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Abstract: Proteins are macromolecules that enable life. Protein function is due to its three-dimensional 

structure and shape. It is challenging to understand how a linear sequence of amino acid residues folds 

into a three-dimensional structure. Machine learning-based methods may help significantly in reducing 

the gap present between known protein sequence and structure. Identifying protein folds from a 

sequence can help predict protein tertiary structure, determine protein function, and give insights into 

protein-protein interactions. This work focuses on the following aspects. The kind of features such as 

sequential, structural, functional, and evolutionary extracted for representing protein sequence and 

different methods of extracting these features. This work also includes details of machine learning 

algorithms used with respective settings and protein fold recognition structures. Detailed performance 

comparison of well-known works is also given.  
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1. Introduction 

Protein Sequences consist of 20 standard amino acids, which fold into their respective 

three-dimensional structure. The protein function is due to its three-dimensional structure and 

shape [1,2]. It is challenging to understand how a chain of amino acid residues is folded into 

its three-dimensional structure. There is a wide gap in sequence and structure availability. 

Many experimental methods are currently used to determine protein structure, including X-ray 

crystallography [3,4] and NMR spectroscopy [5]. These methods cannot help reduce the vast 

amount of gap present between sequence and structure, as they are slow and much costlier [6]. 

The machine learning-based methods may help significantly in reducing this gap. It is a 

challenging task to predict a protein tertiary structure from a protein sequence directly. 

Identifying a protein fold from a protein sequence can help predict a protein tertiary structure 

and function. An in-silico method for protein fold recognition has many applications in biology, 

chemistry, and medicine [7–12].  

Identifying a fold category of a protein sequence is called fold recognition [13–16]. The 

process of protein fold recognition is summarized in the following Figure 1. The different types 

of feature vectors are created from input protein sequences. Features vectors are combined for 

use by machine learning algorithms. Combining features plays an important role in 

representing protein sequence information for building a machine learning model. 
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Figure. 1. Protein fold recognition process using machine learning algorithms. 

2. Datasets 

 The popular datasets used in protein fold recognition are DD [17], EDD [18], and TG 

[19]. SCOPe [20] dataset also contains fold information (i.e. 1003 folds) for protein 

sequence[21,22]. Statistically, the SCOPe dataset is better in terms of the number of records 

per fold compared to other datasets like DD, EDD, and TG [21]. Following Figure 2 highlights 

the growth of the Structural Classification of Protein Dataset. Each entry in SCOP or SCOPe 

provides lots of information, viz. protein structural class, protein fold, protein super-family, 

protein family belonging to a string containing amino acid resides. It also provides additional 

information of PDB id and PDB chain id for each entry that concisely links with other 

resources. [20,23]  

 
Figure. 2 Growth of structural classification of protein dataset. 

3. Methods of feature extractions 

 The Protein sequence is in a textual format, and each sequence is likely to be of a 

different length. Thus, it is not amenable to use sequence it-self as the only feature for model 
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building. It is also known that the linear sequence of amino acids contains all the information 

that is necessary to determine the final tertiary structure [24–26]. So, there is a requirement to 

look for different feature sets that can represent a given amino acid sequence. Majorly four 

kinds of features are used: sequential, structural, functional, and evolutionary [27–29]. 

 The sequential feature extracted from the protein sequence is the amino acid 

composition. The number of times a particular amino acid is present in a sequence without 

considering its spatial location [30]. It helps in identifying frequently and rarely appearing 

amino acids in a given sequence. Although amino acid occurrences vary as the length vary. So, 

the frequency of occurrence must need to be normalized concerning the length of the sequence. 

The normalized scores can be directly used to compare protein sequences based on their amino 

acid composition. The amino acid composition is used as a feature in [17,19,31]. Any protein 

sequence P with N amino acid residues can be represented as in Equation 1. There are 20 

standard amino acids available. Composition for a single amino acid residue is expressed by 

Equation 2. Then protein P of Equation 1 can be suitably represented by the composition of its 

20 amino acid residues as P’ using Equation 3. As per Equation 3, each protein sequence can 

be represented as a 20-dimensional vector consisting of scalar values. 

