligand complexes [35]. A library of chemical 

structures of compounds, TOSLab database containing 17643 Ligand molecules, were 

subjected to ligPrep to give 27253 low energy conformers as out file [36]. This out file is used 

as an input database for virtual screening in maestro 9.0.111, Schrodinger suite. TOSLab ligand 

library is used for the docking with a Grid of protein, built in the Glide module of Schrodinger 

suite. Various filtration methods of screening such as HTVS, SP and XP modes were used. In 

HTVS (high throughput virtual screening) mode, 1232 ligand molecules were produced. These 

molecules were passed through the SP (Standard precession) mode, which produced 123 (10%) 

molecules, which were further passed through the XP (extra precession) mode giving 12 (10%) 

best-docked molecules as a result of screening as XP outfile, shown in Table 4. The 3d binding 

orientations of lead structures were prioritized based on scoring functions as D1, D2, D3, D4, 

D5, and D6, which are visualized in discovery studio3.5, and then corresponding 2d interaction 

diagrams from Schrodinger suite are shown in Figure 13. Estimated binding free energy of 

docked molecules was obtained from Prime-MMGBSA. Binding strength was determined by 

the complex binding free energy, and the lowest binding free energy conformers had had the 

highest binding affinity. PrimeMMGBSA reveals stable docked complexes, revealing binding 

free energies, ranging between -25.63 to -17.03 dG (kcal/mol). The prioritized lead molecules 

obtained from the Schrodinger suite consistently are interacting with Glu102, THR97, and 

SER122 residues H-bond interactions [37]. 

Table 4. The final lead molecules are arranged in priority order with their, Glide score, Glide energy, prime-

MMGBSA, AutoDock and interactions, bond distance. 

S.No Structure Glide 

score 

Glide 

energy 

PrimeM

M-GBSA 

complex 

energy(d

G bind) 

Binding 

Energy 

from 

AutoDock(

Kcal/mol) 

Protein-ligand 

interactions 

Bond 

Dista

nce 

(A) 

D1 

 

-4.47 -29.75 -24.14 -6.3 P:GLU102:OE2 – 

R1:N41 

:D1:H24 

P:GLU102:OE1 

:D1:H42 -

P:GLU102:OE1 

:D1:H42 -

P:GLU102:OE2 

3.05 

2.22 

1.60 

2.32 

D2 

        

-4.87 -19.14 -20.09 -4.3 P:GLU102:OE2 - 

:D2:N3 

P:LYS124:HZ1 - 

:D2:O6 

:D2:H11 -

P:GLU102:OE1 

:2:H11 -

P:GLU102:OE2 

:D2:H13 - 

P:THR97:O 

 

2.87 

2.08 

1.99 

1.93 

1.49 
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S.No Structure Glide 

score 

Glide 

energy 

PrimeM

M-GBSA 

complex 

energy(d

G bind) 

Binding 

Energy 

from 

AutoDock(

Kcal/mol) 

Protein-ligand 

interactions 

Bond 

Dista

nce 

(A) 

D3 

 

-5.11 -13.53 -18.03 -4.1 P:GLU102:OE2 - 

:D3:N3 

:D3:H10 -

P:GLU102:OE1 

:D3:H10 -

P:GLU102:OE2 

:D3:H11 - 

P:THR97:O 

:D3:H13 - 

P:THR97:OG1 

 

3.04 

1.75 

2.15 

1.82 

1.99 

D4 

 

-4.33 -20.98 17.87 -3.8 :D4:H16 

P:GLU102:OE1 

:D4:H16 

P:GLU102:OE2 

:D4:H17 - 

P:SER122:OG 

:D4:H20 -

P:GLU102:OE1 

2.22 

2.12 

1.78 

1.74 

D5 

 

-4.27 -22.05 -17.03 -3.5 P:ASP87:OD2 - 

:D5:N29 

P:GLU89:OE2 - 

:D5:N27 

P:THR97:HG1 - 

:D5:F11 

:D5:H19 - 

P:GLU89:OE1 

:D5:H20 - 

P:GLU89:OE2 

:D5:H21 - 

P:ASP87:OD2 

2.68 

3.05 

2.22 

2.05 

2.13 
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D3  

D4  

D5  

D6  

Figure 13. The 3d molecular interactions of lead molecules D1, D2, D3, D4, D5, and D6 with active site 

residues of FGR protein are identified from the discovery studio3.5 version. The active site amino acid residues 

interacting are shown in ball and stick green color and the protein backbone as cyan ribbon. The ligand 

compounds are in the stick model. The hydrogen bonds between lead compounds and active amino acid residues 

are shown in the black dotted line. 

3.4. Auto docking. 

Molecular docking was carried out by using AutoDock [38]. The 19 XP outfile 

molecules were docked using Autodock with FGR protein. The resulting docked complexes 

were prioritized based on their binding energies (-4.1 to –6.31 kcal/mol). 

Based on GLIDE and AutoDock docking, it was observed that top prioritized ligand 

molecules D1-D6 were exhibiting good binding free energy negative dG values concerning 

protein-ligand complexes shown in Table 4. 

3.5. ADME properties. 

Pharmaceutically relevant properties of selected lead molecules were identified by the 

Qikprop module of the Schrodinger suite. It is used to estimate ADME properties of lead 

molecules, good human oral absorption. The Lipinski rule of five and Jorgensen rule of three 
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are shown in Table 5, which are helpful to identify potential lead molecules against FGR 

protein for cancer therapy [39].  

Table 5. The pharmacokinetic properties of lead docked complexes obtained from QikProp. 

S.No M.wt Donor HB Acceptor 

HB 

Q plog 

Po/w 

% of human 

Oral Absorption 

Rule of 

three 

Rule of 

five 

D1 328.3 2.0 4.7 3.785 100 0 0 

D2 172.2 0.0 1.5 2.158 93.9 0 0 

D3 222.0 2.8 3.0 0.561 75.5 0 0 

D4 271.1 5.0 4.0 1.061 73.3 0 0 

D5 270.2 5.0 4.0 1.072 72.1 0 0 

D6 202.2 5.0 4.0 0.173 66.1 0 0 

3.6. Justification of lead molecules. 

The final top lead molecules, which were observed with good binding energies from 

the MM/GBSA approach, also show a good % of human oral absorption, as shown in Table 6. 

The six molecules D1-D6 had binding energies between -17.03 to -25.63 kcal/mol with 100% 

to 66% human oral absorption. The ligand molecules D2 and D3 consist of imidazole structural 

moiety, and D4, D5, D6 molecules consist of pyrazolidine moiety. All ligands are consistently 

binding with GLU102, THR97, ASP87, SER122 amino acids and forming Hydrogen bonding, 

which increases the strength of the binding interaction between protein and ligand molecule. 

The best-docked complexes D1-D3 are prioritized based on binding free energy,% of human 

oral absorption, and binding energy from AutoDock These molecules have effective binding 

fee energy compared to other moieties, Quinoline 8-hydroxy ring of D1 molecule hydrogen 

atom of OH functional group is forming hydrogen bonding with oxygen (OE1) atom of 

GLU102 residue which is responsible inhibition of the activity of FGR protein at the active 

site, which increases the strength of the binding interaction between protein and ligand 

molecule.  

Table 6. Structural based virtual screening of TOSLab database resulting in best-docked compounds against 

FGR protein. 

Compound Ligand Molecules Protein-Ligand 

binding free 

energy (dG) 

% of 

human oral 

absorption 

Binding energy 

from AutoDock 

(kcal/mol) 

Interacting 

amino acids 

D1 

 

-24.14 100.0 -6.3 H-bonding 

Glu-102 

D2 

 

-20.09 93.97 -4.3 H-bonding 

GLU102 

THR97 

D3 

 

-18.09 75.59 -4.1 H-bonding 

GLU102 

THR97 

The best-docked complexes were optimized based on binding free energies, 

bioavailability, binding energy from Auto Dock, and interacting amino acids were provided in 

Table 6. These ligand molecules show druggable property and can be considered a potentially 
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viable molecule that inhibits the biological function of FGR protein. The Superimposed binding 

pattern of D1, D2, D3, ligand molecules show that they are occupying similar positions in the 

binding cavity of FGR and are consistently binding to Glu102 and Thr97 amino acid residues 

as shown in Figure 14. 

 
Figure 14. The superimposition of top 3 docked ligands into the FGR active site, lead molecules, and active 

residues as visualized by Discovery Studio3.5. 

4. Conclusions 

 The work's major target involves identifying potential molecules for inhibiting FGR 

protein as cancer therapeutics. The homology modeling technique built the structure of FGR 

protein, FGR protein containing 529 amino acid residues is validated by the homology 

modeling technique, minimized by the NAMD-VMD software, and the structure is validated 

by the homology modeling technique different validation protocols. The active site is identified 

from the SiteMap tool. The active site reveals that the amino acid residues GLU102, THR97, 

SER122, GLU89, are important in binding with lead ligand molecules, TOSLab ligand 

database was selected to dock against FGR target protein for hit identification. The final 12 hit 

molecules were identified. The top 6 leads are D1to D6, which were prioritized based on 

GLIDE score, binding free energies, and hydrogen bonding interactions. D1, D2, and D3 

molecules were prioritized based on bioavailability, binding free energies, and binding energy 

from prime MMGBSA and AutoDock. Docking revealed that GLU102 amino acid of FGR 

protein was binding with the hydrogen atom of OH functional group of Quinoline 8-hydroxy 

moiety of D1 resulting in increased strength of the binding interaction Protein-ligand complex. 

It shows 100% human oral absorption. Hence, we conclude that all the lead molecules have a 

competent range of binding free energies, percentage of human oral absorption, and 

permissible range of ADME properties may be considered to develop new lead molecules 

against inhibition FGR protein cancer therapeutics. 
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