 (1) 

where Ri is one of the amino acids among the 20 standard amino acids, i indicates the physical 

position of Ri in the protein sequence of length N. 

 (2)
 

Here, 1≤i≤20, indicates the count of i amino acids in a given protein sequence, and N is 

the total number of residues in a given protein sequence. 

 (3) 

 In a study [32], to avoid completely ignoring the sequence-order effects, the pseudo-

amino acid composition was used to replace the conventional amino acid composition. 

According to the typical PseAAC discrete model, protein P’ of Equation 3 can be represented 

as P’’ in following Equation 4 [33]. 

 (4) 

where, is the length of protein sequence, reflects the rank of correlation and 

  (5) 

where  is the frequency of amino acid u,  is the frequency of amino acid i,  is the weight 

factor,  the u-20th and the kth tier correlation factor that reflects the hopping sequence 

order correlation between all the u-20th and kth most contiguous residues respectively as 

formulated by Equation 6.  and  are computed for different function/physicochemical 

properties (i.e., hydrophobic, polar, etc.) as given in Equation 7. 

 (6) 
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(7) 

where is the qth function/physicochemical property of the amino acid  and the 

total number of functions/ physicochemical properties considered. 

Table 1. Physicochemical and Structural properties used for Fold Recognition 
Physico-chemical and Structural 

Property 

References 

Hydrophobicity [17,32,34-38] 

Predicted Solvent Accessibility [32,37-40] 

Normalized van-der Waals volume [17,31-32,34-37]  

Polarity [17,31-32,34-37] 

Polarizability [17,31-32,34-37] 

 The physicochemical and structure-based properties of amino acids used for protein 

fold recognition are shown in Table 1. The Hydrophobic effect is believed to play a pivotal role 

in the process of protein folding [41]. The Hydrophobicity property is used to measure how 

soluble an amino acid residue is in water. The Predicted solvent accessibility determines the 

solvent-exposed area of a protein. The Normalized van-der Waals volume is used to determine 

the level of packing density of molecules' interior. The polarity of the amino acids affects the 

overall structure of a protein. Polarizability is included in determining the dynamic response of 

a fold or structure to external fields. These all properties represent environmental factors 

affecting the formation of protein fold. Predicted Secondary Structure helps specify types of 

structural elements viz. helix, sheet, and turn/ loop present in the structure. Types, frequency, 

and location of secondary structural elements play a key role in predicting protein fold using 

secondary structure motifs. Three descriptors, “composition” (C), “transition” (T), and 

“distribution” (D), are calculated for a given property to describe the global percent 

composition of each of the three groups in a protein, the percent frequencies with which the 

attribute changes its index along the entire length of the protein, and the distribution pattern of 

the attribute along the sequence, respectively. The authors of [42] proposed a method of k-

separated bi-gram probabilities extracted from Position Specific Scoring Matrix 

(PSSM)[43,44] representing sequential evolution probabilities, where k is an integer in the 

range 1 to 11. The following equation is useful for calculating k-separated bi-gram. 

  (8) 

where, 1≤m≤20, 1≤n≤20, 1≤k≤11, L is the length of protein sequence, and N can be PSSM 

matrix or composition matrix. 

 The authors use PSSM instead of the original primary sequence to avoid zero in the 

resulting bi-gram feature vector. The Bi-gram probabilities calculated from PSSM are used as 

features in [45]. They are not considering k-separated bi-grams. The Bi-gram probabilities are 

also used in [34] for the TG dataset. Similarly, in [46], a tri-gram extraction technique is given. 

They have used PSSM linear probabilities of a given protein sequence to compute individual 

trigrams' probabilities to form the 3-dimensional probability matrix. The PSSM feature itself 

is used in [36] as one among other features like physicochemical properties and functional 
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domain-based features from Conserved Domain Database (CDD). Previous studies of the PSI-

BLAST profile show that evolutionary information is more informative than the query 

sequence itself, so the PSSM is transformed into a fixed-length vector by AutoCross 

Covariance (ACC) [18]. Evolutionary features are extracted using the profile-profile sequence 

alignment method HHblits using PSSM [47]. In one of the most recent works [13], 

physicochemical, evolutionary, and structural features are combined to create a multi-view 

model for protein fold recognition. Pse-AAC is used for representing the physicochemical 

profile. Evolutionary features are extracted using ACC transformation and the HHblits method 

of profile-profile sequence alignment. Secondary features are extracted from secondary 

structure profiles predicted using the PSI-PRED server [48,49]. Secondary structure feature 

vectors primarily include the probability of secondary structure elements (helix, strand, and 

coil), the entropy of secondary structure elements, ACC, Bi-gram, and Tri-gram of predicted 

secondary structure. Probability and entropy-based features are given in Equation 9. Later they 

combine the multi-view model with template-based methods HHblits and HMMER to create 

an ensemble model. 

 (9) 

where, NC, NE, NH represent the frequency of coil, strand, and helix respectively, L is the 

protein sequence's length. 

4. Machine learning algorithms 

 The exponential growths of biological data need algorithms to identify important 

parameters and features while performing tasks intelligently [50–54]. Machine learning models 

are the one which can fulfill this requirement. Currently, for protein fold recognition, single 

classifier and ensemble classifier based methods are popularly in use. The single classifier-

based methods classify new records based on the classifier's prediction, while ensemble 

classifier methods classify new records based on the vote of their classifiers’ predictions [55–

57].  

 Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used as a 

single classifier for protein fold recognition. ANN is an ML approach that models a network 

mathematically based on neurons' model in living organisms to carry out learning and other 

computational tasks [53,58].  Neurons of networks are arranged in layers, and normally the 

network has three layers: Input, Hidden, and Output. The feature vector is provided to the input 

layer. Learning takes place in hidden layers with weight propagation and weight update 

mechanism. The output layer lets you interpret output based on learning performed [59]. A 

Support Vector Machine predicts by finding the decision boundary that maximizes the target 

classes' margin [60].  

 Three-layer feed-forward neural networks (NN) are used with the NN weights adjusted 

by conjugate gradient minimization. Authors use physical, chemical, and structural properties 

for constructing feature vectors in the form of CTD feature vectors from protein sequences. In 

this work [37], a separate training set is constructed for each fold in the database, and NN is 

trained. Many discriminative methods use one-vs-others methods for prediction; authors in 

their study [17] investigate one-vs-others and all-vs-all methods with NN and SVM as a base 

classifier with the same global composition representation CTD for protein sequences. The 
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Grow and Learn NN with one-vs-other protein fold recognition methods used 125-dimensional 

data constructed from physicochemical properties of amino acids [31]. The properties 

considered are amino acid composition, predicted secondary structure, hydrophobicity, 

normalized van der Waals volume, polarity, and polarizability [61]. SCOPe 1.75 dataset 

sequences are utilized in deep neural network-based methods [62]. This work focuses on 

features based on sequence pair alignments and secondary structure prediction. 

The pseudo amino acid composition with other chemical and evolutionary properties is 

used as a feature vector in [63] for predicting protein fold using a k-NN classifier. The pseudo 

amino acid composition is also used in an unsupervised machine learning method, where [64] 

each protein is associated with its corresponding PseAAC. This work uses the spectral graph 

clustering method for the prediction of protein fold. 

 In a study [18] based on autocross-covariance transformation LIBSVM, 

implementation of SVM is used with RBF as the kernel function. Kernel trick transforms 

linearly inseparable data into linearly separable data by mapping original data in higher 

dimensional space [65]. Normally RBF kernel transforms input data by taking squared 

Euclidean distance of input feature vectors. The RBF kernel is generally preferred with SVM 

compared to linear and polynomial kernel functions [66]. SVM algorithm is also used [67] for 

protein fold recognition using features of PSSM and SSPM. LIBSVM is used for tuning 

parameters. SVM implementation based on LIBSVM with RBF kernel is used in a work [47] 

based on sequence-sequence profiles for protein fold prediction. 

 An ensemble framework consists of 9 classifiers is used to reduce the variance caused 

by peculiarities of one training set combining all features. The classifier used is OET-KNN 

(optimized evidence-theoretic k-nearest neighbors). An ensemble output is selected by a voting 

scheme [32]. A two-level classification method that first predicts class and then folds uses MLP 

networks, RBF networks, SVM, and an ensemble of classifiers. Simple majority voting scheme 

and five folds cross-validation are used to fuse prediction outcomes in both levels [68]. A set 

of 11 SVM classifiers were used in [42] to build a model from feature vectors of k-separated 

bi-grams generated using PSSM probabilities. The work of [36] shows that the DSSP feature 

has a significant impact on improving classifier performance. After validating the random 

forest's predictive quality, SVM, nearest neighbor, Naïve Bayes, and multiple logistic 

regression ensemble classifiers, random forest is employed by PFP-RFSM [40]. An ensemble 

classifier consisting of five classifiers Random Forest, Naïve Bayes, Bayes Net, LibSVM, and 

SVM with SMO is constructed in WEKA [69]. A novel ensemble classifier comprising 

template free and template-based methods is proposed [13]. It utilizes sequential, evolutionary, 

and structural features for constructing template free linear regression model and profiles 

generated from HMM using homology templates of query sequence found using HHblits and 

HMMER in a template-based method. The template-based approach is also used with features 

derived from sequence and structural evolutionary information [39]. 

5. Performance comparison 

 There are many works using machine learning algorithms for protein fold recognition.  

Table 2. Comparison of Protein Fold Recognition for Benchmark Datasets. 
Dataset Feature types ML algorithm Accuracy (%) References 

DD PSSM, Functional Domain 

composition, Amino Acid 

Ensemble 

Classifier 

76.2 [36] 
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Dataset Feature types ML algorithm Accuracy (%) References 

Composition, Physico-chemical 

properties,  

DD PSSM Bi-gram GA, SVM 71.5 [42] 

DD Physicochemical property and 

Predicted Secondary Structure 

Grow and Learn 

Neural Network 

81.2 [31] 

DD Physicochemical property, 

Predicted Secondary Structure, 

PSSM 

Ensemble 

Method 

83.5 [13] 

EDD PSSM, Functional Domain 

composition, Amino Acid 

Composition, Physico-chemical 

properties,  

Ensemble 

Classifier 

93.2 [36] 

EDD PSSM Bi-gram GA, SVM 87.7 [42] 

EDD Physicochemical property, 

Predicted Secondary Structure, 

PSSM 

Ensemble 

Method 

94.8 [13] 

TG PSSM, Functional Domain 

composition, Amino Acid 

Composition, Physico-chemical 

properties,  

Ensemble 

Classifier 

94.3 [36] 

TG PSSM Bi-gram GA, SVM 75.8 [42] 

TG Physicochemical property, 

Predicted Secondary Structure, 

PSSM 

Ensemble 

Method 

85.1 [13] 

These machine learning algorithms can be compared effectively using benchmark 

datasets. Table 2 provides a performance evaluation of significant methods reported since 

2016. 

6. Conclusions and Challenges 

 In this article, key insights are provided for protein fold recognition from protein 

sequences using a machine learning algorithm. They are in the form of dataset availability, 

feature representation methods for protein sequence, and popularly used machine learning 

algorithms with their performance comparison. 

 Many physicochemical properties are used to find features from a linear sequence of 

amino acids. Still, as performance is not as expected, other properties related to R-group like 

Aliphatic, Aromatic, Acidic, etc. may be included for feature representation. Apart from 

physicochemical properties, attention may be given to structure-based features for protein 

sequence representation as protein folds due to arrangements of its secondary structure in space 

relative to one another. The search space for performing protein fold recognition is too large. 

Efforts may be performed to reduce search space, which eventually impacts the protein fold 

recognition algorithm's performance. One key way to reduce search space is to predict protein 

structure class and then predict protein fold for each protein structure class. 
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